Entropies & Information Theory LECTURE III

Nilanjana Datta University of Cambridge, U.K.

Transmission of information

Transmission of classical info through a noiseless quantum channel

- Bob receives the ensemble: $\mathcal{E} = \{ p(x), \rho_x \}$
- The maximum amount of info Bob can extract

Accessible Information:

$$I_{acc}(\mathcal{E}) = \max_{\mathcal{M}} I(X:Y)$$
(classical)

mutual info

Holevo Bound

$$I_{acc}(\mathcal{E}) \leq \chi(\{p(x), \rho_x\})$$

The maximum amount of info Alice can send to Bob using the ensemble $\mathcal{E} = \{p(x), \rho_x\}$

• Holevo χ – quantity of the ensemble of states { $p(x), \rho_x$ }

$$\chi(\{p(x),\rho_x\}) \coloneqq S(\sum_x p(x)\rho_x) - \sum_x p(x)S(\rho_x)$$

If the ρ_x are pure : $\chi(\{p(x), \rho_x\}) = S(\rho); \text{ where } \rho \coloneqq \sum_x p(x)\rho_x$

Noisy Quantum Channels

Linear, CPTP map

Bob receives the ensemble: $\mathcal{E} = \{p(x), \Phi(\rho_x)\}$

$$I_{acc}(\mathcal{E}) \leq \chi \big(\{ p(x), \Phi(\rho_x) \} \big)$$

Capacities of a Noisy Quantum Channel

-- This is due to the greater flexibility in the use of a quantum channel

Memoryless quantum channel

n successive uses :

$$\Phi^{(n)} = \Phi^{\otimes n}$$

UNIVERSITY OF

- The different capacities depend on:
 - the nature of the transmitted information

(classical or quantum)

the nature of the input states

(entangled or product states)

- the nature of the measurements done on the outputs (collective or individual)
- the presence or absence of any additional resource (e.g. prior shared entanglement between Alice & Bob)

Etc.

• <u>Capacities evaluated in the "asymptotic memoryless setting"</u> $\Phi^{(n)} = \Phi^{\otimes n}; \quad n \to \infty$

UNIVERSITY OF CAMBRIDGE

If
$$p_{av}^{(n)} \to 0$$
 as $n \to \infty$: information transmission is(1) reliable

Classical capacity of the memoryless quantum channel

 $C(\Phi) := maximum number of bits of classical message sent per use of the quantum channel$

UNIVERSITY OF CAMBRIDGE

If Alice restricts her codewords to product states, i.e., if

$$x \to \rho_x^{(n)} = \rho_{x_1} \otimes \rho_{x_2} \otimes \dots \otimes \rho_{x_n}$$

And Bob does a collective measurement (POVM) on

 $\sigma_{x}^{(n)} := \Phi^{\otimes n} \left(\rho_{x}^{(n)} \right) : \text{the output of } \mathcal{N} \text{ uses of the channel}$ $= \Phi(\rho_{x_{1}}) \otimes \Phi(\rho_{x_{2}}) \otimes \dots \otimes \Phi(\rho_{x_{n}})$

Capacity : product state capacity $C_{p}(\Phi)$

Holevo-Schumacher-Westmoreland (HSW) Theorem

$$C_p(\Phi) = \max_{\{p_x, \rho_x\}} \chi\left(\{p_x, \Phi(\rho_x)\}\right) = \chi^*(\Phi)$$

Holevo Capacity

HSW Theorem

$$C_p(\Phi) = \max_{\{p_x, \rho_x\}} \chi(\{p_x, \Phi(\rho_x)\}) = \chi^*(\Phi)$$

Holevo Capacity

UNIVERSITY OF CAMBRIDGE

• Classical capacity of a memoryless channel Φ : (without the restriction of inputs being product states):

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^* \left(\Phi^{\otimes n} \right)$$

regularised Holevo capacity

 $\chi^*(\Phi^{\otimes n})$ Holevo Capacity of the block $\Phi^{\otimes n}$ of n channels

