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Outline

l History and experimental motivation.

l Models and phases.

l Theoretical Methods

F Density Matrix Renormalization Group

F Mean Field Theory

l Results Mean Field Theory

F Spin-0 bosons

F Spin-1 bosons

l Conclusions.
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SN Bose

Bose Distribution function

	 
�� 
 � �
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For particles with integer spin
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A Einstein

Bose-Einstein Condensation (BEC)
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BEC for
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K. Huang, Statistical Mechanics
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Superfluidity of

O

He

The

R

transition

M.J. Buckingham and W.M. Fairbank

Cusp sharper than in the ideal Bose gas

S $ 1 (UT ( 0 *VW X (UT ( ( (D V

Y

He is a strongly interacting Bose fluid.
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Experimental Motivation
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Weakly Interacting Bose Gases

l

Y

He in vycor or aerogel (disorder).
l Microfabricated Josephson junction arrays.
l Disorder-driven superconductor-insulator transition (e.g., thin films

of bismuth).
l Type II superconductors with columnar defects.
l Cold atoms (e.g.,

[ \

Rb and

8 6

Na) in magnetic or optical traps
(thermodynamics modified by confining potentials).
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BEC in cold atoms

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E.
Wiemann, and E.A. Cornell, 1995, Science 269,
198.

Velocity distribution of

] ^

Rb_` _ba c _ed _ba c _f _ag
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Optical Lattices

http://physics.nist.gov/Divisions/Div842/Gp4/lattices.html
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Superfluid Mott Insulator

l Observation of this quantum phase transition in an ultracold gas of
spin-polarised

[ \

Rb atoms in an optical lattice.
l M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, Nature,

415, 39 (2002).
l Theory had preceded experiments!
l K. Sheshadri, H.R. Krishnamurthy, R. Pandit, and T.V. Ramakrishnan,

Europhys. Lett., 22, 257 (1993) and refs. therein.
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Superfluid Mott Insulator

Absorption images of interference
patterns from a Mott Insulator after
potential ramp-down times of (c) 0.1
ms (d) 4 ms and (e) 14 ms: Greiner,
et al., op. cit.
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Models and Phases
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Bose-Hubbard Model (Spin-

h

)

i $ 1 j
k l  mn

A@o plo m q rts E

SuperFluid

q u
* l

vtw l A vw l 1 0 E

Mott Insulator

q B
k l  mn

vw l vw m Mass Density Wave, SuperSolid

1
l

x l vtw l Boss Glass, Trap

(1)
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Optical Lattice - Comments

Alkalis with nuclear spin

y $D / *

such as

8 6 .o ,

6z {

,

[ \}| ~
have

hyperfine spin

� $ 0

.

In the conventional magnetic trap, the spins are frozen.

Alkalis can be treated as Bosons with Spin=0

However, in the optical trap, these spins are free and the Bose
condensate can exhibit magnetic nature.

Alkalis should be treated as Bosons with Spin=1
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Bose-Hubbard Model - (Spin 1)

i $ 1 j
� l  m �  �

A@o pl  �o m � q rT s E

q u �
* l

vw l A vw l 1 0 E

q u8
* l

A ��8 l 1 * vw l E

1
l

x l vw l

w l $
�

o pl  �o l2 �

�� l $
� � �

o pl  � � � � �o l  � �

� � � � are components of the spin-1 operators:
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Model: Comments

u8 / u � $ A@o 8 1 o � E /A@o � q *o 8 E

o � scattering length in the channel S=0

o 8 scattering length in the channel S=2

Atom o � o 8 u8 / u �

8 6 .o O� T O o : W O T No : Positive[ \�| ~ A 0 0 ( X O Eo : A 0 ( N X O Eo : Negative.



