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”Different generations of physicists differed in the degree to which
they thought that the interpretation of quantum mechanics remains
a serious problem! I declared myself to be among those who feel
uncomfortable when asked to articulate what we really think about
the quantum theory, adding that, If I were forced to sum up in one
sentence what the Copenhagen interpretation says to me, it would be
Shut up and calculate!l”

”..my professors — whom I viewed as agents of Copenhagen — when
I was first learning quantum mechanics as a graduate student at Har-
vard, a mere 30 years after the birth of the subject said ’ You’ll never
get a PhD if you allow yourself to be distracted by such frivolities,’
they kept advising me, ’so get back to serious business and produce

some results.” ’Shut up,” in other words, ’and calculate.” And so I
did ........... ”

— David Mermin
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A survey probing respondents’ views on various foundational
Issues In quantum mechanics was recently created by
Schlosshauer, Kofler, and Zeilinger and then given to 33
participants at a quantum foundations conference. The
participants completed a questionnaire containing 16 multiple-
choice questions probing opinions on quantum- foundational
Issues. Participants included physicists, philosophers, and
mathematicians.
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(Juestion 3: Einstein’s view of gquantum mechanics

2. ls correct:
0%
b ls wrong:

| 64%

c. Will ultimately turn out to be correct:
6%
d. Will ultimately turn out to be wrong;
12%
a We'll have to wait and see:

12%

0% 10%  20%  30%  40%  BD%W  e0%  TO% 80%  90%  100%
percent of votes

JQuestion 4: Bohr's view of guantum mechanics

2. s correct:

| 219

b s wrong:

| 2794

o Wil ultimately turn out to be correct:
| 9%
a. Wil ultimately turn out to be wrongs

] =%

a We'll have to wait and see:
| 309

T T T T T T T T
0% 10% 20% A0 40%5 BE0% B0 T0% 20%
percent of votes
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(Juestion 7: What about gquantum information?

2. It's a breath of fresh air for quantum foundations:

| 76%

b It's useful for applications but of no relevance to quantum foundations:
6%
c. It's neither useful nor fundamentally relevant:

[ Je%

d. We'll need to wait and see:
| 27%,

0%  10% 20% 30% 40% 50%  60% TO%  80%  60%  100%
percent of votes

Evidently, there iz broad enthusissm—or at leazt open-mindedness—about guantum information,
with three in four rezpondents regarding quantum information az “a breath of fresh air for quantum
foundationz.” Indeed, it it hard to deny the impact guantum information theory has had on the field
of quantum foundations over the past decade. It has inspired new ways of thinking about gquantum
theory and has produced information-theoretic derivations (reconstructions) of the structure of the
thecry., On the practical side, the quantum-information boom has helped fund numercus founda-
tional research projects. Last but not leazt, quantum information has given foundational pursuits
new legitimacy.



IPQI2014, February 26, 2014

Question 16: In 50 years, will we still have conferences devoted to quantum founda-
tiona?

a. Probably yes:

| 48%

b Probably no:
15%

o Who knows:

| 24%

d I'll organize one no matter what:
12%

I I I I I I I I I 1
0% 10%  20%  30%  40%  B0% 60%  TO%  BD%  90%  100%
percent of wotes

Should those who answered “probably ves” be proven right, then it would be fazcinating to conduct
another such poll 50 years from now., DNotable write-ing included “I won't be here,” and *I hope
not.”
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Local realism and Bell’s Inequality

John Bell

Predictions of quantum mechanics cannot be squared with the belief, called
local realism that physical systems have realistic properties whose pre-existing
values are revealed by measurements. The predictions of quantum mechanics
for spatially separated systems are at odds with any version of local realism



| ocal Realism

- Realism is a worldview according to which external reality is assumed
to exist and have definite properties, whether or not they are observed
by someone.

- Locality demands that "if two measurements are made at places
remote from one another the setting of one measurement device does
not influence the result obtained with the other.”

- Joint assumption local realism (LR) : A= 1 B = +1

LR: P(A,B|a,b) = Zﬂ o() P(Ala, 1) P(BJb, ) \/

e Local realism restricts correlations in the form of Bell's
iInequality (Bl)

J. S. Bell, Physics 1, 195 (1964).
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Bell's Inequality

CHSH version of Bell's Inequality:

|C(A,B)-C(A,B’)|+|C(A’,B)+C(A’,B’)|< 2

where
C(A,B)= |p(A)A(a,A)B(b,A)dA,
A(@, A)= lp()P@lA), B(b, A)= lp(4) B(blA),

IS the correlation in the outcomes A=+1, B=+1 of
the observables a, b on two spatially separated
systems.



Macro-realism

When and how do physical systems stop
behaving quantumly and begin to behave
classically? How to distinguish quantum
and classical behavior In a testable way?

P \ DR YUKALOT PROVES THAT CATS
s G = DON'T HAVE WAVE PROPERTIES,
] X THEREBY LAYING TO REST,
R . ONCE AND FOR ALL THE PROBLEM
A1 OF ' SCHRODINGERS CAT.

In the macroscopic realm
do superpositions survive?




