Emergent quantum transport due to quenched magnetic impurity scattering by antiferromagnetic proximity in SrCuO₂/SrIrO₃

Debakanta Samal Institute of Physics, Bhubaneswar, Odisha, India E-mail: <u>dsamal@iopb.res.in</u>

Gaining control over electron scattering in complex materials is a critical step to advance the understanding that can have technological implication. Through an antiferromagnetic proximity effect, we observe an enhanced effective phase coherence length (l_{ω}) in a spin-orbit coupled semimetal SrIrO₃ (which is predicted to host 3D Dirac quasiparticles near the Fermi energy) from quantum interference originated magnetoconductance study. The above effect is discussed in view of quenching of magnetic impurity scattering which originates from spin Andreev reflection at antiferromagnet (SrCuO₂)/SrIrO₃ interface. More importantly, we observe chiral anomaly induced topological electron transport in longitudinal magnetoconductance (BIE) for the SrCuO₂/SrIrO₃ bilayer which is absent in bare SrIrO₃ film. Compared to the results on bare SrIrO₃ film, antiferromagnetic proximity effect in SrCuO₂/SrIrO₃ unfolds a practical means to circumvent the detrimental effect of unintended magnetic impurity scattering and preserve topological electron transport in SrIrO₃.

Reference

[1] Subhadip Jana, T. Senapati, Shwetha G. Bhat, S. N. Sarangi, K Senapati and D. Samal, Phys. Rev. B 107, 134415 (2023)