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Transmission of information

Transmission of classical info through a noiseless quantum

channel
X ~ p(x);
XelJ X noiseless
‘——9 guantum channel —
. classical
classical message
iInfo

source
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Accessible Information

X ~ p(x);

measurement
Xed _ Y
X | Px  [noiseless | Px
. > encoding > quantum 1 M y
. channel

classical quantum Bob’s

Info state inference
source

= Bob receives the ensemble: & = { p(x), ,OX}

=  The maximum amount of info Bob can extract

(&) =max (X :Y)
M \

(classical)
mutual info

Accessible Information: | e
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Holevo Bound

|..(&) <x({p(x),})

The maximum amount of info Alice can send to Bob
using the ensemble & = { p(x), px}

= Holevo ¥ —quantity of the ensemble of states {p(X), o, }

2{p), 2. =5 p¥e,) =3 p(0s(p,)

If the O, are pure :
2({P(X), £,}) = S(p); where p= D p(X)p,
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Noisy Quantum Channels

. O O(p) # p

Linear, CPTP map

X ~ p(x);
“ Jp() measurement Y
c
X o3 D(p,)
‘ > encoding > (D) > M >
cla_lsswal quantum =G | Bob’s
Info state Arerral Inference
source

= Bob receives the ensemble: & = { P(X), CD(,OX)}
laee (&) < 2 ({P(X), @(p,)})
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O
P o (p) |
input output
= A classical channel BUT a quantum channel has

has a unigue capacity

various different capacities

-- This is due to the greater flexibility in the use of a quantum channel

Memoryless quantum channel

N successive uses :

(D(n) — (D®n
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= The different capacities depend on:
= the nature of the transmitted information

(classical or quantum)
= the nature of the input states
(entangled or product states)

= the nature of the measurements done on the outputs
(collective or individual)
the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

= Etc.

= Capacities evaluated in the “asymptotic memoryless setting”

(D(n) :(D®n; N —> o0
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Transmission of Classical Info through a guantum channel

Alice

X —> p{"
Classical encoding
messages

= Probability (Bob infers Xcorrectly)= Tr ( E(n)a(n))

n n
A e 0%
input 1 D

N uses of @

(n) q)@n( (n))

channel output

X

Bob

POVM

= Average probability

of error:

(n) —

av

=2 2[1 Tr(EMa)|
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If v —> 0 as N — oo :information transmission is
------ (1) reliable

Classical capacity of the memoryless quantum channel

C(CD) -—  maximum number of bits of classical message

sent per use of the quantum channel
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= If Alice restricts her codewords to product states, i.e., if

x> p =p,ep, 0.0p,

= And Bob does a collective measurement (POVM) on

G)((n) =" (p)((n) ) : the output of [N uses of the channel

Capacity : product state capacity Cp (D)

= Holevo-Schumacher-Westmoreland (HSW) Theorem

Cy (@)= max 7 ({P, P(p)}) = 7" (®) | capaciy
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HSW Theorem
* Hol
C, (@) = max 7 ({p, ®(p,)}) = 7 (®) | capacit
Py 20 iy 0

>

as n — oo Z*((D) as n — oo R (rate)
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= Classical capacity of a memoryless channel D

(without the restriction of inputs being product states):

C(@) = lim = 4

n—90 N

(o)

regularised Holevo
capacity

*
4 (CD®n) Holevo Capacity of the block D®" of N channels

(This generalization is obtained by considering inputs which are

product states over blocks of n channels but which may be entangled

within each block)
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C(®) = lim 3;(*(c1>®”)

N—o0 N

(Q) Can the classical capacity of a memoryless quantum channel

be increased by using entangled states as inputs ?

Holevo capacity is

Z*((Dl ®CI)2) > )(*(Cbl) + )(*(CDZ) superadditive
= 7z (@*")=ny (@)

S|o@=lin T 7 (o) 2y (@) 22 ()
—_ I :CP((D)

@) 2 Cp ((D) — entangled inputs could help!
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C(®)>C, (D)

= Thisis related to :

The (global) additivity conjecture of the Holevo capacity :
\V/(Dl,(DZ X ((Dl@q)z):}( (®1)+Z ((Dz)

= 7 (@) =ny (o)

—lC(@) = lim= 7" (0°") = "m%yz*(cp) =7 (®)
N—0 N N—>00
—C, (@)

= |F the Holevo capacity is additive then using entangled inputs would
not increase its classical capacity!
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= Additivity conjecture disproved by Matt Hastings 2008

—)

There exist channels in which using entangled inputs
help in transmitting classical information through a
guantum channel!!
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= Asymptotics to One-shot Information Theory
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In Quantum information theory, initially one evaluated:
= optimal rates of info-processing tasks, e.g.,
= data compression,
= transmission of information through a channel, etc.

under the assumption of an “asymptotic, memoryless setting”

= Information sources & channels were memoryless
= they were used an infinite number of times (asymptotic
limit) n > o
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“asymptotic, memoryless setting”
= To evaluate C(N): classical capacity

Y% classical
info

N@n

Nl uses

2

X px"