Sir Anthony James Prof. Anupam
Leggett-Garg (1985)

Leggett Garg

A.J. Leggett and A. Garg, PRL 54, 857 (1985)

Macrorealism

Macrorealism per se “"Physical properties of a macroscopic object exist
Independent of the act of observation™

Non-invasive measurability “The measurement of an observable at any
Instant of time does not influence its
subsequent evolution”
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Leggett-Garg Correlation Inequality
(Temporal Bell inequality)

Consider a dynamic system with a dichotomic quantity Q(t)

Dichotomic m==)> Q(t) =+ 1 at any given time

t=0 t1 to tz3 ... tk ... 1t

QA @ Q& ... ... O

A. J. Leggett and A. Garg, PRL 54, 857 (1985)

PhD Thesis, Johannes Kofler, 2004
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Two-Time Correlation Coefficient

time

Q Q, Q;

t=0 At 2At

Temporal Correlation: t==p C;; = (Q(¢;)Q(¢;)) = (Q:Q;)
Ci; = +1 — perfect correlation |
Cij = —1— perfect anticorrelation  mmm»> —1 < C;; < +1
Ci; = 0 — No correlation
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LG correlation inequality with 3 measurements

Define K3 = Cia+Cy—Cp3
= (Q1Q2) + (Q2Q3) — (Q1Qs)

Notice that

When @ = @2, Q1Q2 + (Q2 — Q1)Q3 = +1
When Q1 # @2, Q1Q2+ (Q2 —Q1)Q3 = -1+ (£2) =+l or —3

!

=3 < (Q1Q2) + (Q2Q3) — (Q:1Q3) <1

Leggett-Garg Inequality 1
(LGI) —3< K3<1
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LG correlation inequality with 4 measurements

Define Ky = Cra+ G+ Csy — Ciy
= (Q1Q2) + (Q2Q3) + (Q3Q4) — (Q1Q4)

When Q2 = (4, Q1(Q2 — Q4) +Q3(Q2+ Q4) =0+ (£2) = £2
When Q2 # Q4, Q1(Q2 — Qu) +Q3(Q2 +Qs) = +2+0 = %2

!

—2 < (Q1Q2) + (Q2Q3) + (Q3Q4) — (Q1Q4) < 2

LG correlation
inequality —2< Ky <2
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LGl with 3 measurements for a spin % particle

A spin % particle precessing about y axis
Hamiltonian: H=% oo,
Initial State : highly mixed state: p, = % 1

Dichotomic observable: o, = eigenvalues +1

Ql QZ Q3 t
t=0 At 2At
Ciza = (0.(0)0.(At)) = (O-ze—iHAtO.zeiHAt>
= (0, |0, cos(wAl) + o, (sin wAt)])
= cos(wAt)

%
|

= (0,(At)o.(2At)) = cos(wAt)
Cis = (0.(At)o.(3Al)) = cos(2wAl)
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LGl violation

K3 = Cys 4 Cy3 — Cy3 = 2 cos(wAt) — cos(2wAt)

>

- Macrorealistic
domain
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LGl with 4 measurements

Q Q, Qs Q,
t=0 At 2At 3At
Cia = (0.(0)0.(At)) = (0. A g ¢ HALY — cog(wAL)
Cozs = (0.(2At)0.(3At)) = cos(wAt)
C3y = (0.(3At)0,(4At)) = cos(wAt)
and

Ciy = (0.(At)o.(4At)) = cos(3wAt)
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Violation of four term LGI

K4 = Clg —+ 023 —+ 034 — 014 =3 COS(&JAI’;) — cos(3wAt)

A W A(a, A= [oWREAL AR

> Macrorealistic
domain
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statistical outcomes of
spatial and temporal
correlations

Bell and Leggett—

Garg inequalities

Violation points towards
non-existence of joint
probabilities

A. Fine, Phys. Rev. Lett. 48, 291 (1982); M. Markiewicz et.al., arXiv:1302.3502
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Contextuality

Iz he a
physicist?®
Wase he
born in '
Germany®
Did he play
G:ih dign.?




Kochen-Specker Theorem (1967)

 Non-contextuality: All measurable properties of
a physical system do not depend on the context
In which they are measured.

« But a non-contextual assignment of values to
the observables is not possible in quantum
world

 Kochen-Specker studied the logical feature of
the quantum theory Iin connection with the
consistency of counterfactual propositions
concerning the values of observables that are

not co-measurable

J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993).
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Non-contextuality is a very plausible hypothesis
based on our everyday experience. The colour
of your car would be the same regardless if you
looked at it together with Prof. Kochen or Prof.
Specker. All classical theories of nature are com-
patible with Non-contexuality.

Kurzynski and Kaszlikowski, arXiv:1309.6777



Kochen-Specker inequality

e Consider three boxes with gems such that when any
two boxes are opened one of them contains a gem and
the other doesn’t.

e The situation could be expressed in terms of three di-

chotomic variables X;, i =1,2,3 with X; =1(—1) corre-

sponding to the case of gem present (absent) in the i*"

box.

e Consequently, if we choose a pair of boxes uniformly at
random, at most two of the three pairs could exhibit
anticorrelation, so that the probability of obtaining an-
ticorrelated outcomes is bounded from above by 2/3
i.e.,

GV V)

1
Snc = Z gp(Xz # Xig1) <

in any non-contextual model.
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e Anticorrelation requires the following algebraic rela-
tions for relations for all the three pairs:

X1 X = —1
Xo X3 = —1
X1 X3 = —1.

However, these relations cannot be satisfied with non-
contextual assignment of values because the product of
the left-hand-sides is X7 X3 X3 = +1, while the product
of the right-hand-sides is -1. It is impossible to open
different pairs of boxes and always find anti-correlation
rather than correlation.