(This generalization is obtained by considering inputs which are product states over blocks of n channels but which may be entangled within each block)

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^* \left(\Phi^{\otimes n} \right)$$

(Q) Can the classical capacity of a memoryless quantum channel be increased by using entangled states as inputs ?

$$\chi^*(\Phi_1 \otimes \Phi_2) \geq \chi^*(\Phi_1) + \chi^*(\Phi_2)$$

Holevo capacity is superadditive

$$\Rightarrow \chi^*(\Phi^{\otimes n}) \geq n \chi^*(\Phi)$$

$$\Rightarrow C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^*(\Phi^{\otimes n}) \ge \lim_{n \to \infty} \frac{1}{n} \eta \chi^*(\Phi) \ge \chi^*(\Phi)$$
$$= C_p(\Phi)$$
$$C(\Phi) \ge C_p(\Phi) \Rightarrow \text{ entangled inputs could help!}$$

UNIVERSITY OF CAMBRIDGE (Q) Do entangled inputs really help? ? $C(\Phi) > C_{p}(\Phi)$

This is related to :

The (global) additivity conjecture of the Holevo capacity: $\forall \Phi_1, \Phi_2 \quad \chi^*(\Phi_1 \otimes \Phi_2) = \chi^*(\Phi_1) + \chi^*(\Phi_2)$

$$\Rightarrow \chi^*(\Phi^{\otimes n}) = n\chi^*(\Phi)$$

$$\Rightarrow C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^* (\Phi^{\otimes n}) = \lim_{n \to \infty} \frac{1}{n} \chi^* (\Phi) = \chi^* (\Phi)$$
$$= C_p(\Phi)$$

IF the Holevo capacity is additive then using entangled inputs would not increase its classical capacity!

Additivity conjecture disproved by Matt Hastings 2008

There exist channels in which using entangled inputs help in transmitting classical information through a quantum channel!!

Asymptotics to One-shot Information Theory

UNIVERSITY OF CAMBRIDGE

In Quantum information theory, initially one evaluated:

- optimal rates of info-processing tasks, e.g.,
 - data compression,
 - transmission of information through a channel, etc.

under the assumption of an *"asymptotic, memoryless setting"*

- information sources & channels were memoryless
- they were used an infinite number of times (asymptotic limit) $n \rightarrow \infty$

To evaluate $C(\mathcal{N})$: classical capacity

Optimal rates of information-processing tasks in the

"asymptotic, memoryless setting"

• *Compression of Information*:

Memoryless quantum info. source

$$\{
ho, \mathcal{H}\}$$

• Data compression limit: $S(\rho)$

Info Transmission thro' a memoryless quantum channel \mathcal{N}

• Classical capacity $C(\mathcal{N})$

--given in terms of the Holevo capacity;

Quantum capacity $Q(\mathcal{N})$

--given in terms of the coherent information ;

These entropic quantities are all obtainable from a single parent quantity;

Quantum relative entropy: For $\rho, \sigma \ge 0$; $Tr\rho = 1$

$$\frac{D(\rho \| \sigma)}{=} \operatorname{Tr} \left(\rho \log \rho \right) - \operatorname{Tr} \left(\rho \log \sigma \right)$$

e.g. Data compression limit:

$$S(\rho) \coloneqq -\mathrm{Tr} \left(\rho \log \rho\right) = -D(\rho \| I) \qquad (\sigma = I)$$

 $D(\rho \| \sigma)$: acts as a parent quantity for optimal rates in the "asymptotic, memoryless setting"

UNIVERSITY OF CAMBRIDGE

In real-world applications

"asymptotic memoryless setting" not necessarily valid

- In practice: information sources & channels are used a finite number of times;
- there are unavoidable correlations between successive uses (memory effects)

Hence it is important to evaluate optimal rates for *finite number of uses (or even a single use)*

of an arbitrary source or channel

Evaluation of corresponding optimal rates:

One-shot information theory

One-shot classical capacity := max. number of bits that can be transmitted on a single use

Prob. of
$$p_e \leq \varepsilon$$
 for some $\varepsilon > 0$, error:

Introduce 2 generalized relative entropies

Min- & Max relative entropies: $D_{\min}(\rho \| \sigma), D_{\max}(\rho \| \sigma)$

act as parent quantities for one-shot rates of protocols

just as

Quantum relative entropy: $D(\rho \| \sigma)$

acts as a parent quantity for asymptotic rates of protocols

UNIVERSITY OF CAMBRIDGE

• Definition 1: The max- relative entropy of a state ρ & a positive operator σ is

$$D_{\max}(\rho \| \sigma) \coloneqq \inf \left\{ \gamma : \rho \le 2^{\gamma} \sigma \right\}$$

$$\operatorname{supp}\rho\subseteq\operatorname{supp}\,\sigma$$

$$(2^{\gamma}\sigma-\rho)\geq 0$$

$$D_{\max}(\rho \| \sigma) = \log(\lambda_{\max}(\sigma^{-1/2}, \rho\sigma^{-1/2}))$$
pseudoinverse

• Definition 2: The min- relative entropy of a state ρ & a positive operator σ is

$$D_{\min}(\rho \| \sigma) \coloneqq -\log \operatorname{Tr}(\pi_{\rho} \sigma)$$

where π_{ρ} denotes the projector onto the support of ρ (supp ρ)

Remark: The min- relative entropy

$$D_{\min}(\rho \| \sigma) \coloneqq -\log(\operatorname{Tr}(\pi_{\rho} \sigma))$$

is expressible in terms of: *quantum relative Renyi entropy*

$$D_{\alpha}(\rho \| \sigma) \coloneqq \frac{1}{\alpha - 1} \log \left(\operatorname{Tr} \left(\rho^{\alpha} \sigma^{1 - \alpha} \right) \right)$$

$$\alpha \neq 1$$

$$D_{\min}(\rho \| \sigma) = \lim_{\alpha \to 0^+} D_{\alpha}(\rho \| \sigma) = D_0(\rho \| \sigma)$$

relative Renyi entropy of order 0

$$D_{\max}(\rho || \sigma) \ge D_{\min}(\rho || \sigma)$$

$$Proof:$$

$$D_{\max}(\rho || \sigma) := \inf \{ \gamma : \rho \le 2^{\gamma} \sigma \} = \gamma_{0}$$

$$\rho \le 2^{\gamma_{0}} \sigma, \quad (2^{\gamma_{0}} \sigma - \rho) \ge 0, \quad Also \quad \pi_{\rho} \ge 0$$

$$Tr \left[\pi_{\rho} (2^{\gamma_{0}} \sigma - \rho) \right] \ge 0 \quad \because A, B \ge 0 \Rightarrow \quad Tr (AB) \ge 0$$

$$2^{\gamma_{0}} Tr \left[\pi_{\rho} \sigma \right] \ge Tr \left[\pi_{\rho} \rho \right] = 1$$

$$\gamma_{0} + \log \left[Tr(\pi_{\rho} \sigma) \right] \ge 0$$

$$\gamma_{0} \ge -\log \left[Tr(\pi_{\rho} \sigma) \right]$$

$$D_{\max}(\rho || \sigma) \ge D_{\min}(\rho || \sigma)$$

• Like
$$D(\rho || \sigma)$$
 we have for $* = \max$, min
 $D_*(\rho || \sigma) \ge 0$ for ρ, σ states
 $D_*(\Lambda(\rho) || \Lambda(\sigma)) \le D_*(\rho || \sigma)$ for any CPTP map Λ
for any unitary
• Also $D_*(\rho || \sigma) = D_*(U \rho U^{\dagger} || U \sigma U^{\dagger})$ operator U

Most interestingly

 $D_{\min}(\rho \| \sigma) \le D(\rho \| \sigma) \le D_{\max}(\rho \| \sigma)$

Also act as parent quantities for other entropies......

