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A survey probing respondents’ views on various foundational 
issues in quantum mechanics was recently  created by 
Schlosshauer, Kofler, and Zeilinger and then given to 33 
participants at a quantum foundations conference. The 
participants completed a questionnaire containing 16 multiple-
choice questions probing opinions on quantum- foundational 
issues. Participants included physicists, philosophers, and 
mathematicians.  
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Local realism and Bell’s Inequality 
John Bell 

Predictions of quantum mechanics cannot be squared with the belief, called 
local realism that physical systems have realistic properties whose pre-existing 
values are revealed by measurements. The predictions of quantum mechanics 
for spatially separated systems are at odds with any  version of local realism 
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Local Realism 
• Realism is a worldview according to which external reality is assumed 

to exist and have definite properties, whether or not they are observed 
by someone. 

• Locality demands that ”if two measurements are made at places 
remote from one another the setting of one measurement device does 
not influence the result obtained with the other.”  

• Joint assumption local realism (LR) : A= ±1 B = ±1 

• Local realism restricts correlations in the form of Bell’s 
inequality (BI) 

J. S. Bell, Physics 1, 195 (1964). 
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Bell's Inequality 
CHSH version of Bell’s Inequality: 
 
 

     
  where  
     C(A,B)= ∫ρ(λ)A(a,λ)B(b,λ)dλ,  
     A(a, λ)=  ∫ρ(λ)P(a|λ), B(b, λ)=  ∫ρ(λ) B(b|λ),  
  is the correlation in the outcomes  A=±1, B=±1 of 
the observables a, b on two spatially separated 
systems.  
 
 

 
 
 

|C(A,B)-C(A,B’)|+|C(A’,B)+C(A’,B’)|≤ 2  
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When and how do physical systems stop 
behaving quantumly and begin to behave 
classically? How to distinguish quantum 
and classical behavior in a testable way? 

 

In the macroscopic realm  
do superpositions survive?  S 

Macro-realism 
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A. J. Leggett and A. Garg, PRL 54, 857 (1985) 

Leggett-Garg (1985) 

 

Macrorealism per se                  ``Physical properties of a macroscopic object exist   
independent of the act of   observation” 

 

Non-invasive measurability “The measurement of an observable at any      
 instant of time does not influence its  
 subsequent  evolution” 

Macrorealism 

Sir Anthony James 
Leggett 
 

Prof. Anupam 
Garg 
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Consider a dynamic system with a dichotomic quantity Q(t) 

Dichotomic             Q(t) = ± 1  at any given time 

Leggett-Garg  Correlation Inequality 
          (Temporal Bell inequality) 

PhD Thesis, Johannes Kofler, 2004 

 
A. J. Leggett and A. Garg, PRL 54, 857 (1985) 
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LG correlation inequality with 3 measurements 

      Define 

Notice that  

   Leggett-Garg Inequality   
  (LGI) 
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LG correlation inequality with 4 measurements 

      Define 

LG correlation 
inequality  
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 LGI with 3 measurements  for a spin ½ particle 

A spin ½ particle precessing  about y axis 
Hamiltonian :  H = ½ ωσy 
Initial State :  highly mixed state : ρ0  =  ½ 1 
Dichotomic observable:  σz   eigenvalues ± 1 

t 
Q1 

t = 0 

Q2 Q3 

∆t 2∆t 
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                      LGI violation 
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 LGI with 4 measurements 
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  Violation of four term  LGI 
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LGI violation: 
Quantum nature 

A(a, λ)=  ∫ρ(λ)P(a| λ), 
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Bell and Leggett–
Garg inequalities  

statistical outcomes of 
spatial and temporal 
correlations  

Violation points towards 
non-existence of joint 
probabilities  

A. Fine, Phys. Rev. Lett. 48, 291 (1982); M. Markiewicz et.al.,  arXiv:1302.3502 
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Contextuality 
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J. S. Bell, Rev. Mod. Phys. 38, 447 (1966). 
S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967). 
 N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993). 

Kochen-Specker Theorem (1967) 
• Non-contextuality: All measurable properties of 

a physical system do not depend on the context 
in which they are measured. 

