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Holevo Bound
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The maximum amount of info Alice can send to Bob 

using the ensemble

 Holevo quantity of the ensemble of states 
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Noisy Quantum Channels

Linear, CPTP map

 Bob receives the ensemble:  ( ), ( )xp x E 
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input output

 A classical channel
has a unique capacity

a quantum channel has 
various different capacities

-- This is due to the greater flexibility in the use of a quantum channel

BUT

Capacities of a Noisy Quantum Channel

Memoryless quantum channel

( )n n  successive uses :n



 The different capacities depend on:
 the nature of the transmitted information

(classical or quantum)
 the nature of the input states

(entangled or product states)

 the nature of the measurements done on the outputs
(collective or individual)

 the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

 Etc.

 Capacities evaluated in the “asymptotic memoryless setting”
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Transmission of Classical Info through a quantum channel
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avp  : information transmission is

reliable
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Classical capacity of the memoryless quantum channel

maximum number of bits of classical message 

sent per use of the quantum channel



 If Alice restricts her codewords to product states, i.e., if

 And Bob does a collective measurement (POVM) on 
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*( )n  Holevo Capacity of the block           of       channels 

 Classical capacity of  a memoryless channel :
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(without the restriction of inputs being product states):
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(This generalization is obtained by considering inputs which are 

product states over blocks of n channels but which may be entangled

within each block)
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(Q) Can the classical capacity of a memoryless quantum channel  

be increased by using entangled states as inputs ?

( )pC 



(( )) pCC  

Holevo capacity is 
superadditive

entangled inputs could help!



 This is related to :

The (global) additivity conjecture of the Holevo capacity :
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 IF the Holevo capacity is additive then using entangled inputs would

not increase its classical capacity!
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(Q) Do entangled inputs really help? ?
( )) (pCC  
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 Additivity conjecture disproved by Matt Hastings 2008

There exist channels in which using entangled inputs 
help in transmitting classical information through a 
quantum channel!!



 Asymptotics to One-shot Information Theory



In Quantum information theory, initially one evaluated:
 optimal rates of info-processing tasks, e.g.,

 data compression, 
 transmission of information through a channel, etc.

under the assumption of an “asymptotic, memoryless setting”

 information sources & channels were memoryless

 they were used an infinite number of times (asymptotic 

limit) n 
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Optimal rates of information-processing tasks in the

“asymptotic, memoryless setting”

Memoryless quantum info. source 

Data compression limit: 

Classical capacity
--given in terms of the Holevo capacity ;

 , H
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( )C N
N

 Compression of Information:

Quantum capacity

--given in terms of the coherent information ;

( )Q N

 Info Transmission thro' a memoryless quantum channel 

Entropic Quantities



These entropic quantities are all obtainable from a single 

parent quantity; 

“asymptotic, memoryless setting”

Quantum relative entropy:

e.g. Data compression limit: 

acts as a parent quantity for optimal rates in the

   : Tr  lo( g Tr| l g  | ) o  D       
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“asymptotic memoryless setting”

 In practice: information sources & channels are used a 

finite number of times; 

 there are unavoidable correlations between successive 

uses (memory effects)

not necessarily valid

Hence it is important to evaluate optimal rates for 

finite number of uses (or even a single use) 

of an  arbitrary source or channel

One-shot information theory

 Evaluation of corresponding optimal rates: 

In real-world applications
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One-shot classical capacity :=
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One-shot information theory
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 An example:



min max( || ),  ( || )D D   Min- & Max relative entropies:

act as parent quantities for one-shot rates of protocols

acts as a parent quantity for asymptotic rates of protocols

Quantum relative entropy: ( || )D  

just as

Introduce 2 generalized relative entropies



 Definition 1: The max- relative entropy of a state        & a 
positive operator        is
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 Definition 2: The min- relative entropy of a state        & a 
positive operator        is
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 Remark: The min- relative entropy

is expressible in terms of:  quantum relative Renyi entropy
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 Most interestingly
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Why  are                                                    relative entropies?min max( || ) & ( || )D D   

, for             states
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Just as: [Renner]
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 Also act as parent quantities for other entropies………..
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 Conditional min-entropy [Renner]

Quantum conditional entropy 

Quantum mutual information 

 Max-information [Berta, Christandl, Renner]
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[Buscemi & ND]



Operational significance of
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 He does a measurement to infer which state it is 
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 State Discrimination: Bob receives a state 

or 
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 Compare with the operational significance of ( || )D  

arises in asymptotic hypothesis testing

 Suppose Bob is given many identical copies of the state

 He receives 
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[Quantum Stein’s Lemma]
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Operational interpretations of the max-relative entropy (i)

Multiple state discrimination problem: 

 He does measurements to infer the state: POVM 

 His optimal average success probability:
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The optimal average success probability in this multiple 
state discrimination problem is given by:

Theorem 3 [M.Mosonyi & ND]:
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 max ( || )2 iD  *
succp



Operational interpretations of the max-relative entropy (ii)

Separability of a bipartite state  

Best separable approximation (BSA) of the state 

(1 )s     

[Lewenstein, Sanpera] :The state              of any bipartite 
system can always be written as a weighted average of a 
separable state and another (possibly entangled) 
state       , 

s

AB 



such that the weight  is maximal.



: separability of the state  

:s
[Wellen & Kus]
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Theorem 2 [ND,T.Rudolph]:

The separability of the state       of a bipartite system

is given by:
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(I) Product-state classical capacity
 Encoding restricted to product states, i.e., 
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[See also Wang & Renner]

[HSW Theorem]

[ND, Mosonyi, Hsieh, Brandao]



Smooth max-relative entropy
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One-shot bounds asymptotic, i.i.d. result

From one-shot to the asymptotic i.i.d. setting

0, 

(Relative entropy version of the 

Quantum Asymptotic Equipartition Property 

[Colbeck, Renner, Tomamichel]; [ND, Mosonyi, Hsieh, Brandao]



 One-shot results yield the known results of the 

asymptotic case, on taking:

n  and then 0 

 In fact, one-shot results can be looked upon as the 

fundamental  building blocks of Quantum Info. Theory

 One-shot results also take into account effects of 
correlation (or memory) in sources, channels etc.

Why are one-shot results important?

 Hence the one-shot analysis is more general !



 One-shot quantum state splitting [M.Berta et al]

 Single-shot thermodynamics [J.Oppenheim, M.Horodecki]

Other occurrences of smooth max-relative entropy

Min- and Max- relative entropies : parent quantities for

 One-shot state merging [M.Berta et al]

 One-shot hypothesis testing [Wang & Renner]

 One-shot quantum capacity [ND, F.Buscemi; ND, M-H. Hsieh]

 One-shot entanglement cost under LOCC [ND, F.Buscemi]

 One-shot entanglement-assisted classical & quantum 

capacities [ND, M-H. Hsieh]                      etc.



 Unifying the different relative entropies


