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Abstract. The free energy of an elastic Ising chain, with a dimerizirggaition, in an external magnetic field
has been calculated earlier. The free energy exhibitstitad point. In this paper, we calculate the spin-spin
correlation in this model.
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1. Introduction

One of the most influential model of a system capable of a ptrassition is the Ising model. This
was invented by Wilhelm Lentz. He gave his student, Ernaglsihis model as a problem to solve.
For the one dimensioal case, Ising solved it in 1925. Thetisolwf this model in two dimensions
is due to Lars Onsager. By solving it exactly, in the abseri@xternal magnetic field, he studied
the behaviour of various correlations near the phase trangioint. This was in 1944. Unlike the
first order Ising model, for the two dimensional one, phaaadition occurs at finite temperature.
Despite years of intensive effort, an exact solution of 8ieg model in three dimensions or in two
dimensions with external magnetic field is still lacking.r@acus, in this paper, will be a distorted
version of one dimensional Ising model. But before going ttet us introduce the original Ising
model in one dimension.

Consider a one dimensional lattice or chain. We will consa&leery long chain and identify the
two ends of this chain. At each lattice sites spin varialSlgsare sitting which can be up or down.
The other way of parametrizing this is to assigh for spins pointing up and-1 for those pointing
down. The subscriptis the index identifying the lattice site at whi® is sitting. The Hamiltonian
of the system is given by

H=-J> JSiSit1—hY S (1)

with J > 0. Clearly there are only interactions between neighbouwspigs and the strength of the
interaction is controlled by the coupling In the above equatioh, represents an external magnetic
field. Computing the partition function and the free energgatly, it can be shown that the sistem
shows a critical behaviour nedf = 0. There are excellent discussions of this model in many
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introductory text books on statistical mechanics. We redehe reader the book by Baxter [1]-the
calculational techniques of which we will follow throughou

Though the Ising model in one dimension does not show a phassition at finite temperature,
it is possible to distort the model inducing interesting ghatructures. Transitions between them
are then controlled by temperature and other parametereaohbdel. One such model, which will
be the focus of this article, is the dimerized Ising chaintedestingly, this model has a tricritical
point in its phase diagram [2]. A simple description of thisdel was provided in [3]. Our aim in
this note is to provide a calculation of the two point cortetaf this model. Further, analyzing the
behaviour of the correlator, we identify the critical paivhiere correlation length diverges.

We begin by introducing the model following [3].

1.1 The model

The Hamiltonian is given by:

H=—-J, Z(S7S7+1) — Jye Z((_1)7‘S’751+1) — hz& + Nu}o€2. (2)

K3

Here

N is the number of spin variables. These variables take sdlpie- +1. The sum is over the
chain sites.

Jo is the exchange constant.

Ji is the first derivative off, with respect to the distance between the spins.

wy Is the frequency of dimerized distortion.

e cis the lattice distortion resulting in long and short bormjhs between adjacent spins. The
term Nwoe? has been introduced to stabilize the model.

The lattice distortion parametercauses alternating long and short bonds between neighmgpuri
spins. This results in alternating nearest-neighour égngmonstants/y + eJ;. This distortion is
known as the dimerizing lattice distortion. By introducimgp matrices,

eﬁ(J0+611)+ﬁh e*ﬁ(‘]o+6]1)
e=B(Joted1)  oB(Jotel)—Bh (
and
65(J0—€J1)+5h e—ﬁ(Jo—EJl)
e*ﬂ(]g*ﬁjl) eﬁ(Jo*GJl)fﬁh (
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the partition function

Z=> M (5)
Si
can be brought to a form
Z = Tr[(FG)N/?. (6)

Since this has been already discussed in [3], we have beghref here. The explicit form of’'G
follows from (3) and (4) and we record it here for later use.

14+ AB? BVC + -
FG:(A BVC | (7)

B VC A
=t%5 ati
Here we have defined
A=l B=e O =elh ®)

The eigenvalues of the matrix (7) are

_|_

\ (1 A AB? \/A20+4B2C+4B6C+A2380+B4(4—2A20+402))
1 = -

ATt 1BIC
\ ( LA AR \/AQC +4B2C + 4BSC + A2B8C + B4(4 — 242C + 402))
> \A4 Tepr 2 4BiC '
C)
Note that\; < As. The matrix which diagonalizeBG is given by
D:<D1 D?), (10
1 1
where
b _ _AVC—ABWC + VABT+ A2C + AB?C — 2ABTC + 4BSC + A’L°C + 4B1C?
o 2B(B? + C) ’
D, - AVC-AB'WC - VABT + A2C + 4B>C — 2A°BIC + 4B5C + A?B5C + 4B*C?
2 2B(B? + C) '
(11)
The patrtition function then becomes
N N
Z =A% + A7 (12)
Then the free energy per site in the thermodynamic limitvegiby
1. 1
F = 3 ngnoo InZ = —%m)\g. (13)

up to some additive? term [3].
In the next section, we present our computation of two pgiimt-spin correlation in this model.
This follows the technique of [1].
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2. Calculation of the Two-point correlation function