Outline of the
Presentation

History

Experimental
Motivation

Models and Phases
v Bose-Hubbard

Model (Spin-

�

)
v Optical Lattice -

Comments
v Bose-Hubbard

Model - (Spin 1)
v Model:

Comments
v Bose-Hubbard

Model - (Two
Species)

v Optical Lattice -
Comments

Theoretical
Methods

Mean Field
Approximation

Results:

��� � �

Results:

Conclusions

Acknowledgments

email: rvpai@unigoa.ac.in, September 3, 2006 IOP - p. 22/55

Bose-Hubbard Model - (Two Species)

i $ 1 j�� � l2 m �
A o plo m q rT s E

1 j��
� l  m �

A ~ pl ~ m q rT s E

q u�
* l

vtw � l A vtw � l 1 0 E

q u�
* l

vw � l A vw � l 1 0 E

q u� �
l

v w � l vw � l

1
l

x � l vw � l 1
l

x � l vw � l

o and

~

stands for two different species of Bosons.
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Optical Lattice - Comments

Parameters in the Hamiltonian depends on
l Atomic Recoil Energy

��� $ � ��� �
8�� ,

l scattering between atomso � ,
l depth of the optical potentails �,

j $ <
8

O �� �� 3A < 8 /O E A � / ��� E ! 78 5

u $ A
V

<
E ! 78 A 9o � E A ��� � 6 E ! 7 Y

which can be controlled to open a wide range of parameters to
exploration.
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Theoretical Methods
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Theoretical Methods

l For One-Dimension: DMRG

F R. V. Pai, R. Pandit, H. R. Krishnamurthy and S.
Ramashesha. One-Dimensional Boson Hubbard Model: A
Density-Matrix Renormalisation Group Study, Phys. Rev.
Lett. 76 (1996) 2937.

F R. V. Pai and R. Pandit One Dimensional Extended
Bose-Hubbard Model Special issue of the Proceeding of
the Indian Academy of Sciences (Chemical Sciences) in
honour of the Professor CNR Rao on his 70th birthday,
115 (2003) 721-726.

F R. V. Pai and R. Pandit Superfluid, Mott Insulator, and
Mass Density Wave Phases in the One-Dimensional
Extended Bose-Hubbard Model. Phys. Rev. B 71 (2005)
104508.

l For Higher Dimension: MFT
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Theoretical Methods

l For One-Dimension: DMRG

l For Higher Dimension: MFT
F K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V.

Ramakrishnan Europhys. Lett. 22 257 (1993); Phys. Rev.
Lett. 75 4075 (1995).

F R.Pandit, K. Sheshadri, R. V. Pai, and H. R.
Krishnamurthy Interacting Bosons in Disordered
Environments Condensed Matter Theories, Vol 12 (Novo
Science Publishers, Inc., 1997) pp 185-197.

F R. V. Pai, K. Sheshadri and R. Pandit, Meanfiled theory for
interacting spin-1 bosons on a lattice Proceeding of
Topical Conference on Atomic, Molecular and Optical
Physics (World Science, 2006) (in press).
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Mean Field Approximation
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Mean Field Approximation

o pl  �o m � $ �o pl2 � 'o m � qo pl  � �o m � '

1 �o pl  � ' �o m � '
Define superfluid order parameter in the spin component �

� � $ �o pl  � ' $ �o l  � '

i $
l

i ��l

i ��l $
u �

* vtw l A vtw l 1 0 E q u8
* A

��8 l 1 * vw l E 1 x vw l

1 � � A@o pl  � qo l  � E q
�

� � � � 8
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Method: comments

l If there is no disorder the mean-field Hamiltonian is the same at all
sites.

l Hamiltonian Matrix in the occupation-number basis.

� � w ' � � w $ 0 � *� D � ¡ ¡ ¡ ¢
truncate at w� �£ .

l

¤� ¥¦;§ ¨¤¦©§ $ (

gives the

� � .
l

ª � $ � � � � � 8 .

l Density ª $ 1 ¤� ¥¦©§ ¨¤�«

l Compressibility ¬ $ ¤�­¤�«
l

� �� ' $ ®§}¯ § � ¦©§ °�§}¯ § � ¦±§ �®§ ² ¦©§ ² � �
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Properties of Phases-spin 1

Phase ª � ¬ � �� ' 8
Polar SF Non Zero Non Zero Zero
Ferro SF Non Zero Non Zero One
Mott Insulator Zero Zero Zero
Normal Zero Non Zero

Since

� � , assumed to be real

� �� ' $ ³ * A � ! � � q �µ´ ! � � E

� � � � � 8

v � q
A �8 ! 1 �8 ´ ! E

� � � � � 8
vt¶ ¢

� �� ' 8 $ * A � ! � � q � ´ ! � � E 8

� � � � � Y

q
A �8 ! 1 �8 ´ ! E 8

� � � � � Y T (2)