N. D. Mermin, Rev. Mod. Phys., 65, 803 (1993)

e Contextual assignment would require that if one of the
boxes is full (empty), the other box would be empty
(full). Assigning the pairwise probabilities as

1

P(Xz-zl,Xj=—1)=P(Xi=—1,Xj=1)=§ 1 #£ 7

one finds

S = Z%p(Xz #Xieal) =1
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It X; is co-measurable with Xy, Xy with X3, and X5 with Xy, one may think
that all the observables are jointly measurable (commuting observables in the
case of quantum mechanics).
A non-contextuality inequality M. Araujo et. al., Phys. Rev. A 88, 022118
(2013):

—(X1 X)) + (X5 X3) + (X1 X3) <1

is violated (maximally) by the generalized probabilities

1

plry=1,29=-1) = azp(aslz—l,:cgzl), plz1=122=1)=0=p(x; = -1,20 = 1)
1

plrg=lLz3=1) = izp(:ﬂgz—l,azgz—l), plrg=1lx3=-1)=0=p(zy=-1,23=1)
1

plry=1z3=1) = E:p(arlz—l,xgz—l), plry=1r3=-1)=0=p(z; =-1,23=1)

¢ Pairwise compatible measurements are not jointly compatible.



Non-existence of joint probabilities

o Suppose a given physical system has properties X;, X5, X;
with outcomes 71, 19, r3 and probability distributions
p(z1), p(xs), p(x3). Suppose that the property X; can be
co-measured with the property X, giving us a prob-
ability distribution p(x1,15) or it can be co-measured
with the property X; giving a probability distribution
p(r1,23). We say that X; can be measured in the context
of Xy or X35. Non-contextuality states that there ex-
ists a joint probability distribution p(x, x5, 13) such that
p(z1,x9) and p(r1,23) are recovered as marginals.

Kurzynski and Kaszlikowski, arXiv:1309.6777
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The Kochen and Specker assertion that single
quantum mechanical systems are contextual could
be put to an experimentally testable format in the
the paper by Klyachko-Can-Biniciouglu-Schumovsky
(KCBS) (Phys. Rev. Lett. 101, 020403 (2008)).
KCBS inequality — with a set of five observables
in a three level system — was tested experimen-

tally (Nature 474, 490 (2011)). (Note that it took 50 years to

experimentally test Kochen-Specker theorem whereas Bell scenario was tested
within 20 years of its formulation).
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« Entropic inequalities
« Moment matrix positivity

 Entropic uncertainty
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Entropic inequalities

The CHSH/LG/KS inequalities were originally formulated
for dichotomic observables and they constrain linear
combinations of correlation functions.

Braunstein & Caves recognized that classical Shannon
entropies associated with correlation outcomes of any
bipartite spatially separated parties obey certain
constraints, violations of which would imply non-existence
of a legitimate joint probability for all the measured
guantities — which need not be dichotomic.

S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 61, 662 (1988).
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Entropic inequalities

If P(qk,qra1) is the joint probability distribution associated with two observ-
ables Q) and Qr1;, the mean information associated with the measurements

Qr, Qi1 is given by

Joint entropy: H(Qk, Qr+1) = Z P(qr; qr+1) 1ogs P(qk, qry1)

i ,dk+1

The information carried by Qr, Qr1; respectively is given by

HQ) = - ZP(qk) logz Plar) Notice that
dk
H(Qry1) = = Plgryi)logs Pgryr) P(g) = > Plar ary1)
qdr+1 qr+1

Plgrs) = D Plar: Grs1)
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Entropic inequalities

If P(qr|qryi) denotes the conditional probability of the observable Q. assuming
the value g, when the observable Q);1; has assumed a value qr.;, then the
conditional Shannon information is given by

H(QrQur) =— Y Pla, qur) 1085 Pqrlqis1)

i sqk+1

Relation between conditional and joint probabilties:

P(qr, qr+1)
P(qr)

[ Bayes’ theorem } <> P(qlgr+1) =

Thus H(Qr+1|Qr) = H(Qr, Qr1) — H(Qr).
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Entropic approach

Two basic inequalities from information theory:

H(Qr+1|Qr) < H(Qr) < H(Qk, Qr+1)

 Left Hand Inequality: Removing a condition never
decreases the information

e Right Hand Inequality: Two variables never carry less
Information than that carried by one of them.
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Entropic approach

For three variables say, (01, Qo, (03,
H(QS:Ql) S H(QS:QQ:QI)

s !

H(QS:QQ:QI) — H(Q3|Q27Ql) +H(Q23Ql)
= H(Q3|Q2,Q1) + H(Q2|Q1) + H(Q1)

we have,

H(Q3,Q1) < H(Q3|Q2,Q1)+ H(Q2Q1) + H(Q1)

As H(Q3|Q1) = H(Q3,Q1) — H(Q,) follows from Bayes’ theorem and as
H(Q3|Q2, Q1) < H(Q3|Q2), we have,

H(Q3]Q1) < H(Q3|Q2)+ H(Q2]|Q1)
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Entropic approach

For any observable () at three different instants say,
Qr, Qrrlry Qo With tpi,, >ty > tr, we similarly have

H(Qrim:Qr) < H(Qrim, Qryi, Qr) = H(Qram|Qry1, Qr) + H(Qry1|Qr) + H(Qr)

H(Qrtm: Qr) < H(Qiam|Qrti Q) + H(Qri|Qr) + H(Qr)

H(Qpym, Qr) = H(Qprym|Qr) + H(Qr) (Bayes’ theorem) implies

H(Qrym|Qr) < H(Qrim|Qrsr) + H(Qryt|Qr).
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VOLUME 61, NUMBER 6 PHYSICAL REVIEW LETTERS 8 AUGUST 1988

Information-Theoretic Bell Inequalities

Samuel L. Braunstein
Theoretical Astrophysics, California Institure of Technology, Pasadena, California 91125

and

Carlton M. Caves

Center for Laser Studies, University of Southern California, Los Angeles, California 90089
(Received 2 May 1988)

We formulate information-theoretic Bell inequalities, which apply to any pair of widely separated
physical systems. If local realism holds, the two systems must carry information consistent with the in-
equalities. Two spin-s particles in a state of zero total spin violate these information Bell inequalities.