$$H_{\min}(\rho) \coloneqq -D_{\max}(\rho || I)$$

$$= -\log || \rho ||_{\infty}$$

$$H_{\max}(\rho) \coloneqq -D_{\min}(\rho || I)$$

$$= \log \operatorname{rank}(\rho)$$
Just as:
$$IRenner]$$

$$von Neumann$$

$$entropy$$

$$S(\rho) = -D(\rho || I)$$

 $H_{\max}(\rho) \ge H_{\min}(\rho)$

For a bipartite state ρ_{AB} :

Conditional min-entropy [Renner]

$$H_{\min}(A \mid B)_{\rho} \coloneqq \max_{\sigma_B} \left\{ -D_{\max}(\rho_{AB} \mid | I_A \otimes \sigma_B) \right\}$$

just as: Quantum conditional entropy

$$S(A \mid B) = -D(\rho_{AB} \mid | I_A \otimes \rho_B) = \max_{\sigma_B} \left\{ -D(\rho_{AB} \mid | I_A \otimes \sigma_B) \right\}$$

Max-information [Berta, ChristandI, Renner]

$$I_{\max}(A:B)_{\rho} \coloneqq \min_{\sigma_{B}} D_{\max}(\rho_{AB} \parallel \rho_{A} \otimes \sigma_{B})$$

just as: Quantum mutual information [Buscemi & ND]

 $I(A:B) = D(\rho_{AB} || \rho_A \otimes \rho_B) = \min_{\sigma_B} D(\rho_{AB} || \rho_A \otimes \sigma_B)$

Operational significance of $D_0(\rho \| \sigma)$

• *State Discrimination:* Bob receives a state

• He does a measurement to infer which state it is $POVM \prod \left[\alpha \right] \qquad \& \qquad (I - \prod) \left[\alpha \right]$

	Possible errors	inference	actual state	
	Type I	σ	p hypothe	sis
	Type II	ρ	o testil	ng
Error		$\alpha = \mathrm{Tr}((I - \Gamma))$	I)ρ) Type I	
probabilities		$\beta = \operatorname{Tr}(\Pi \sigma)$	Type II	/

or

• Suppose $\Pi = \pi_{\rho}$ (POVM element)

Prob(Type I error) $\alpha = \text{Tr}((I - \Pi)\rho)$ = 0

Bob never infers the state

to be σ when it is ρ

BUT
$$D_{\min}(\rho \| \sigma) \coloneqq -\log \operatorname{Tr} \pi_{\rho} \sigma$$

Hence
$$\beta = 2^{-D_{\min}(\rho \| \sigma)}$$
 when $\alpha = 0$
= Prob(Type II error / Type I error = zero)

Prob(Type II error)

 $\beta = \text{Tr}(\Pi \sigma)$

 $= \operatorname{Tr}(\pi_{\rho}\sigma)$

• Compare with the operational significance of $D(\rho \| \sigma)$

arises in asymptotic hypothesis testing

Suppose Bob is given many (n) identical copies of the state

• For any $\delta > 0$, for *n* large enough,

• Prob(Type II error | Type I error $< \delta$)

 $\beta_{\delta}^{(n)} \approx 2^{-n D(\rho \| \sigma)}$

[Quantum Stein's Lemma]

Hence,

$D_{\min}(\rho \| \sigma) \& D(\rho \| \sigma)$

have similar interpretations in terms of *Prob(Type II error)*

 $D_{\min}(\rho \| \sigma)$:

a single copy of the state

• $Prob(Type \ I error) = 0$

 $D(\rho \| \sigma)$:

- copies of the state
- Prob(Type I error)

 $\rightarrow_{n \to \infty} 0$

Operational interpretations of the max-relative entropy (i)