 
• But a non-contextual assignment of values to 

the observables is not possible in quantum 
world 

 
• Kochen-Specker studied the logical feature of 

the quantum theory in connection with the 
consistency of counterfactual propositions 
concerning the values of observables that are 
not co-measurable 
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The CHSH/LG/KS inequalities were originally formulated 
for dichotomic observables and they constrain linear 
combinations of correlation functions.  
 
Braunstein & Caves recognized that classical Shannon 
entropies associated with  correlation outcomes of any 
bipartite spatially separated parties obey certain 
constraints, violations of which would imply non-existence 
of a legitimate joint probability for all the measured 
quantities – which need not be dichotomic.  

Entropic inequalities  

 
S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 61,  662 (1988). 
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Entropic inequalities 

Notice that  
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Bayes’ theorem 

Thus 

Entropic inequalities 
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Two basic inequalities from information theory:  
 
 
 
 
 
• Left Hand Inequality: Removing a condition never 
decreases the information  
 

• Right Hand Inequality: Two variables never carry less 
information  than that carried by one of them. 

Entropic approach  
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Entropic approach 

IPQI2014, February 26, 2014 



implies 

Entropic approach 
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Singlet state of two spin-s particles 

IPQI2014, February 26, 2014 



Coplanar geometry: a, b, a’, b’ are  
coplanar and successive vectors  
successive vectors are separated  
by angle  
 
Entropic Bell inequality is violated 
if the information difference  
 
 
 
is negative  

𝜽/𝟑 
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Our work (A. R. Usha Devi, H. S. Karthik, Sudha and A. 
K. Rajagopal, Phys. Rev. A 87, 052103 (2013))  extends 
these information theoretic notions to develop Leggett-
Garg entropic inequality to test macrorealism.  
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Entropic approach to Leggett-Garg Inequalities 

 Q(tk) is a dynamical observable (not necessarily dichotomic!) at time tk.  

Outcomes of measurements of the observable Q(tk)  qk.  

Probability of observation of qk  P(qk).  

Macrorealism demands that the outcomes qk  of Q(tk) at all instants of time 

pre-exist independent of their measurement. Mathematically this implies 

the existence of a joint probability distribution P(q1, q2, . . . ) characterizing 

the statistics of the outcomes  

The joint probability yields the marginals P(qk) of individual observations at 

time tk.     
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Entropic Leggett-Garg Inequality 

Entropic LGI 
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Quantum joint Probabilities 
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Quantum joint Probabilities 

Projection Operator at time t 

Here,  
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 Entropic LGI for  a quantum spin-s rotor 
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Quantum joint Probabilities for spin-s Rotor 
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Entropic LGI for equidistant time measurements 
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Violation of entropic LGI by a spin-s rotor 
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H. Katiyar, A. Shukla, K. R. K. Rao, and T. S. Mahesh, Phys. Rev. A 87, 052102 (2013).  
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Moment matrix positivity 
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     Classical Moment Problem 

N.J. Akhiezer, The Classical Moment Problem, Hofuer Publishing Co., (1965) 

J.A Sholat and J.D. Tamarkin, The problem of moments,  AMS (1943) 

           Addresses the issue of determining a probability 
distribution given a set of moments.  
 
It brings forth the fact that  
 
 A given sequence of real numbers qualifies to be moment sequence of a 
legitimate probability distribution if and only if the associated moment 
matrix is positive.   
 
Existence of joint probability distribution                   Moment matrix positive 
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• When does a sequence of real numbers qualify to be a 

moment sequence and  thereby correspond to a valid 

joint probability distribution?   