Outline of the
Presentation

History

Experimental
Motivation

Models and Phases

Theoretical
Methods

Mean Field
Approximation
v Mean Field

Approximation
v Method:

comments
v Properties of

Phases-spin 1
v Properties of

Phases-spin 1,
Polar Superfluid

v Superfluid
v Polar Superfluid
v Properties of

Phases-spin 1,
Ferro Superfluid

v Ferro Superfluid

Results:

Results:

Conclusions

Acknowledgments

email: rvpai@unigoa.ac.in, September 3, 2006 IOP - p. 31/55

Properties of Phases-spin 1, Polar Superfluid

Symmetry:

uA 0 E¸· ¹8

º
� !

� �
� ´ !

» $ ³ ª � � ¼ ½ º
1 !¾8 � ´ ¼¿ÁÀ ÂÄÃ Å

ÆÇÀ Å

! ¾8 � ¼¿ÁÀ ÂÄÃ Å
» T (3)

È

=phase angle and

A S� Å� É E are Euler angles.
Polar SF:� ! $ � ´ ! ' (

,

� � $ (

or� ! $ � ´ ! $ (

,

� � ' (
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Superfluid

Figure 1: Free Energy
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Polar Superfluid

Figure 2: Free Energy
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Properties of Phases-spin 1, Ferro Superfluid

Symmetry:

¹Ê A D E

º
� !

� �
�Ë´ !

» $ ³ ª � � ¼ ¥ ½ ´ Ì ¨ º
� ´ ¼¿ ÆÇÀ 8 Í8³ * Æ ÇÀ Í8 À ÂÄÃ Í8

� ¼¿ À Â Ã 8 Í8

» T (4)

Ferro SF:

� ! $ � ´ ! ' (

,

� � ' (
but� ! Î $ � �
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Ferro Superfluid

Figure 3: Free Energy
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Figure 4: ª � versus x. ª � ' ( Ï Superfluid Phase
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Figure 5: ª �, ª, ¬ versus x. Mott Insulator Phase has ª � $ (
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Figure 6: Ground State Energy

� � versus
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. SF-MI transition
is continuous.
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Figure 7: Phase Diagram showing SF and MI phases. SF-MI
transition continuous.
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For commensurate densities and close to Mott insulator, the
charge excitations are gapped, however, the spin excitations
are gapless, which leads to many degenerate states i.e,� l $ � � .
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Figure 8: ª � versus x. SF-MI transition become first order.



Outline of the
Presentation

History

Experimental
Motivation

Models and Phases

Theoretical
Methods

Mean Field
Approximation

Results:

��� � �

v Results��� � �

,T=0
v Results��� � �

,T=0
v Results��� � �

,T=0
v Phase Diagram:��� � �

,T=0
v Results

��� � �

,
Finite
Temperature

v Results��� � �

,T=0.05
v Results

,T=0.05
v Results

,T=0.05
v Phase Diagram:

,T=0.05
v Phase Diagram:

Results:

Conclusions

Acknowledgments

email: rvpai@unigoa.ac.in, September 3, 2006 IOP - p. 43/55

Results * , h

,T=0.05

Figure 9: ª � versus x. MI region enhances. First order SF-MI
transition.
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Figure 10: Free energy

�

versus

Ð

. First order SF-MI transition.
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Figure 11: Phase Diagram showing SF and MI phases.
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SF-MI transition continuous. Small
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SF-MI transition first order
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Figure 12: Phase Diagram
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Figure 13: ª � versus x. SF-MI transition for ª $ 0

is continuous.
However, for ª $ *

, SF-MI transition is first order.
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Phase Diagram: * , hÚ h - (,T=0

Figure 14: Phase Diagram showing SF and MI phases. ª $ 0

SF-MI transition continuous. ª $ *

SF-MI transition is first order.
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Figure 15: Phase Diagram in the T, x plane
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Conclusions

l Extensive studies of Bose-Hubbard model for spin 1 using
Mean-Field Theory

l Elucidate phases, transitions
l These results can also be applied to Bose-Hubbard models

for spin-2 and multiple types of Bosons.
l The phase diagram for spin-2 Bose-Hubbard model remain

similar to spin-1 model.
l The phase diagram for two species Bose-Hubbard model

consists of SF, MI and Phase separation.
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