• *Multiple state discrimination problem:*

He does measurements to infer the state: POVM

$$\{E_1, ..., E_M\}: 0 \le E_i \le I; \sum_{i=1}^m E_i = I$$

• His optimal average success probability:

$$p_{succ}^* \coloneqq \max_{\{E_1,...,E_k\}} \frac{1}{M} \sum_{i=1}^M \operatorname{Tr}(E_i \rho_i)$$

• Theorem 3 [M.Mosonyi & ND]:

The optimal average success probability in this multiple state discrimination problem is given by:

$$p_{succ}^* = \frac{1}{M} \min_{\sigma} \max_{1 \le i \le M} 2^{D_{\max}(\rho_i \| \sigma)}$$

Operational interpretations of the max-relative entropy (ii)

• Separability of a bipartite state

[Lewenstein, Sanpera] : The state $\sigma = \sigma_{AB}$ of any bipartite system can always be written as a weighted average of a separable state ρ_s and another (possibly entangled) state ω_r

$$\sigma = \lambda \rho_s + (1 - \lambda)\omega$$

such that the weight λ is maximal.

- ρ_s : Best separable approximation (BSA) of the state σ
 - λ : separability of the state σ [Wellen & Kus]

$$\sigma = \lambda \rho_s + (1 - \lambda)\omega$$

• Theorem 2 [ND, T. Rudolph]: The separability of the state σ of a bipartite system is given by: $\lambda = \max_{\rho \in \mathcal{S}(\mathcal{H})} 2^{-D_{\max}(\rho \parallel \sigma)}$ set of separable states

UNIVERSITY OF CAMBRIDGE

(I) Product-state classical capacity $C_p(\Phi)$ Encoding restricted to product states, i.e.,

$$\mathcal{E}_n: \qquad x \to \rho_x^{(n)} = \rho_{x_1} \otimes \rho_{x_2} \otimes \dots \otimes \rho_{x_n}$$

One-shot classical capacity

[HSW Theorem]

$$C_{p}(\Phi) = \chi^{*}(\Phi) = \max_{\{p_{x}, \rho_{x}\}} \min_{\sigma_{B}} D(\rho_{XB} \parallel \rho_{X} \otimes \sigma_{B})$$

Holevo-capacity

$$\rho_{XB} = \sum_{x} p_{x} |x\rangle \langle x| \otimes \Phi(\rho_{x});$$

Smooth max-relative entropy

$$D_{\max}^{\varepsilon}(\rho \| \sigma) \coloneqq \min_{\overline{\rho} \in B^{\varepsilon}(\rho)} D_{\max}(\overline{\rho} \| \sigma)$$

$$B^{\varepsilon}(\rho) \coloneqq \left\{ \overline{\rho} \ge 0, \operatorname{Tr} \overline{\rho} = 1, \rho \stackrel{\varepsilon}{\simeq} \overline{\rho} \right\}$$

From one-shot to the asymptotic i.i.d. setting

(Relative entropy version of the

Quantum Asymptotic Equipartition Property

[Colbeck, Renner, Tomamichel]; [ND, Mosonyi, Hsieh, Brandao]

Why are one-shot results important?

One-shot results yield the known results of the

asymptotic case, on taking:

 $n \to \infty$ and then $\mathcal{E} \to 0$

- Hence the one-shot analysis is more general !
- One-shot results also take into account effects of correlation (or memory) in sources, channels etc.

In fact, one-shot results can be looked upon as the fundamental building blocks of Quantum Info. Theory

Other occurrences of smooth max-relative entropy

- One-shot quantum state splitting [M.Berta et al]
- Single-shot thermodynamics [J. Oppenheim, M. Horodecki]

Min- and Max- relative entropies : parent quantities for

- One-shot state merging [M.Berta et al]
- One-shot hypothesis testing [Wang & Renner]
- One-shot quantum capacity [ND, F.Buscemi; ND, M-H. Hsieh]
- One-shot entanglement cost under LOCC [ND, F.Buscemi]
- One-shot entanglement-assisted classical & quantum capacities [ND, M-H. Hsieh]
 etc.

Unifying the different relative entropies