 

• The answer is, when the corresponding moment matrix is 

positive definite. The nature of physically valid joint 

probability distribution can be brought out with the help of  

positive moment matrix.   
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Positivity of moment matrix and the nature of 
grand joint probabilities 
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Moment matrix associated with temporal correlations 
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Moment matrix associated with spatial correlations 
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Moment matrix associated with spatial correlations 
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Connection between positivity of moment matrix with the 
positive partial transpose of a 2-qubit density matrix 
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Entropic uncertainty relations 
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Uncertainty relation for any two non-commuting 
observables A and B i.e., 
 
                              (Δ𝑿)𝜌 (Δ𝒁)𝜌 ≥ | [𝑿,𝒁] |/2 
 
W. Heisenberg, Z. Phys. 43, 172 (1927); E. H. Kennard, Zeitschr. 

Phys.  44 326 (1927);  H. P. Robertson, Phys. Rev. 34, 163 (1929) 
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   Hρ(X)  + Hρ(Z) ≥ -2log2 C(X,Z) 

IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



 
 
                     
 

(1) Bob sends a particle to Alice, which may, in general, be 
entangled with his quantum memory.  

(2)  Alice measures either R or S and notes her outcome.   
(3) Alice announces her measurement choice to Bob. 

 
 

 A Quantum Game 
. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659(2010) 
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Berta et. al EUR 
• The uncertainty principle, when Bob possesses a 
quantum memory, is given by 
 
 
 

  where S(X|B) & S(Z|B) are the conditional von 
Neumann entropies of the post measured states 
and S(A|B) is the conditional von Neumann 
entropy of the state ρAB . 

• S(A|B) can assume negative values when  the 
state ρAB is entangled 

 
 

BERTA et.al EUR:  
S(X|B) + S(Z|B) ≥ -2log2 C(X,Z) + S(A|B) 
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Berta et. al EUR 
• When Alice’s system is in a maximally entangled 
state with Bob’s quantum memory, S(A|B) = 
−log2 d and as −2log2C(X,Z) ≤ log2 d one can 
achieve a trivial lower bound of zero. Thus, with 
the help of a quantum memory maximally 
entangled with Alice’s state, Bob can beat the 
uncertainty bound and can predict the outcomes 
of incompatible observables X, Z precisely. 
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Two Experiments 
 
 

Singlet state 
 

Rotor in a maximally mixed state 

• Alice and Bob share a 
Singlet state(maximally 
entangled) 

• Measuring the spins at both 
ends, ask what’s P(ma,mb)? 

•  P(ma,mb ) =  
[1 + mambCos(θab)]/4 
where θab  is the angle 

between 
the spin directions a and b 

 

• Consider a spin-1/2 system 
in a random mixture state 
i.e, ρ=I/2 (I denotes 2 × 2 
identity matrix) evolving under a 
hamiltonian  

• Make measurements at time t1 
and t2. Ask what’s P(m1,m2 )? 

• P(m1,m2 ) =  [1 + 
m1m2Cos(θ12)]/4 

where θ12  is the temporal 
difference (t2 – t1) 
 

      A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, Phys. Rev. A 87, 052103 (2013) 
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We ask……. 
 
• Analogous to spatial correlations, do temporal 
correlations arising in sequential 
measurement of observables, play a distinct 
role in reducing the uncertainty of 
incompatible observables? 
 
 

 
  where Xo and Zo are observables measured 

earlier to that of X and Z respectively. 
 

 

QUESTION:   
Is H(X|Xo) + H(Z|Zo) ≤ -2log2 C(X,Z) always? 
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Temporal correlations arising in sequential 
measurement of observables too play a distinct role 
in reducing the uncertainty of incompatible 
observables 

Theorem: If temporal correlations of the outcomes of Xo, X 
and those of Zo, Z obtained from sequential measurement runs 
on the quantum state are classical (the correlation probabilities 
are of the convex product form), the sum of conditional entropies 
obey the inequality 

 H(X|Xo) + H(Z|Zo) ≥ -2log2 C(X,Z)  

  Karthik et al.,  arXiv eprint:1310.5079 

IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



IPQI2014, February 26, 2014 



Example 
• Temporal correlations assisting in reducing the 
entropic spread of non-commuting observables 

• Consider: 
  A spin s particle precessing about y axis: 
  Hamiltonian: H= ħωSy  
  Initial State : highly mixed state:  
   ρin= (I2s+1)/(2s+1) 
• Measurement of non-commuting observables X = Sx 
and Z = Sz results in the probabilities of outcomes  

   −s ≤ mx,mz ≤ s 
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Example 
• Under the Hamiltonian dynamics, the evolution of 
z component of spin is given by  