H(A|B)<H(A|B)+HB'|A)+H(A'|B)

§

o= Qs+ 1) ™ F (=1 smby e85 =m)g

m==g

Quantum mechanics predicts the probability Singlet state of two spin-s particles

pla=mb=m)=| 4 lom| @gplsmy| [6)]7= (25 +1) | Dy, - (Ry(6))
that S 4- a has value m; and S#* b has value m»
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HM(A4|B)=HM(B|A)=HM(g)

QM(g) = — 1
HM(g) et "E‘ﬂ:lﬂml —m,(Ra(8)) | 2log| Dy, —m,(Ra(8)) ]2

Coplanar geometry: a, b, a’, b’ are
coplanar and successive vectors
successive vectors are separated

by angle ¢g/3

Entropic Bell inequality is violated
if the information difference

#M(g)=3HM(g/3) - HM(p)

IS negative

INFORMATION DIFFERENCE (BITS)

o o 20 30 a0 so e o e so  ioo
THETA (DEGREES)

FIG. 1. Information difference #¢2™(8) in bits vs angle 8
in degrees for s= 1%, 1, 2, 5, and 25. The maximum informa-
tion deficit for s =% is —0.2369 bits at 52.31°; for s =25,
—0.4493 bits at 9.798°.
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week ending

PRL 109, 020404 (2012) PHYSICAL REVIEW LETTERS 13 TULY 2012

Entropic Test of Quantum Contextuality

P. Kurzyﬁs]‘:i,l’2 R. Ramanathan,! and . Kaszlikowski'-**

LCentre for Quantum Technologies, National University of Singapore, 3 Science Dirive 2, 117543 Singapore, Singapore
2Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznar, Poland
3Deparrmenr of Physics, National University of Singapore, 2 Science Dvive 3, 117542 Singapore, Singapore
(Received 31 January 2012; published 11 July 2012}

We smdy the contextuality of a three-level quantum system using classical conditional entropy of
measurement outcomes. First, we analytically constnict the minimal configuration of measurements
required to reveal contextuality. Next, an entropic contextnal inequality is formulated, amzalogous to the
entropic Bell inequalities derived by Braunstein and Caves [Phys. Rev. Lett. 61, 662 (1988}], that must be
satisfied by all noncontextual theories. We find optimal measurements for violation of this inequality. The
approach is easily extendable to higher dimensional quantum systems and more measurements. Cur
theoretical findings can be verified in the laboratory with current technology.

DOIL 10.1103/PhysRevLett.109.020404 PACS mumbers: 03.65.0d, 03.65.Ta

H{A|As) = H{A|Az) + H{A|A3) + H(A5|Ay) C = H{A|As) — H{A|A;) — H{A;|A5)
+ H{A4|Az). — H{A3|Ay) — H(A4lAs);

: Jeos2e fang 1\
= {sinA, cosA, ()7, A =( ) ) ) )
|“1!f> ( ) | l> »\/ECDSQD »\/E \/5
|A2> = (0! COSe, — Sjl]-@)?; |A3> = (1! 0! O)T;
|A}) > |Ag)
143 > 1Al

|44y = {0, cosg, sing )7, |As) =
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Our work (A. R. Usha Devi, H. S. Karthik, Sudha and A.
K. Rajagopal, Phys. Rev. A 87, 052103 (2013)) extends
these information theoretic notions to develop Leggett-
Garg entropic inequality to test macrorealism.
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Entropic approach to Leggett-Garg Inequalities

0 Q(t,) Is a dynamical observable (not necessarily dichotomic!) at time t,.
OOutcomes of measurements of the observable Q(t,) = q..
JProbability of observation of g, = P(q,).

OMacrorealism demands that the outcomes g, of Q(t,) at all instants of time
pre-exist independent of their measurement. Mathematically this implies
the existence of a joint probability distribution P(q,, g,, . . . ) characterizing

the statistics of the outcomes

OThe joint probability yields the marginals P(q,) of individual observations at

time t,.
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Entropic Leggett-Garg Inequality

Entropic inequality for n consecutive measurements )1, @), ..., @, at time in-
stants 17 <o < ... <{:

Entropic LGI }

Entropic Leggett-Garg Inequality implies that the macrorealistic in-
formation underlying the statistical outcomes of the observable at n
different times must be consistent with the information associated
with pairwise non-invasive measurements.
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Quantum joint Probabilities

e Suppose Qr = S, (tr) takes the value my at time t; and at a later instant
of time t54; the measurement outcome is my;.

e The quantum mechanical joint probability is given by

P(mg, mi+1) = Dmy(tk) ¢(mugi, tet|me, tr)

Here p, (1) = Tr|pIl,,, (tx)] is the probability of obtaining the outcome
my at time t. Also, as p(tx) = [IL, (tx) o, (t1)]/ P, (tr),

q(mpris terr|me, te) = Trlp(te) m,y, (k)]
= Ir [Hmk (tk)p]:[mk (tk') Hmk—|—l (tk-l-l)]/pmk (tk)

is the conditional probability of obtaining the outcome mygy; for the spin
component S, at time t;.;, if it had already taken the value m; at an
earlier time 7.
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Quantum joint Probabilities

Thus the quantum mechanical joint probability P(my, myy;) of obtaining the

result my at time t;, and mpg4; at time tx4; is given by
P(myg, miy1) = Trlly, () oy, (86) Winy ., (Be10)]

