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Dimerized Ising chain: two point correlation
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Abstract. The free energy of an elastic Ising chain, with a dimerizing distortion, in an external magnetic field
has been calculated earlier. The free energy exhibits a tricritical point. In this paper, we calculate the spin-spin
correlation in this model.

Communicated by: L. Satpathy

1. Introduction

One of the most influential model of a system capable of a phasetransition is the Ising model. This
was invented by Wilhelm Lentz. He gave his student, Ernst Ising, this model as a problem to solve.
For the one dimensioal case, Ising solved it in 1925. The solution of this model in two dimensions
is due to Lars Onsager. By solving it exactly, in the absence of external magnetic field, he studied
the behaviour of various correlations near the phase transition point. This was in 1944. Unlike the
first order Ising model, for the two dimensional one, phase transition occurs at finite temperature.
Despite years of intensive effort, an exact solution of the Ising model in three dimensions or in two
dimensions with external magnetic field is still lacking. Our focus, in this paper, will be a distorted
version of one dimensional Ising model. But before going to it, let us introduce the original Ising
model in one dimension.

Consider a one dimensional lattice or chain. We will consider a very long chain and identify the
two ends of this chain. At each lattice sites spin variablesSis are sitting which can be up or down.
The other way of parametrizing this is to assign+1 for spins pointing up and−1 for those pointing
down. The subscripti is the index identifying the lattice site at whichSi is sitting. The Hamiltonian
of the system is given by

H = −J
∑

i

JSiSi+1 − h
∑

i

Si, (1)

with J > 0. Clearly there are only interactions between neighbouringspins and the strength of the
interaction is controlled by the couplingJ . In the above equation,h represents an external magnetic
field. Computing the partition function and the free energy exactly, it can be shown that the sistem
shows a critical behaviour nearT = 0. There are excellent discussions of this model in many
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introductory text books on statistical mechanics. We referto the reader the book by Baxter [1]–the
calculational techniques of which we will follow throughout.

Though the Ising model in one dimension does not show a phase transition at finite temperature,
it is possible to distort the model inducing interesting phase structures. Transitions between them
are then controlled by temperature and other parameters of the model. One such model, which will
be the focus of this article, is the dimerized Ising chain. Interestingly, this model has a tricritical
point in its phase diagram [2]. A simple description of this model was provided in [3]. Our aim in
this note is to provide a calculation of the two point correlator of this model. Further, analyzing the
behaviour of the correlator, we identify the critical pointwhere correlation length diverges.

We begin by introducing the model following [3].

1.1 The model

The Hamiltonian is given by:

H = −J0

∑

i

(SiSi+1) − J1ǫ
∑

i

((−1)iSiSi+1) − h
∑

i

Si + Nω0ǫ
2. (2)

Here

• N is the number of spin variables. These variables take valuesSi = ±1. The sum is over the
chain sites.

• J0 is the exchange constant.

• J1 is the first derivative ofJ0 with respect to the distance between the spins.

• ω0 is the frequency of dimerized distortion.

• ǫ is the lattice distortion resulting in long and short bond lengths between adjacent spins. The
termNω0ǫ

2 has been introduced to stabilize the model.

The lattice distortion parameterǫ causes alternating long and short bonds between neighbouring
spins. This results in alternating nearest-neighour coupling constantsJ0 ± ǫJ1. This distortion is
known as the dimerizing lattice distortion. By introducingtwo matrices,

F =

(

eβ(J0+ǫJ1)+βh e−β(J0+ǫJ1)

e−β(J0+ǫJ1) eβ(J0+ǫJ1)−βh

)

(3)

and

G =

(

eβ(J0−ǫJ1)+βh e−β(J0−ǫJ1)

e−β(J0−ǫJ1) eβ(J0−ǫJ1)−βh

)

(4)
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the partition function

Z =
∑

Si

e−βH (5)

can be brought to a form

Z = Tr[(FG)N/2]. (6)

Since this has been already discussed in [3], we have been very brief here. The explicit form ofFG

follows from (3) and (4) and we record it here for later use.

FG =

(
1
A + AB2 B

√
C + 1

B
√

C
B√
C

+
√

C
B

1
A + A

B2

)

. (7)

Here we have defined

A = e2βJ0, B = eβh, C = e4ǫβJ1. (8)

The eigenvalues of the matrix (7) are

λ1 =
( 1

A
+

A

2B2
+

AB2

2
−
√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)

4B4C

)

λ2 =
( 1

A
+

A

2B2
+

AB2

2
+

√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)

4B4C

)

.

(9)

Note thatλ1 < λ2. The matrix which diagonalizesFG is given by

D =

(

D1 D2

1 1

)

, (10)

where

D1 = −A
√

C − AB4
√

C +
√

4B4 + A2C + 4B2C − 2A2B4C + 4B6C + A2B8C + 4B4C2

2B(B2 + C)
,

D2 = −A
√

C − AB4
√

C −
√

4B4 + A2C + 4B2C − 2A2B4C + 4B6C + A2B8C + 4B4C2

2B(B2 + C)
.

(11)

The partition function then becomes

Z = λ
N
2

1 + λ
N
2

2 (12)

Then the free energy per site in the thermodynamic limit is given by

F = − 1

β
lim

N→∞
lnZ = − 1

2β
lnλ2. (13)

up to some additiveǫ2 term [3].
In the next section, we present our computation of two point spin-spin correlation in this model.