 Sz(t) = U†(t)Sz(0)U(t) = Sz Cos(ωt) + Sx Sin(ωt);  
  U(t)=exp(-iωtSy). 
• First run :  
    Measure Sz(t) at time tx0   and tx = π/2ω 
    Call Sz(tx0) = X0 = Sz Cos(ωtx0) + Sx Sin(ωtx0) and  
    Sz(tx) = X = Sx   
•  Define θ = ωtx0 - π/2  -----> dimensionless time 
separation. 
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Example 
• The sequential measurements enables one to record the 

temporal correlation probabilities P(mx0 ,mx; θ) of the 
outcomes −s ≤ mx0 , mx ≤ s of the observables 

    X0 = Sz(tx0) and X = Sx. 
• Second run:  
    Measure Sz(t) at time tz0   and tz = π/ω 
    Call Sz(tz0) = Z0 = Sz Cos(ωtz0) + Sx Sin(ωtz0) and  
    Sz(tz) = Z = Sz   
• Define φ = ωtz0 - π-----> dimensionless time sep. 
• Similarly obtain  P(mz0 ,mz; φ)  
 

IPQI2014, February 26, 2014 



Example 

] 
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Example 
• The conditional entropies of measurement (which depend 

only on the time separations θ, φ) Hρ(X|X0) = ℋ(θ) and 
    Hρ(Z|Z0) = ℋ(φ) 
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Example 
• We define a quantity Ms(θ,φ) as the difference 

between the sum of conditional entropies and the 
Massen-Uffink uncertainty bound −2 log2 c(X,Z) 

    Ms(θ,φ) = Hρ(X|X0) +  Hρ(Z|Z0) + 2 log2 c(X,Z) 
                    = ℋ(θ) + ℋ(φ) + 2 log2 c(X,Z) 
  in order to demonstrate improved precision in the 

measurement of the spin components X and Z 
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Given three observables X1, X2, X3 where in co-
measurability of X1, X2 and X1, X3 is ensured i.e., [X1, X2] = 
[X1, X3] =0 but [X2, X3] ≠0,  we explore the trade-off between 
the  Shannon entropies of the non-commuting observables 
X2  and X3, both of which are conditioned with the 
measurement outcomes of the observable X1 

Contextuality and entropic uncertainty 
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QUESTION:  Is H(X2|X1) + H(X3|X1) ≤ -2log2 
C(X2,X3) always? 

Theorem: If the outcomes of X1 do not depend on the context of 
measuring it with X2 or X3,  there follows a “Contextual” entropic 
steering inequality 

H(X2|X1) + H(X3|X1) ≥ -2log2 C(X2,X3)  
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This identification(theorem) reveals the crucial significance of 
Quantum Contextuality to achieve sharpened predictions of 
incompatible observables which indeed is counter intuitive!! 
EXAMPLE: Contextuality of X1 assisting in reducing the entropic 
spread of non-commuting observables X2 and X3 . 
Consider three of the KCBS dichotomic observables Xi  = 2|vi><vi|- I  
with outcomes ±𝟏;  |v1> = (0,0,1) ; |v2> = (Sinθ, Cosθ, 0) ; |v3> = (1,0,0)  
in the quantum state |ψ> = (1/√(1+Sin2α))(Sinα, Cosα, Sinα)   
(PRL 101, 020403 (2008)) 
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We define a quantity M(θ, α) as the difference between the sum of 
conditional entropies and the Massen-Uffink uncertainty bound    
−2 log2 c(X2,X3):  
                  M(θ, α) = H(X2|X1) +  H(X3|X1) + 2 log2 c(X2,X3)  
to demonstrate improved precision in the measurement of the non-
commuting observables X2,X3. 
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The bound limiting the trade-off is smaller than that given 
by the Massen-Uffink uncertainty relation. This clearly 
brings out an instance to reveal that contextuality of the 
observable X1 assists in enhancing the precision of 
measuring  non-commuting observables X2 and X3.  This is 
essentially because of the the non-existence  of the joint 
probability distribution for all the three observables –  
unlike in the non-contextual theory.  
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Thank you 
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