Here,

[ Projection Operator at time t } 44
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Entropic LGI for a quantum spin-s rotor

e Consider an initial state of the rotor in a maximally mixed state
P = 2.911 Dom——s |s,m)(s,m| = 2311
{|s,m)} — simultaneous eigenstates of the squared spin operator
S§? =52 + Sg + 82 and the z-component of spin S,

e Hamiltonian governing the evolution: H = w S,

—iwt Sy /R (

e Unitary evolution: U(t) = e corresponds to a rotation about

the y-axis by an angle wt).

e Dynamical observable Q(t): We choose z-component of spin Q(t) = S, (t) =
UT(t) S, U(t) as the dynamical observable for our investigation of macro-
realism.
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Quantum joint Probabilities for spin-s Rotor

For the maximally mixed initial state the quantum mechanical joint probabilities
are given by,

1
P(my, meyi) = s + 1 Tr([[,, (6) Wiy, (Beg)]
1
= %5 + 1 Tr [U(tk)|3; mk)(S, mk|UT(tk)U(tk+l)|8, mk+l><5, mk—|—l|UT(tk+l)]
1
T 9s+1 (s, m U (1)U (tega) s, i) (s, maa (U (8)U (E40) |5, m) |

1 : 2
T 2+1 N N ER V7Y

1 2
= d; (Ox1)

25+ 1 | M

Here d*, (01;) = (s,m/|e”" Su/?|s m) are the matrix elements of the 2s 4 1
dimensional irreducible representation of rotation about y-axis by an angle
Okt = w(tkyr — tr)

46
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Entropic LGI for equidistant time measurements

e For measurements at equidistant time intervals At = tp11 — tr, k =
1,2,...n quantum mechanical information entropy depends only on the
time separation (denoted by 6 = (n — 1)w At):

H(Qk|Qr+1) = H[ ’ ]

n—1

1
T 925+ 1 )3

M, Mk 41

2
log;

2

s 9 s 9
dmk-f-l,mk [T’L _ 1] dmk+1,mk [n _ 1]

e Recall the entropic Leggett-Garg inequality given by

which implies (n — 1)H(Q,|Qn-1) — H(Q,|Q1) > 0 for a spin-s rotor.

e The n-term entropic inequality for observations at equidistant time steps:

2
k+1,ME | 0

log,

2

(n—1)H{nf1]—H(9) _ ZS_jl 3 ((n—l)

M, ME+1

5 0
dmk+17mk [TL _ 1]

[y 1y (O 1085 [, o, (O)F) >0

Mp41,Mg M1,
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Violation of entropic LGI by a spin-s rotor

Information deficit D,, in units of log,(2s 4 1) bits)

L (n—1) H[0/(n — 1)] — H(0)

D, (0) = > ()
(0) log,(2s + 1) -
02 /‘,I 0.2 \J ,
// '/ "' ‘:,.' : / ' / II
‘ 0 ...;.. y oi , ¢ "..’ ‘ ,”‘ ' / "l
el é" /
d) _027 —02* . ./ "l
\"(o P
L e
04 ‘ ‘ 04" o x
: ; : : : ;
0 0

Spin-1/2: Dotted  Spin-1: Dashed Spin-3/2: Dot Dashed Spin 2: Solid



H. Katiyar, A. Shukla, K. R. K. Rao, and T. S. Mahesh, Phys. Rev. A 87, 052102 (2013).

Violation of Entropic Leggett-Garg Inequality in Nuclear Spin Ensembles
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Moment matrix positivity
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Classical Moment Problem

— > Addresses the issue of determining a probability
distribution given a set of moments.

It brings forth the fact that

/A given sequence of real numbers qualifies to be moment sequence of a\

legitimate probability distribution if and only if the associated moment
maitrix is positive.

Existence of joint probability distribution<———> Moment matrix positive

- /

J.A Sholat and J.D. Tamarkin, The problem of moments, AMS (1943)

N.J. Akhiezer, The Classical Moment Problem, Hofuer Publishing Co., (1965)
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 When does a sequence of real numbers qualify to be a
moment sequence and thereby correspond to a valid

joint probability distribution?

 The answer is, when the corresponding moment matrix is
positive definite. The nature of physically valid joint
probability distribution can be brought out with the help of

positive moment matrix.
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Positivity of moment matrix and the nature of
grand joint probabilities

We consider three dichotomic random variables X7, X5, X3. A sequence of eight
moments {1, (X7), (X2), (X3), (X1 X3), (X2X3),(X1X3), (X1X,X3)} faithfully
encodes the details of the joint probability distribution P(x1,z2,23), z; = +1.
This encryption of trivariate probabilities in these eight moments is reflected in

the positivity of the 8 X 8 moment matrix
M = (£&h), where ¢ = (1, X1, Xo, X3, X1Xo, XoX3, X1X3, X1X2X3).

In other words, given a set of real numbers (which is supposed to be the moment
sequence), positivity of the moment matrix ensures that there exists a valid joint

probability distribution. . s
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Denoting (X1Xs) = a, (XoX3) = b, (X1X3) = ¢ and considering the 4 x 4

principal minor of the moment matrix constructed from M = (£€7);

(1abc\

o 1 ¢ b
b ¢ 1 a

\cbcl)

Here, ¢ = {1, X1 X5, X5X3, X Xz}

54
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Eigenvalues of M:

M = 14+a—-0b-—c M=1—a+0b-—c.

A3 = l—a—-0b+c, M=14+a+b+c
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Moment matrix associated with temporal correlations

Consider the dynamical evolution of a qubit governed by the Hamiltonian

H = %hwam. We consider measurement of three observables

XZ'ZO'z(ti), tl ZO, tQZAt, t3:2At.