Let us consider the two point correlatienS;.Ss > for example. This is given by

< 8183 >= Z 'TX[S(FG)S(FG) =] (14)

where we have introducefias a two by two matrix

1 0
(3 "

Therefore, in general, we have (fp— i even,j > i, the case wher¢ — i odd will be considered
later.)

i i—i

< 8iS; >= Z  T[S(FG) = S(FG)* 7] (16)

Denoting;j — ¢ = « with « even, we finally have

N—a

=] (17)

< S8iS; >= Z'TY[S(FG)% S(FQ)

Also it easily follows that the one point function is given by

< 8 >=Z'TY[S(FG)*]. (18)
2.1 Whenj-i iseven
In this case, we write (17) as
<S8;8;>=27"'Ty[ DD 'SDD'FGD..D"'FGD D 'SD
D 'FGD..D"*FGD D], (19)

where the first underbrace contain& terms of D~! FGD and the second one contaiffs — «) /2
terms. To simplify things further, we defirtg , S,, S3 andS, such that

D'SD = <§l gi ) . (20)
More explicitly,
s — —A(-1+ BYH/C |
VA2C +4B2C + 4BSC + A?2B3C + B(4 — 2A2C + 4C?)
s, — —A(=1+ BY)C — \/A2C + 4B2C + 4BSC + A2B8C + B4(4 — 2A42C + 402)7

VA2C + 4B2C + 4BSC + A2B3C + B*(4 — 2420 + 4C?)
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)

A(—1+ BYHYYC — \J/A2C +4B%C + 4BSC + A2B8C + B*(4 — 2A2C + 4C?)
VA2C + 4B2C + 4BSC + A2B3C + B*(4 — 2420 + 4C?)
(21)

Sy =
B A(-1+ BYHY/C
VA2C +4B2C + 4BSC + A2B8C + B4(4 — 2A2C +4C?)

Sy

N—«

)\ 2
) D7'SD < 1 1?_”
0 A,°

o

) } . (22)

Then it follows that
A

< 8;8; >= Z—lTr[D—lsD ( 0 )

N olp

a

N N-a a
S%)\f +8283>\1 2 A5

N—o a N—ao N

SQSg)\f )\2 2+ Sf)\;

N a
S$183A7 + 838405 Ay °

Now using (20), after carrying out the matrix multiplicatewe reach at
a N—o N
SISAEA, T+ SaSiN? ) } (23)

< SVS’] >= Z_lTI‘|: <
(24)

Taking the trace, we get,
N N_—a o a N—o N
< Sl‘Sj >= Z_1812>\12 + 8283)\1 A +SQS3>\12 Ay ? +S§>\22

Now in the thermodynamic limit (witlV. — o0), using the fact thak, > A1, we get
1 2 % )\1 >l %

<88 > = [S4A2 +s253(A—2) A } (25)

(26)

- s§+5233(i;)%.

Further, using (18), we therefore have
’ (27)

< Sl‘Sj >—< 5 >< SJ‘ >= 8283(%)
2

2.2When j — ¢ isodd

In the case when — i is odd, the correlator takes the form:
DD 'SDD 'FGD..D"'FGD D 'FSGD
(28)

< SVS’] >= Z_lTI"[
D 'FGD..D"'FGD DY,

where the first underbrace contaifys— i — 1)/2 terms of D~! FGD and the one in the second
underbrace hagV — (j —i — 1) — 2)/2 terms. Here also we will continue to wrije- ¢ asa. Now,
(29)

Ty T2

D 'FSGD = (
T3 T4

denoting
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we can write the correlator as

a—1 N—a-—1
<SiS;> = Z’lTr[D’lsD < A 9_1 ) [D-'FSGD) ( A Nf)a,l ) }

0 A2 0 A °

ot St
:z—lTr[D—lsD AT 0 ) e ) (A WO }
0 A7 T3 T4 0 A 2

(30)

Note that sinceS, F', G and D are explicitly known,z, 2, x3, x4 are calculable quantities. We
can now progress as before to calculate (30). Since the miatigns are simple, we will skip the
details. The final result, in the thermodynamic limit, tumas to be:

1 A\ 27
< Sz'Sj >= )\—2 [83334 + ()\—2) 84332:|7 (31)
whereSs andS, are given in (21). Further,
e e
<885 > =<8 >< 8 >= /\—2()\—2) Sz, (32)

From (27) and (32), we see that the correlation dies off with distance between the spins
sinceXs > A;. However, it follows from (9) that ifA, B, C satisfy

A%C + 4B*C + 4B°C + A’B8C + B*(4 — 2A%C + 4C?) = 0, (33)

then)y = A;. In this special case, correlation no longer falls with tistahce (between the spins).
This represents the appearence of long range correlatibe Bystem. This critical pointis normally

described by introducingeorrelation length £ as
1
€= : (34)
ln(i—f)

This diverges when, = \;.

3. Discussions
We have shown that the spin-spin correlator for the dimdrizeng chain can be explicitly calcu-

lated. From the divergence of the correlation lenth, we ligolated the critical point of the system.
Are the higher point correlators calculable? We leave thigiture.

Note added:

After completing the work, we were informed by Goutam Tripathat these results were presented
in [4]. We thank him for bringing this paper into our notice.
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