Input

encoding

>

N@n

®n (n)
N (px X'
—_—
channel
output  decoding
POVM

n
= One requires : prob. of error pe( )—> 0 as N—
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Optimal rates of information-processing tasks in the

“asymptotic, memoryless setting”

= Compression of Information:

Memoryless quantum info. source {p,?{}

® Data compression limit: S(0)

= Info Transmission thro' a memoryless quantum channel N

e Classical capacity C(N)
--given in terms of the Holevo capacity ;

O :
Quantum capacity Q(N)
--given in terms of the coherent information ;
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These entropic quantities are all obtainable from a single

parent quantity;

Quantum relative entropy: For p,02>0; Trp=1

D(pllo)=Tr (plog p)-Tr(p log o)

e.g. Data compression limit:

S(p)=-Tr(plogp)=-D(plll) (c=1)

_acts as a parent quantity for optimal rates in the
D(pllo):

“asymptotic, memoryless setting”
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“asymptotic memoryless setting” not necessarily valid

= [N practice: information sources & channels are used a

finite number of times;
s there are unavoidable correlations between successive

uses (memory effects)

Hence it is important to evaluate optimal rates for
finite number of uses (or even a single use)

/
of an arbitrary source or channel

/

/
/

= Evaluation of corresponding optinial rates:

— ) ONe-shot information theory



I UNIVERSITY OF
&Y CAMBRIDGE

= An example: One-shot information theory

?’ classical : % : %
Info single use
X IOX (I)(IOX) X'
—— ] BN
Input channel

encoding output dFe)((-:)c\;cllviI ng

One-shot classical capacity := Max. number of bits that can be
transmitted on a single use

Q _g) ((D) PFZ?}OC: P, <& forsome g >0,
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Introduce 2 generalized relative entropies

Min- & Max relative entropies: D_. (p|/ o), D, (2| o)

act as parent quantities for one-shot rates of protocols

just as

Quantum relative entropy: D(p|| o)

acts as a parent quantity for asymptotic rates of protocols
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= Definition 1: The max- relative entropy of a state 0 & a
positive operator O is

Dmax(pH U) = Inf {7//03 27/0}

/ Supp p < supp o

(270—p)=0

Dmax (p ” o") — |Og( (O‘ 1/2, 1/2))

\ -
pseudoinverse
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= Definition 2: The min- relative entropy of a state £ & a
positive operator g IS

Dmin (p H O-) == IOg Tr (72-,00)

where ﬂ'p denotes the projector onto the support of 1%

(supp p)
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= Remark: The min- relative entropy
D,in (Pl 0) = —~log(Tr (7,0))

IS expressible in terms of: quantum relative Renyi entropy

1 a -
Do (pllo)=—=—log(Tr (0“0")) | 4 21

D, (pll) = lim D, (pllo) =Dy(pllo)

relative Renyi entropy of order O
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Dox (01l 0) 2 Dy (21l 0)

= Proof:

Dmax (IO ” G) ':::i-_rjf,{ﬂ/ P < 270} =7,

pSZyOG, (2°c—-p)=0, Also 7Z'p20
Tr[z,(2°c-p)]20 ~AB=0= Tr(AB)=0

2°Tr[z,0l=Tr [z, p] =1

v, +log [Tr(z,0)]=>0

v, = —log [Tr(z, o)]
7 —
Dmax (/O ” O-) Z Dmin (IO ” O-)
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Why are Dmin (,0 ” 5) & Dmax (,0 H U) relative entropies?

= Like D(p|lo) we have for *=max, min
for , O states
D.(pl|[c)>0 P

D.(A(p) | A(0)) <D.(pllo) |forany CPTP map A

for any unitary

. atso |D.(pllo)=D.(UpU" [[UcU")| operator

= Most interestingly

Drin (P llo) < D(pllo) < Dy (pll o)
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= Also act as parent quantities for other entropies...........

Hung (P) = Dy (0 1) || i () ==Drn (211D
\\f"m\q“\{’”w . =log rank(p)
Just as: Tl

~~- [Renner]

von Neumann

Hmax(p) 2 Hmin (/0)
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= Conditional min-entropy [Renner]

I_Imin (A| B)p = ITlax{_Dmax (/OAB ” IA ®O-B)}

just as:  Quantum conditional entropy

S(AIB)=—D(pp I 11® ps) = nl?x{—D(pAB I, ®0s)f

= Max-information [Berta, Christandl, Renner]

Imax(A: B)p = rr)yin Dmax(pAB ” /OA <>968)

just as: Quantum mutual information [Buscemi & ND]

I(A:B) = D(/OAB | Pa ®IOB) = ”;Ln D(pe | P ® T5)
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Operational significance of D,(p|| o)
= State Discrimination: Bgp receives a state

N
Yo, or O

s He does a measurement to infer which state it is

ovm T1[p] & (1-10)[O]

a| Possible errors Inference actual state
Type | o '0 hypothesis
Type ll yo O testing
= Error a=Tr((I -II)p) Type |

probabilities L =Tr(Ilo) Type I
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= Suppose [1=rx (POVM element)