This follows the technique of [1].
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2. Calculation of the Two-point correlation function

Let us consider the two point correlation< S1S3 > for example. This is given by

< S1S3 >= Z−1Tr[S(FG)S(FG)
N
2
−1] (14)

where we have introducedS as a two by two matrix

S =

(

1 0

0 −1

)

(15)

Therefore, in general, we have (forj − i even,j > i, the case wherej − i odd will be considered
later.)

< SiSj >= Z−1Tr[S(FG)
j−i

2 S(FG)
N
2
−

j−i

2 ] (16)

Denotingj − i = α with α even, we finally have

< SiSj >= Z−1Tr[S(FG)
α
2 S(FG)

N−α

2 ]. (17)

Also it easily follows that the one point function is given by

< Si >= Z−1Tr[S(FG)
N
2 ]. (18)

2.1 When j-i is even

In this case, we write (17) as

< SiSj >= Z−1Tr[ DD−1SD D−1FGD...D−1FGD
︸ ︷︷ ︸

D−1SD

D−1FGD...D−1FGD
︸ ︷︷ ︸

D−1], (19)

where the first underbrace containsα/2 terms ofD−1FGD and the second one contains(N −α)/2

terms. To simplify things further, we defineS1, S2, S3 andS4 such that

D−1SD =

(

S1 S2

S3 S4

)

. (20)

More explicitly,

S1 =
−A(−1 + B4)

√
C

√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
,

S2 =
−A(−1 + B4)

√
C −

√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
,
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S3 =
A(−1 + B4)

√
C −

√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
,

S4 =
A(−1 + B4)

√
C

√

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2)
. (21)

Then it follows that

< SiSj >= Z−1Tr
[

D−1SD

(

λ
α
2

1 0

0 λ
α
2

2

)

D−1SD

(

λ
N−α

2

1 0

0 λ
N−α

2

2

)
]

. (22)

Now using (20), after carrying out the matrix multiplications we reach at

< SiSj >= Z−1Tr
[
(

S2
1λ

N
2

1 + S2S3λ
N−α

2

1 λ
α
2

2 S1S2λ
α
2

1 λ
N−α

2

2 + S2S4λ
N
2

2

S1S3λ
N
2

1 + S3S4λ
α
2

2 λ
N−α

2

1 S2S3λ
α
2

1 λ
N−α

2

2 + S2
4λ

N
2

2

)
]

. (23)

Taking the trace, we get,

< SiSj >= Z−1S2
1λ

N
2

1 + S2S3λ
N−α

2

1 λ
α
2

2 + S2S3λ
α
2

1 λ
N−α

2

2 + S2
4λ

N
2

2 . (24)

Now in the thermodynamic limit (withN → ∞), using the fact thatλ2 > λ1, we get

< SiSj > =
1

λ
N
2

2

[

S2
4λ

N
2

2 + S2S3

(λ1

λ2

)α
2

λ
N
2

2

]

(25)

= S2
4 + S2S3

(λ1

λ2

)α
2

. (26)

Further, using (18), we therefore have

< SiSj > − < Si >< Sj >= S2S3

(λ1

λ2

)α
2

. (27)

2.2 When j − i is odd

In the case whenj − i is odd, the correlator takes the form:

< SiSj >= Z−1Tr[ DD−1SD D−1FGD...D−1FGD
︸ ︷︷ ︸

D−1FSGD

D−1FGD...D−1FGD
︸ ︷︷ ︸

D−1], (28)

where the first underbrace contains(j − i − 1)/2 terms ofD−1FGD and the one in the second
underbrace has(N − (j − i− 1)− 2)/2 terms. Here also we will continue to writej − i asα. Now,
denoting

D−1FSGD =

(

x1 x2

x3 x4

)

(29)
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we can write the correlator as

< SiSj > = Z−1Tr
[

D−1SD

(

λ
α−1

2

1 0

0 λ
α−1

2

2

)

[D−1FSGD]

(

λ
N−α−1

2

1 0

0 λ
N−α−1

2

2

)
]

= Z−1Tr
[

D−1SD

(

λ
α−1

2

1 0

0 λ
α−1

2

2

)(

x1 x2

x3 x4

)(

λ
N−α−1

2

1 0

0 λ
N−α−1

2

2

)
]

(30)

Note that sinceS, F, G andD are explicitly known,x1, x2, x3, x4 are calculable quantities. We
can now progress as before to calculate (30). Since the manipulations are simple, we will skip the
details. The final result, in the thermodynamic limit, turnsout to be:

< SiSj >=
1

λ2

[

S3x4 +
(λ1

λ2

)α−1

2 S4x2

]

, (31)

whereS3 andS4 are given in (21). Further,

< SiSj > − < Si >< Sj >=
1

λ2

(λ1

λ2

)α−1

2 S4x2. (32)

From (27) and (32), we see that the correlation dies off with the distance between the spinsα

sinceλ2 > λ1. However, it follows from (9) that ifA, B, C satisfy

A2C + 4B2C + 4B6C + A2B8C + B4(4 − 2A2C + 4C2) = 0, (33)

thenλ2 = λ1. In this special case, correlation no longer falls with the distance (between the spins).
This represents the appearence of long range correlation inthe system. This critical point is normally
described by introducing acorrelation length ξ as

ξ =
1

ln(λ2

λ1

)
. (34)

This diverges whenλ2 = λ1.

3. Discussions

We have shown that the spin-spin correlator for the dimerized Ising chain can be explicitly calcu-
lated. From the divergence of the correlation lenth, we haveisolated the critical point of the system.
Are the higher point correlators calculable? We leave this for future.

Note added:

After completing the work, we were informed by Goutam Tripathy that these results were presented
in [4]. We thank him for bringing this paper into our notice.
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