

Clustering in light, heavy & superheavy nuclei using Relativistic Mean Field Formalism

S.K. Patra

Institute of Physics, Bhubaneswar, INDIA

Alumni day 2006

Importance of clustering phenomena (light nuclei)

- The discovery of highly deformed and superdeformed shapes in N=Z light nuclei, PRL 85 (2000) 2693; for a review, IJMPE 13 (2004) 9.
- Several theoretical predictions as well as of experimental discovery of clustering structures from last 40 years.
- Quasimolecular resonances have also been observed for α–like nuclei (ex. ²⁸Si+²⁸Si reaction).
- Interpretation of resonant structures with an excitation energy of 30-50 MeV is a subject of contemporary debate.

Schematic Structure of *α*-nuclei

Models

- Mean-field models such as the shell model becomes insufficient.
- Most of the cluster models the existence of clusters is assumed apriori (e.g. cranked cluster model)
- *ab-initio* calculations also could explain clustering.
 Fermionic molecular dynamics (FMD) and antisymmetrized molecular dynamics (AMD) which describes well, several nuclei and their excited states in the lighter mass region.
- Here we analyze how well RMF calculations could be useful in studying the clustering.

RMF formalism

5

$$\mathcal{L} = \overline{\psi_{i}} \{ i\gamma^{\mu}\partial_{\mu} - M \} \psi_{i} + \frac{1}{2} \partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - g_{s}\overline{\psi_{i}}\psi_{i}\sigma$$

$$- \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{w}^{2}V^{\mu}V_{\mu} + \frac{1}{4}c_{3}(V_{\mu}V^{\mu})^{2} - g_{w}\overline{\psi_{i}}\gamma^{\mu}\psi_{i}V_{\mu} - \frac{1}{4}\vec{B}^{\mu\nu}.\vec{B}_{\mu\nu}$$

$$+ \frac{1}{2}m_{\rho}^{2}\vec{R}^{\mu}.\vec{R}_{\mu} - g_{\rho}\overline{\psi_{i}}\gamma^{\mu}\vec{\tau}\psi_{i}.\vec{R}^{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\overline{\psi_{i}}\gamma^{\mu}\frac{(1-\tau_{3i})}{2}\psi_{i}A_{\mu}.$$

$$\rho(r) = \sum_{\alpha} \varphi_{\alpha}^{\dagger}(r) \varphi_{\alpha}(r)$$

$$\rho_{\rm p}(r) = \sum_{\alpha} \varphi_{\alpha}^{\dagger}(r) \left(\frac{1+\tau_3}{2}\right) \varphi_{\alpha}(r) \,.$$

NL3 & NL-SH parameter sets

- No pairing for light nuclei, BCS pairing for heavy & superheavy nuclei
- Axially deformed oscillator basis
- \succ Densities are obtained in $z\rho$ plane

Are available in:

- P. Arumugam et al., Phys. Rev. C71 (2005) 064308.
- B.K. Sharma et al., J. Phys. G32 (2006) L1.
- S.K. Patra et al., Phys. Rev. C (communicated).
- R.K. Gupta et al., J. Phys. G (communicated)
- Some other works in preparation.

GS bonding (Dimers)