The dynamical observable o, at different times is given explicitly by,

—iHt

o.(t;) = eMlig e i =0, cos(wt;) + o, sin(wt;).

When the qubit is initially prepared initially in a maximally mixed state

pin = I/2, sequential measurements of X1, X5, X3 leads to

(X1) = (02) =0; (X2) = (0:(At)) = 0;
(Xg) — <O'Z)(2At):0; <X1X2X3>=0.
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(X1 X2) = ({0.,0.(At)}) = cos(wAt)
(X2 X3) = ({o.(At),0.(2A1)}) = cos(wAt)
(X1 X3) = ({o2,0:(2A0)}) = cos(2wAl)

On associating the parameters a, b, ¢ of the moment matrix as
a = cos(wAt), b= cos(wAt),c = cos(2wAt),
positivity of the eigenvalues of the moment matrix results in the conditions:

1 — cos(2wAt) > 0,
1 — 2cos(wAt) + cos(2wAt) > 0

1 + 2 cos(wAt) 4 cos(2wAt) > 0.
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The graph above illustrates that the moment matrix corresponding to sequential
measurements on a quantum system at three different times is negative for all

values of At.
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Moment matrix associated with spatial correlations

We now consider a spatially separated two qubit system in a Bell state

|\IJAB> — |0A7 1B) — |1AaoB>]-

L
V2
We consider measurements of three observables

Xi=0-a®l, Xo9=1®75-b, Xz=0-a' Q1.

We obtain,
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Moment matrix associated with spatial correlations

Choosing coplanar geometry for a, B, a' such that 6,, =7 — ¢, 0, =7 — ¢ and

0,0 = 27 — 2¢, we obtain,
a=cosp, b=cosp, c=cos2op,

which results in analogous conclusion as in the case of temporal correlations i.e.,

Moment matrix turns out to be negative for any arbitrary value of ¢.
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Specker’s probabilities for anticorrelated variables:

1
P(X;=1X;j=-1) = P(Xi=-LX;=1)=2 i#]
(X1X,) = —1=(XoX3) = (X1X3)
[1 -1 -1 —1\
-1 1 -1 -1
M=1_ 51 4
\ -1 -1 -1 1 /

Eigenvalues: -2, 2, 2, 2= M <0
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Connection between positivity of moment matrix with the
positive partial transpose of a 2-qubit density matrix

We consider a 2-qubit density matrix

1 L -
paB = 7 IQI+ (-7 xI+I®(F-5)+ Z (0: @ 0j)ti;

Z?J:'(Llﬂyﬁz

where r; = Tr[pap(o; @ I)], s; = Tr[pap (I ® 0;)] and t;; = Tr[pap(o; @ 0;)]
denote 15 parameters characterizing the 2-qubit density matrix.
When r; = s; = 0 and t;; = ¢;0;;, we find that the eigen values of the density

matrix are given by,

L=t +t2+13, 1+t —1a+ts,

L+t +to — 13, 1—1t —1ts—ts.
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In view of the fact that —1 < ¢; < 1 and under partial transpose, t; — —t;, we

have the eigenvalues of the partially transposed density matrix to be

L+t —tx—t3, 1—11+1t2 13,

L —t1 —to+t3, 1+t +1t2+13.

It is readily seen that the eigen values of the moment matrix and that of the

partially transposed density matrix match identically if we make an association

a— 11, b—)tz, c — 3.

Positivity of the moment matrix is equivalent to the positivity of

the partially transposed density matrix.



IPQI2014, February 26, 2014

e Positivity of the partially transposed density matrix implies that the two

qubit density matrix is separable i.e.,

PAB = ZPA (Pax ® pBa)-

e Positivity of the moment matrix thus implies that the two variable corre-

lations can be expressed as

a = ZPATI'[PA)\U:U]TI'[PB)\U:E]
}
= ZPJ\TI' pax{ Z mq H(x)} Tr | pBad Z mzﬂ(w)
mq= =41 :|:1

= Z P(w) (ml, TTLQ) m1 ma9

miq,Mm2 =:|:]_
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1 |
Here H,Ef,ff =5 [+ myo,, H,f,,fg =5 [+ my oy
and P (my,my) = Zp,\ P)(\m)(ml)Qg\x)(m ) with
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e We find a connection between positivity of the
moment matrix and that of a partially trans-
posed two qubit density matrize.

o« Positivity of partial transpose criterion comes
to help now — and it ascertains that admissz-
blity of a jotnt probability distribution with
the given sequence (moment matrix positiv-
ity) 1s ensured tf and only if the associated
two qubit density matrix 1s separable.

e This In turn leads to our identification that
the given set of moments should necessarily

allow a convex product decomposition of the
joint probabilities, so as to be declared as a
physically valid sequence of moments.
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Entropic uncertainty relations
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Uncertainty relation for any two non-commuting
observables A and B i.e.,

(AX), (AZ), 2 ([X, Z])|/2

W. Heisenberg, Z. Phys. 43, 172 (1927); E. H. Kennard, Zeitschr.
Phys. 44 326 (1927); H. P. Robertson, Phys. Rev. 34, 163 (1929)
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e Uncertainty relation constraining the product of standard deviations suf-
fers from the drawback that the right hand side depends on the quantum
state. In the specific example of a state p prepared in an eigenstate of
X, the standard deviation (AX), as well as the commutator |{|X, Z]),|

vanish and in turn, the uncertainty relation doesn’t reveal any constraint

on the spread (AZ), of the observable Z.
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e It has been identified subsequently that Shannon entropies of the prob-
abilities of measurement outcomes of the observables X, Z given by,
Hy(X) = =), P(x)logy P(x), Hy(Z) = = )., P(z)log, P(z) offer a
more general framework to quantify the intrinsic ignorance associated

with incompatible measurements.