P,
Prob(Type I error) Prob(Type Il error)
a=Tr((I -II) p) L=Tr(Ilo)
=0 =Tr(z,0)

Bob never infers the state

tobe O whenitis O

Do (PNl 0) =—log Tr 7,0

BUT

Hence B = 5~ Dnin(Ple)  hen o =0

= Prob(Type Il error | Type | error = zero)
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= Compare with the operational significance of D(p H G)

TS

arises in asymptotic hypothesis testing

= Suppose Bob is given many(n) Identical copies of the state

/ p®n
\ G@n
= Forany O >0, for N large enough,

= He receives

= Prob(Type Il error | Type | error < 5)

135(”) ~ 2" D(pllo)

[Quantum Stein’s Lemma]
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= hence. Din(pllo) & D(p]| o)

have similar interpretations in terms of Prob(Type Il error)
Drin (Pl 0): D(p|lo):
= asingle copy of the state = [ copies of the state

= Prob(Type | error) = O = Prob(Type | error)
— 0

n— o
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Operational interpretations of the max-relative entropy (i)

® Multiple state discrimination problem:

its state with prob.
N 1
% & told e} A/I
Bob a quantum :02 1
system 5 A/I

= He does measurements to infer the stl\a/llte: POVM

E,. . E,{: OLZE <I; E =1
1 M | |

= His optimal average success probability

p:UCC :: max _ZTr Epl)

BBt M
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® Theorem 3 [M.Mosonyi & NDJ:

The optimal average success probability in this multiple
state discrimination problem is given by:

i o b (allo)

psucc B o 1<i<M
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Operational interpretations of the max-relative entropy (ii)

® Separability of a bipartite state

[Lewenstein, Sanpera] :The state o = o ,; of any bipartite
system can always be written as a weighted average of a
separable state O, and another (possibly entangled)
state o,

oc=Ap.+(1-1)w

such that the weight 4 is maximal.

L. - Best separable approximation (BSA) of the state O

A . separability of the state o  [Wellen & Kus]




TR o =Ap,+(1-A)w

® Theorem 2 [ND, T.Rudolph]:

The separability of the state ¢ of a bipartite system

is given by: 1 = max 2—Dmax (pllo)
peS(H)

set of separable states
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() Product-state classical capacity Cp(cI))
Encoding restricted to product states, I.e.,

Sn' X—)p>((n)=pxl®pxz® ...... ® Py

HSW Theorem
*
C () =X ((D) Holevo Capacity

= max min D X o
oy o (IOXB | oy B)

where pXB:pr‘X><X‘®(D(px)’

Py = Tl Pyg;




I UNIVERSITY OF
&Y CAMBRIDGE

One-shot classical capacity

RO O
set of classical

messages

(code) C= (S,Z), |\/|) ‘Rate’: R = Iog M

O<ex<l
P, = ¢

i Co (q)) ) R (rate)
= Analogous to -

& — error one-shot classical capacity
M 50
e

—

RGN ¢, (q)) R (rate)
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C, (@) = 7 (®) = max min D(pXB | px ®03)

Holevo-capacity

XB — Z Px ‘ X><X‘®(D(,0x);

V0<e<l [ND, Mosonyi, Hsieh, Brandao]

CO>d)~ 4., . (D)= {rglax}mm D, (pr I ox ®<;E;)j:>

.
/ .
.
_-

smooth max-Holevo capacity

[See also Wang & Renner]
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Smooth max-relative entropy

= mln D o
maX(IOHG) B () max(p” )

&
8¢ (p) = {ﬁz o,Trﬁ=1,p:ﬁ}
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From one-shot to the asymptotic I1.1.d. setting

Ve>0, .. 1 . ; )
limsup=Dg,, (0™" [lc™")=D(p| o)

max
noo N

One-shot bounds ™=@ gsymptotic, I.1.d. result

(Relative entropy version of the

Quantum Asymptotic Equipartition Property

[Colbeck, Renner, Tomamichel]; [ND, Mosonyi, Hsieh, Brandao]
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Why are one-shot results important?

= One-shot results yield the known results of the

asymptotic case, on taking:

N— oo andthen ¢ —>0

= Hence the one-shot analysis is more general !

= One-shot results also take into account effects of
correlation (or memory) in sources, channels etc.

= In fact, one-shot results can be looked upon as the

fundamental building blocks of Quantum Info. Theory
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Other occurrences of smooth max-relative entropy

= One-shot quantum state splitting [M.Berta et al]

= Single-shot thermodynamics [J.Oppenheim, M.Horodecki]

Min- and Max- relative entropies : parent quantities for

= One-shot state merging [M.Berta et al]

= One-shot hypothesis testing [Wang & Renner]

= One-shot quantum capacity [ND, F.Buscemi; ND, M-H. Hsieh]
= One-shot entanglement cost under LOCC [ND, F.Buscemi]

= One-shot entanglement-assisted classical & quantum
capacities [ND, M-H. Hsieh] etc.
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= Unifying the different relative entropies