Clustering in α -nuclei

Clustering in nuclei

9

					<u> </u>
B.E. ((MeV)	β_2			(le
Theo.	Expt.	Theo. 1	Expt.	Probable structure	
89.74	92.16	-0.29	0.58	3α - Equilateral triangle	
89.63		0.00		Spherical	
72.55		2.33		3α - Linear chain	
100.01	10-00				
128.84	127.62	0.00		4α - Tetrahedron	
112.95		0.95		4α - Kite	
92.28		3.79		4α - Linear chain	
150 70	100.04	0.54	0.79	Mar Mainer I Linear il	
156.70	160.64	0.54	0.73	5α - Trigonal bipyramid	
151.96		-0.24		10 B + 10 B	
108.24		7.76		¹⁰ B+ ¹⁰ B (fragments)	
104.27	108.96	0 50	0.61	$^{12}C + ^{12}C$ (Control bishponoid)	
194.07	190.20	0.50	0.01	12 G + 12 G T $12 G$ T $12 G$	
186.82		-0.26		C+C - Trigonal biprism	
232.08	$236\ 54$	-0.34	0.41	D ₂₄ symmetry	
232.00	200.04	0.00	0.11	Hollow sphere (Pentagonal hipvramid)	
201.10		0.00		$^{12}C \downarrow \alpha \downarrow ^{12}C$ Trigonal binging	
224.11		0.00		$C+\alpha+$ C Irigonal Diprism	
265.96	271.78	0.25	0.31	$^{16}O + ^{16}O$ (Kite)	
256.38	2.1	1.03	0.01	$^{16}O + ^{16}O$ (Tetrahedron)	
	B.E. (Theo. 89.74 89.63 72.55 128.84 112.95 92.28 156.70 151.96 108.24 194.37 186.82 232.08 231.18 224.11 265.96 256.38	B.E. (MeV) Theo. Expt. 89.74 92.16 89.63 72.55 128.84 127.62 112.95 92.28 156.70 160.64 151.96 108.24 194.37 198.26 186.82 232.08 236.54 231.18 224.11 265.96 271.78 256.38	B.E. (MeV) β_2 Theo. Expt. Theo. I 89.74 92.16 -0.29 89.63 0.00 72.55 2.33 128.84 127.62 0.00 112.95 0.95 92.28 3.79 156.70 160.64 0.54 -0.24 108.24 7.76 -0.24 -0.24 108.24 7.76 -0.26 -0.26 232.08 236.54 -0.34 0.00 24.11 0.60 0.25 0.25	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B.E. (MeV) β_2 Theo. Expt. Theo. Expt. Probable structure 89.74 92.16 -0.29 0.58 3α - Equilateral triangle 89.63 0.00 Spherical 3α - Linear chain 128.84 127.62 0.00 4α - Tetrahedron 112.95 0.95 4α - Kite 92.28 3.79 4α - Linear chain 156.70 160.64 0.54 0.73 5α - Trigonal bipyramid 151.96 -0.24 $^{10}B+^{10}B$ 108.24 7.76 $^{10}B+^{10}B$ (fragments) 194.37 198.26 0.50 0.61 $^{12}C+^{12}C$ (- Central bishpenoid) 186.82 -0.26 $^{12}C+^{12}C$ - Trigonal biprism 232.08 236.54 -0.34 0.41 D_{3d} symmetry 231.18 0.00 Hollow sphere (Pentagonal biprism) $^{12}C+\alpha+^{12}C$ Trigonal biprism 265.96 271.78 0.25 0.31 $^{16}O+^{16}O$ (Kite) $^{16}O+^{16}O$ (Tetrahedron) $^{16}O+^{16}O$ (Tetrahedron)

Results for Be & B isotopes

TABLE I: Calculated binding energies and deformation parameters for the Be and B isotopes along with experimental data.

	B.E. (MeV)	β_2 (Theo.)			
Nucleus	Theo.	Expt.	Neutron	Proton	Total	
⁶ Be	31.28	26.92	0.23	1.15	0.84	
$^{7}\mathrm{Be}$	40.69	37.60	0.90	1.20	1.07	
${}^{8}\mathrm{Be}$	52.76	56.50	1.18	1.20	1.19	
${}^{9}\mathrm{Be}$	58.02	58.16	0.70	0.90	0.79	
$^{10}\mathrm{Be}$	64.87	64.98	0.40	0.67	0.51	
^{11}Be	67.74	65.48	0.25	0.58	0.37	
^{12}Be	71.80	68.65	0.13	0.48	0.25	
^{13}Be	72.28	68.55	0.52	0.62	0.55	
^{14}Be	74.37	69.91	0.83	0.74	0.80	
$^{11}\mathrm{B}$	76.90	76.20	0.20	0.28	0.23	
$^{13}\mathrm{B}$	88.85	84.45	0.05	0.17	0.10	
$^{15}\mathrm{B}$	92.48	88.19	0.67	0.44	0.59	
$^{17}\mathrm{B}$	94.64	89.53	0.69	0.48	0.62	
$^{19}\mathrm{B}$	94.73	90.08	0.43	0.39	0.42	

GS & Excited states of α-nuclei

Exotic Clustering

- Z>87 exotic clustering radioactivity
- Quantum mechanical fragmentation theory predicts, Greiner et al. PRL32 (1974) 548.
 - ¹⁴C, ²⁰O, ²³F, ^{22,24}Ne, ^{28,30}Mg, ^{32,34}Si from various Ra, Ac, Th, U, Pa, Pu and Cm.
- Experimentally observed by Rose & Jones, Nature 307 (1984) 245.
- Prediction of ⁴⁸⁻⁵¹Ca, ³⁴Si, ¹⁴C and ¹⁰B in the Superheavy region are also there.

Actinides properties (RMF & SHF)

TABLE I: The calculated binding energies BE, the deformation parameters β and the root-mean-square charge radii r_c for some radioactive nuclei, using the relativistic NL3 (upper panel) and non-relativistic SkI4 (lower panel) parameter sets, with pairing interactions included. The experimental data are from Refs. [34–36]; the numbers marked as (*) are for neighbouring nuclei. The energies are in MeV and the radii in fm.