r, z are the measurement outcomes of the observable X, Z and P(z) =
(x]p|x), P(2) = (z|p|z) denote the probability of outcomes x, z; {|z)} ({|2)})
is the set of eigenvectors of X (7).
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e Trade-off between the entropies of a pair of discrete
non-commuting observables X and Z was formulated

by Deutsch (Phys. Rev. Lett. 50, 631 (1983)) and was

subsequently improved.

e The conjecture put forth by Kraus (Phys. Rev. D 35,
3070 (1987)) was proved by Maassen and Uffink (Phys.
Rev. Lett. 60, 1103-1106 (1988)):

Hy(X) + H,(2) 2 -2log, C(X,2)

where C(X,Z) = max, .| < z|z > |.

e The lower bound limiting the sum of entropies is inde-
pendent of the state p.

e The term c(x,2) can assume a maximum value

-- resulting in the maximum entropic bound

of 10g,d, where ¢ denotes the dimension of the
system.
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Extension of entropic uncertainty relation assisted by the
presence of a quantum memory (Berta et al., Nature Physics
6, 659(2010) refined the lower bound. Here an observer
Bob, whose task is to minimize the uncertainty of Alice’s
measurement of the observables X, 7, is allowed to share
an entangled quantum state p,p with that in Alices posses-
sion.
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A Quantum Game
. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659(2010)

. entangled with his guantum memory.
(2) Alice measures either R or S and notes her outcome.
(3) Alice announces her measurement choice to Bob.



Berta et. al EUR

- The uncertainty principle, when Bob possesses a
guantum memory, Is given by

BERTA et.al EUR:

S(X|B) + S(Z|B) 2 -2log, C(X,Z) + S(A|B)

where S(X|B) & S(Z|B) are the conditional von
Neumann entropies of the post measured states
and S(A|B) is the conditional von Neumann
entropy of the state p,g -

- S(A|B) can assume negative values when the
state p,g IS entangled
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- When Alice’s system Is in a maximally entangled
state with Bob’s guantum memory, S(A|B) =
-log, d and as -2log,C(X,Z) < log, d one can
achieve a trivial lower bound of zero. Thus, with
the help of a quantum memory maximally
entangled with Alice’s state, Bob can beat the
uncertainty bound and can predict the outcomes
of iIncompatible observables X, Z precisely.



Two Experiments

Singlet state Rotor in a maximally mixed state

- Alice and Bob share a - Consider a spin-1/2 system
Singlet state(maximally In a random mixture state
entangled) l.e, P=1/2 (I denotes 2 X 2

- Measuring the spins at both identity matrix) evolving under a

ends, ask what’s P(m_,,m,)? hamiltonian

* Make measurements at time t1

- P(m,m,) =
) ?
[1 +m,m,Cos(6,,)]/4 ;Iz(:nt%]As)k—Wﬁais P
. ¢ 1:'112 ) —
where 0., is the angle m,m,Cos(8,,)]/4
between where 8,, is the temporal
the spin directions a and b difference (t, — t,)

A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, Phys. Rev. A 87, 052103 (2013)
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- Analogous to spatial correlations, do temporal
correlations arising In sequential
measurement of observables, play a distinct
role  In reducing the uncertainty of
iIncompatible observables?

QUESTION:

Is H(X|X,) + H(Z|Z,) = -2log, C(X,Z) always?

where X, and Z, are observables measured
earlier to that of X and Z respectively.
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Temporal correlations arising iIn sequential
measurement of observables too play a distinct role
In  reducing the wuncertainty of Iincompatible
observables

Theorem: If temporal correlations of the outcomes of X,, X
and those of Z,, Z obtained from sequential measurement runs
on the quantum state are classical (the correlation probabilities
are of the convex product form), the sum of conditional entropies
obey the inequality

H(X|X,) + H(Z|Z,) 2 -2log, C(X,2)

Karthik et al., arXiv eprint:1310.5079
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Temporal correlation between the sequential outcomes z
and x of the observables X, X is iff the joint prob-

abilities P(z,z) can be expressed as a convex combination
of products of probabilities,

P(zg,z) = ZPAPA($0)QA($)7

Y Puzo) = 1, ) Qa(z)=1

x

g
Zp)\ — ]-7 ng)\él
A
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e Conditional information for the measurement outcomes
of the observable X, given that in a prior measurement
Xo has taken the value zg:

H,(X|Xo = m0) = — » _P(x|ro) log, P(x|xo)

e The conditional probability P(x|x¢) = P(xq,x)/P(xq) cor-
responding to classical temporal correlations is given

by,
> Px Pa(zo) Qx()
Pelzo) > v Py Pa(xo)
= ) Paa, Qr(@)
A
where
px P (330)

P xo —
o Z)\’ pxr P (o)

( Note that >, prz, =1, and 0 < py 4, < 1.)
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o Conside the relative entropy D(P,,||Q,,) of the proba-
bilitiy distributions P, (\,z) = py ., @x(z) and Qy, (A, ) =
Drzy P(]20). Positivity of the relative entropy implies

7Dﬂ?oHQwo - Z Zp)\il}(] Q)\ Ogg { QA( ) ] 0

P(e]o)

:>HP X‘SCO ZZPA,.@O p (X)
A

whereH ( )=—-). Qx(z) log, @ ().
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Thus, the average conditional information
H,(X|Xp) = Zp:co o(Xzo); p ZP$$0 ZpAPA 1)
should obey the constraint
Hy(X[Xo) > ) plao) Y paag HV(X)
I )\
Y p HY(X)
A

