The curious case of the B-phase VO₂: a bad to worse insulator transition

D. D. Sarma

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, INDIA

Email: <u>sarma@iisc.ac.in</u> and sarma.dd@gmail.com

Materials in which sudden changes in conductive properties can be induced by external stimuli have multifarious applications. An iconic example is vanadium dioxide, VO₂. Its metal-insulator transition at Tc = 340 K has been rationalized by an accompanying structural transition below which vanadium atoms pair-up into dimers and electronic correlations promote a non-local spin-singlet state. Besides this standard crystal-structure, VO₂ can exist in a panoply of polymorphs. Particularly attractive is the relatively unexplored B-variant: Its resistivity switches by over four orders of magnitude at slightly lower, and therefore, more useful temperatures. Intriguingly, the transition is iso-structural, with dimers present above and below Tc, challenging the scenario for "standard" VO₂. Combining comprehensive experiments with many-body simulations, we reveal¹ that the resistive switching in B-VO₂ is not, in fact, due to a metal-to-insulator transition at all, but to an unconventional transition between a bad and a worse insulator. We argue that, above Tc, the singlet in B-VO₂ is destabilized by a charge-transfer mechanism, despite the structural dimerization. The emergence of incoherent ingap weight then leads to residual conduction in an otherwise gapped ground-state. Monitoring the Einstein-Podolsky-Rosen-like quantum-entangled singlet state for varying temperatures and across polymorphs, we establish a compendious microscopic picture of the VO₂ system.

References

¹ Banabir Pal, Amar Srivastava, Abhinav Kumar, Sumanta Mukherjee, Indranil Sarkar, Mihaela Gorgoi, Paola Di Pietro, Stefano Lupi, W. Drube, E. Arenholz, J. Chakhalian, A. Perucchi, T. Venkatesan, S. Biermann, J. M. Tomczak, and D. D. Sarma (Unpublished).