	RMF(NL3)			Expt.			
nucleus	BE	β	r_c	BE	β	T_{C}	
222 Ra	1711.9	0.082	5.701	1708.734	0.192	5.650	
	1708.1	0.658	6.056				
	1704.6	-0.365	5.862				
232 U	1768.2	-0.251	5.839	1765.984	0.264	5.814^{*}	
	1765.4	0.688	6.188				
	1761.3	-0.243	5.866				
230 Pu	1791.8	0.272	5.886	1788.408	0.286^{-}	5.825^{*}	
	1789.7	0.877	6.402				
	1783.6	-0.339	5.962				
^{242}Cm	1827.1	0.291	5.943	1823.228	0.297^{*}	5.785	
	1825.4	0.879	6.466				
	1818.4	-0.276	5.973				
	SI	HF(SkI4))				
222 Ra	1704.6	-0.154	5.667				
	1698.9	0.769	6.136				
232 U	1762.7	-0.259	5.800				
	1759.5	0.837	6.300				
	1753.5	-0.367	5.916				
$^{-236}$ Pu	1784.9	0.281	5.848				
	1783.2	0.852	6.355				
	1774.9	-0.357	5.940				
^{242}Cm	1819.5	-0.294	5.902				
	1817.3	0.931	6.489				
	1808.9	-0.305	5.944				

SHE properties (RMF & SHF)

TABLE II: The same as for Table I, but for some superheavy nuclei. No experimental data is available.

	RMF(NL3)				
nucleus	BE	β	r_c		
286114	2053.5	0.502	6.466		
	2052.0	0.000	6.234		
	2049.6	-0.346	6.390		
200114	2078.9	-0.505	6.491		
	2077.1	-0.212	6.305		
	2076.6	0.001	6.246		
294114	2101.3	0.522	6.526		
	2100.1	0.000	6.257		
	2099.5	-0.234	6.343		
2598114	2122.4	-0.570	6.593		
	2121.9	0.000	6.271		
	2119.5	-0.312	6.435		
	SHF(SkI4)				
286114	2043.3	0.152	6.192		
	2041.1	0.557	6.462		
250114	2069.6	-0.009	6.190		
	2066.5	0.517	6.452		
114	2096.2	-0.01	6.202		
	2090.9	-0.567	6.519		
258114	2121.0	-0.000	6.215		
	2113.3	0.562	6.539		

PES for cluster radioactive nuclei

Clustering in actinides

Matter density RMF(NL3)

21

Clustering in actinides

$$\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}.$$

Oio

$$\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

α-decay & cluster decay

- The signature of fragmented n-(or p)-rich matter starts appearing for the oblate excited state, in the form of two small fragments for ²³²U, ²³⁶Pu and ²⁴²Cm.
- The g.s. of all nuclei contain pure α-particle like matter and the g.s. decays prefer α-like fragments due to the WIGNER term in liquid drop energy.
- For exotic cluster decays, the appearance of a single asymmetry (N not equal to Z) fragment at the centre of the N=Z matter of S.D. states of all 4 nuclei.
- The S.D. are the excited states, which might represent the surface excitations of these nuclei due to α -particle emission. (The observed half-life of α -decay is much smaller than the exotic cluster decay.)

Extension of the formalism to SHE (Z=114 & 120)

Clustering in SHE
 Potential Energy Surface

PES for SHE nuclei (Skl4)

Clustering in SHE (Z=114)

$$\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}.$$

Clustering in SHE (Z=114) Skl4

$$\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}.$$

Oio

Clustering in SHE (Z=120)

Oblate SHE (Z=120)

Shape co-existence SHE (Z=120)

Superdeformed SHE (Z=120)

 $\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$

α (NL3) Z=120,N=172 β=0 0

α (NL3) Z=120/N=172 β=-0.387

α (NL3) Z=120,N=172 8=0.539

Figure 5. The asymmetry α for the three (spherical, somewhat superdeformed, superdeformed) solutions of ²⁹²120. The full black portion is the pure neutron (or proton) matter and the full white one is the N = Z matter.

o (NL3) Ze120,Ne184 p=0.689

Figure 6. Same as for figure 5, but for superdeformed ground states of 296-304120.

For SHE elements (z=114 & 120):

- We have applied our method to Z=114, Z=120 with N=172-184 and bubble-like structure for Z=114, N=184 & Z=120, N=172 as signature of doubly close shell.
- Two or multi-cluster for other nuclei in the ground and excited states are some of the interesting results.
- Possibility of exotic clusters at the centre of the SHE are predicted.
- Clustering is more clearly seen in RMF than SHF.

Super-superheavy compound system

compound system

Super-superheavy nuclei

We studied the clustering phenomenon in various resonance states of the compound nucleus ⁴⁷⁶184* formed in ²³⁸U+²³⁸U reaction.

Both the formalisms indicate clear signatures of clustering in various resonance states of the super-superheavy compound system.

The clustering are of N=Z, α-like and neutron-rich clusters, whose decay could finally end up in a superheavy nucleus from the un-known region.

These works are done in Collaboration with:

- P.D. Stevenson, University of Surrey, U.K.
- R.K. Gupta, Panjab University, India
- P. Arumugam, CFIF, Portugal
- B.K. Sharma, IOP, Bhubaneswar, India
- ➤ W. Greiner, FIAS, Frankfurt, Germany.

THANK YOU