I\
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Similarly, we obtain
H,(Z|Zo) > Z pHM(Z).
A

Thus, the sum of conditional entropies are constrained by

H,(X|Xo) + H,(Z|Zo) > Z pAlHM(X) + HMV(Z)]

> ZPA [—2log, (X, Z)]

—210g2 (X, Z).

using
HM(X)+ HM(Z) > —2log, (X, Z).
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Example

- Temporal correlations assisting in reducing the
entropic spread of non-commuting observables

- Consider:
A spin s particle precessing about y axis:
Hamiltonian: H=hwsS,,
Initial State : highly mixed state:
Pin= (|25+1)/(25+1)
- Measurement of nhon-commuting observables X = S,
and Z = S, results in the probabllities of outcomes

-s<m,,m,<Ss
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Example

- Under the Hamiltonian dynamics, the evolution of
Z component of spin is given by

S,(t) = UT(1)S,(0)U(t) = S, Cos(wt) + S, Sin(wt);
U(t)=exp(-lwtS,).
« First run :
Measure S,(t) at time t,, and t, = /2w
Call S,(t,5) = X, =S, Cos(wt,,) + S, Sin(wt, ) and
S,(t)=X=9S,
- Define 6 = wt,; - /2 ----- > dimensionless time
separation.
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Example

- The sequential measurements enables one to record the
temporal correlation probabilities P(m,, ,m,; 6) of the

outcomes —-s = m,,, m, < s of the observables

Xo = S,(t,o) and X = S,.
- Second run:

Measure S,(t) attime t,, andt, = TT/w

Call S,(t,,) = Z,= S, Cos(wt,,) + S, Sin(wt,,) and

S,(t)=Z=8,
- Define ¢ = wt,, - T-----> dimensionless time sep.
- Similarly obtain P(m,, ,m,; )
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Example

P(mru:mm;ﬂ} P{mzn? ml]} P{:mra :|:|mmu:- .']:'D)
[Hmmﬂ( z0)P Hmz (tz0) Hmm (tz)

= Tr|pll,, (t.
o, (20)] Pl t.0)
1
— 25 _I_ l JIT[Hmmn {tID] Hmﬂ: {tm)]
1 |
~ 2 1 (8, M, |e” 071050 |5 my )|
o 2
= |, (O)
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Example

- The conditional entropies of measurement (which depend
only on the time separations 0, ¢) H,(X|X,) = J£(0) and

Ho(Z1Z0) = 3()

1

. 8 2 8 2
HO =57 2 om0 loga|dr, i, (0)]
Mery, Mg
_ 1 8 2 s 2

Mz, Mz
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Example

- We define a quantity M. (9,$) as the difference

between the sum of conditional entropies and the
Massen-Uffink uncertainty bound -2 log, c(X,2)

Ms(e’d)) = Hp(X|XO) + Hp(Z|ZO) +2 IOQZ C(X’Z)
= J(9) + IH(P) + 2 log, c(X,2)

In order to demonstrate improved precision in the
measurement of the spin components X and Z
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Contextuality and entropic uncertainty

Given three observables X;, X,, X; where in co-
measurability of X;, X, and X;, X5 IS ensured I.e., [X;, X,] =
[X1, X3] =0 but [X,, X5] #0, we explore the trade-off between
the Shannon entropies of the non-commuting observables
X, and X; both of which are conditioned with the
measurement outcomes of the observable X;
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QUESTION: Is H(X,|X,) + H(X4|X,) S -2log,

C(X,,X;) always?

Theorem: If the outcomes of X, do not depend on the context of

measuring it with X, or X; there follows a “Contextual” entropic
steering inequality

H(X,[Xp) + H(X5[X,) 2 -2l0g, C(X,,X,)
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This identification(theorem) reveals the crucial significance of
Quantum Contextuality to achieve sharpened predictions of
incompatible observables which indeed is counter intuitive!!
EXAMPLE: Contextuality of X; assisting in reducing the entropic
spread of non-commuting observables X, and X;.

Consider three of the KCBS dichotomic observables X, = 2|v><v|- |
with outcomes +1; |v,>=(0,0,1); |v,> = (Sin@, CosB, 0) ; |v;> = (1,0,0)
in the quantum state |p> = (1/N(1+Sin2a))(Sina, Cosa, Sina)

(PRL 101, 020403 (2008))

P (X1 ,X3) P(X1,X3)
P(1,1) o P(1,1) o
P(1,-1) (L/(1+Sin“a))Sin“a P(1,-1) (1L/(1+Sin“a))Sin“a
P(-1,1) (L/V(1+Sin“a))(Cos’aCos’8 + Sin“aSin“8) P(-1,1) (L/(1+Sin“a))Sin“a

P(-1,-1) (1L/V(1+Sin“a))(Sin“aCos”6 + Cos aSin’8) P(-1,-1) (1L/(1+Sin“a))Cos’a
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We define a quantity M(0, a) as the difference between the sum of
conditional entropies and the Massen-Uffink uncertainty bound
=2 109, c(X,,X3):

M(8, a) = H(X;|Xy) + H(X5|X;) + 2 10g, c(X5X5)
to demonstrate improved precision in the measurement of the non-
commuting observables X,,X,.

kil

alyf
4-|'i“ -
A
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The bound limiting the trade-off is smaller than that given
by the Massen-Uffink uncertainty relation. This clearly
brings out an instance to reveal that contextuality of the
observable X; assists in enhancing the precision of
measuring non-commuting observables X, and X;. This is
essentially because of the the non-existence of the joint
probability distribution for all the three observables -
unlike in the non-contextual theory.
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