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Holevo Bound
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Noisy Quantum Channels
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
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input output

 A classical channel
has a unique capacity

a quantum channel has 
various different capacities

-- This is due to the greater flexibility in the use of a quantum channel

BUT

Capacities of a Noisy Quantum Channel

Memoryless quantum channel

( )n n  successive uses :n



 The different capacities depend on:
 the nature of the transmitted information

(classical or quantum)
 the nature of the input states

(entangled or product states)

 the nature of the measurements done on the outputs
(collective or individual)

 the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

 Etc.

 Capacities evaluated in the “asymptotic memoryless setting”

( ) ;n n   n 



Transmission of Classical Info through a quantum channel
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n ( ) 0n
avp  : information transmission is

reliable

( ) :C  

If                        as
……(1) 

Classical capacity of the memoryless quantum channel

maximum number of bits of classical message 

sent per use of the quantum channel



 If Alice restricts her codewords to product states, i.e., if

 And Bob does a collective measurement (POVM) on 
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*( )n  Holevo Capacity of the block           of       channels 

 Classical capacity of  a memoryless channel :

regularised Holevo
capacity *1( ) lim n

n
C

n
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  

(without the restriction of inputs being product states):

n



(This generalization is obtained by considering inputs which are 

product states over blocks of n channels but which may be entangled

within each block)

n
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(Q) Can the classical capacity of a memoryless quantum channel  

be increased by using entangled states as inputs ?

( )pC 



(( )) pCC  

Holevo capacity is 
superadditive

entangled inputs could help!



 This is related to :

The (global) additivity conjecture of the Holevo capacity :

1 2 1 2
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 IF the Holevo capacity is additive then using entangled inputs would

not increase its classical capacity!

( )pC 

(Q) Do entangled inputs really help? ?
( )) (pCC  

1 2, 



 Additivity conjecture disproved by Matt Hastings 2008

There exist channels in which using entangled inputs 
help in transmitting classical information through a 
quantum channel!!



 Asymptotics to One-shot Information Theory



In Quantum information theory, initially one evaluated:
 optimal rates of info-processing tasks, e.g.,

 data compression, 
 transmission of information through a channel, etc.

under the assumption of an “asymptotic, memoryless setting”

 information sources & channels were memoryless

 they were used an infinite number of times (asymptotic 

limit) n 
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Optimal rates of information-processing tasks in the

“asymptotic, memoryless setting”

Memoryless quantum info. source 

Data compression limit: 

Classical capacity
--given in terms of the Holevo capacity ;

 , H

( )S 

( )C N
N

 Compression of Information:

Quantum capacity

--given in terms of the coherent information ;

( )Q N

 Info Transmission thro' a memoryless quantum channel 

Entropic Quantities



These entropic quantities are all obtainable from a single 

parent quantity; 

“asymptotic, memoryless setting”

Quantum relative entropy:

e.g. Data compression limit: 

acts as a parent quantity for optimal rates in the

   : Tr  lo( g Tr| l g  | ) o  D       

, 0;   Tr 1 For

 : Tr  lo  ( ) ( || )gS D I     ( )I 

( || ) :D  



“asymptotic memoryless setting”

 In practice: information sources & channels are used a 

finite number of times; 

 there are unavoidable correlations between successive 

uses (memory effects)

not necessarily valid

Hence it is important to evaluate optimal rates for 

finite number of uses (or even a single use) 

of an  arbitrary source or channel

One-shot information theory

 Evaluation of corresponding optimal rates: 

In real-world applications
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 An example:



min max( || ),  ( || )D D   Min- & Max relative entropies:

act as parent quantities for one-shot rates of protocols

acts as a parent quantity for asymptotic rates of protocols

Quantum relative entropy: ( || )D  

just as

Introduce 2 generalized relative entropies



 Definition 1: The max- relative entropy of a state        & a 
positive operator        is

 max ( || ) : inf : 2D      




supp supp  

(2 ) 0   

 1/2 1/2
max max( || ) log ( )D      

pseudoinverse



 Definition 2: The min- relative entropy of a state        & a 
positive operator        is

where          denotes the projector onto the support of

min ( || ) : log  Tr ( )D     







(supp )



 Remark: The min- relative entropy

is expressible in terms of:  quantum relative Renyi entropy

supp supp  

 min ( || ) : log Tr ( )D     

 11( || ) : log Tr ( )
1

D  
    






min
0

 ( || ) lim ( || )D D


   




1 

relative Renyi entropy of order 0

0= ( || )D  



max min( || ) ( || )D D   

 max ( || ) : inf : 2D       0

0 ,2  0 )2( 0,    0 

0Tr [ ( )2 ] 0
    , 0  Tr ( ) 0A B AB  

0 log  [Tr ) 0( ]   



0 log  [Tr( )]   

min ( || )D  max ( || )D  

1

 Proof:

Also

0 Tr [ ] Tr [2 ] 
    



 Like                     we have 

 Also

 Most interestingly

* *( ( ) || ( )) ( || )D D      for any CPTP map          

for           

*( || ) 0D   

* max,  min



( || )D  

min max( || ) ( || ) ( || )D D D      

* *
† †( || ) ( || )D D U U U U   

for any unitary

operator U

Why  are                                                    relative entropies?min max( || ) & ( || )D D   

, for             states



mmin ax( ) : ( || )DH I  

log || ||  

mmax in( ) : ( || )DH I  

log  rank( ) 

( ) ( || )S D I  

Just as: [Renner]

von Neumann 
entropy

 Also act as parent quantities for other entropies………..

max min( ) ( )H H 



 mmin ax( | ) : max ( || )
B

AB A BA B IH D 
   

mmax ax( : ) : min ( || )
B

AB A BI A B D 
   

just as:

just as:

( | ) ( || )AB A BS A B D I   

( : ) ( || )AB A BI A B D    

For a bipartite state :AB
A

B

 max ( || )
B

AB A BD I


   

 Conditional min-entropy [Renner]

Quantum conditional entropy 

Quantum mutual information 

 Max-information [Berta, Christandl, Renner]

min ( || )
B

AB A BD


   

[Buscemi & ND]



Operational significance of

Tr(( ) )I  

 He does a measurement to infer which state it is 

POVM

Tr( )  

0 ( || )D  



 State Discrimination: Bob receives a state 

or 

( )I [ ] [ ]&

 Possible errors

Type I

actual stateinference


 

Type II

 Error

probabilities

Type I

Type II

hypothesis 
testing



Tr(( ) )I  

 Suppose

Tr( )  

min ( || )D  

 

: log  Tr   

Prob(Type I error) Prob(Type II error)      

0 Tr( ) 

(POVM element)       

Bob never infers the state 

to be        when it is

min ( || )2 D   



BUT

Hence

= Prob(Type II error |Type I error = zero)

when 0 



 Compare with the operational significance of ( || )D  

arises in asymptotic hypothesis testing

 Suppose Bob is given many identical copies of the state

 He receives 

( )n
n

n 

 For any n large enough, 

 Prob(Type II error |Type I error

( || )2 n D  

)

( )n


0,  for

[Quantum Stein’s Lemma]



 Hence,
min ( || ) & ( || )D D   

have similar interpretations in terms of  Prob(Type II error)

min ( || ) :D   ( || ) :D  

 a single copy of the state

 Prob(Type I error) 

 copies of the state

 Prob(Type I error)

0
n  


0
n



Operational interpretations of the max-relative entropy (i)

Multiple state discrimination problem: 

 He does measurements to infer the state: POVM 

 His optimal average success probability:

 
 
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 
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2
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1

M

1
M

Bob
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1

,.., :  0 ;   
M

M i i
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E E E I E I


  



The optimal average success probability in this multiple 
state discrimination problem is given by:

Theorem 3 [M.Mosonyi & ND]:

1

1 min  max
i MM   

 max ( || )2 iD  *
succp



Operational interpretations of the max-relative entropy (ii)

Separability of a bipartite state  

Best separable approximation (BSA) of the state 

(1 )s     

[Lewenstein, Sanpera] :The state              of any bipartite 
system can always be written as a weighted average of a 
separable state and another (possibly entangled) 
state       , 

s

AB 



such that the weight  is maximal.



: separability of the state  

:s
[Wellen & Kus]



max ( || )

( )
max 2 D  


 


 S H

Theorem 2 [ND,T.Rudolph]:

The separability of the state       of a bipartite system

is given by:



set of separable states

(1 )s     



(I) Product-state classical capacity
 Encoding restricted to product states, i.e., 

21
......

( )
nx x x

n
xx       

( )pC 
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 
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XB X Bp
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where ( );XB x x
x

p x x   Tr ;X B XB 

HSW Theorem



i 1, 2,...M i 
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E D 'i

: ( , , )M E DC(code) ‘Rate’: : logR M

One-shot classical capacity

 Analogous to

0 1 

(1) ( )C 

ep 

(rate)R

( )C  (rate)R

( ) 0n
ep 
as n 

error one-shot classical capacity 



( )pC    
,{ }

* max min ||( )
x x B

XB X Bp
D


     

Holevo-capacity

( );XB x x
x

p x x  

 0 1  

(1) *
max,( ) ( )C  

smooth max-Holevo capacity

 
,

max{ }
max min ||

x x B
XB X Bp

D


   

[See also Wang & Renner]

[HSW Theorem]

[ND, Mosonyi, Hsieh, Brandao]



Smooth max-relative entropy

max ( || )D  
( )

max: min ( || )
B

D
 

 




 : 0, Tr( ) 1,B 


      






max
1limsup ( | ) )| ( ||n n

n
D

n
D    




One-shot bounds asymptotic, i.i.d. result

From one-shot to the asymptotic i.i.d. setting

0, 

(Relative entropy version of the 

Quantum Asymptotic Equipartition Property 

[Colbeck, Renner, Tomamichel]; [ND, Mosonyi, Hsieh, Brandao]



 One-shot results yield the known results of the 

asymptotic case, on taking:

n  and then 0 

 In fact, one-shot results can be looked upon as the 

fundamental  building blocks of Quantum Info. Theory

 One-shot results also take into account effects of 
correlation (or memory) in sources, channels etc.

Why are one-shot results important?

 Hence the one-shot analysis is more general !



 One-shot quantum state splitting [M.Berta et al]

 Single-shot thermodynamics [J.Oppenheim, M.Horodecki]

Other occurrences of smooth max-relative entropy

Min- and Max- relative entropies : parent quantities for

 One-shot state merging [M.Berta et al]

 One-shot hypothesis testing [Wang & Renner]

 One-shot quantum capacity [ND, F.Buscemi; ND, M-H. Hsieh]

 One-shot entanglement cost under LOCC [ND, F.Buscemi]

 One-shot entanglement-assisted classical & quantum 

capacities [ND, M-H. Hsieh]                      etc.



 Unifying the different relative entropies


