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Scenario of quantum state estimation

_pl(nl)
_9 _p2(n2)
source pP= POM  —P3(n3)

_:pK(nK)

The source emits independently and identically prepared
guantum-information carriers whose relevant degrees of freedom are
described by the “true” statistical operator p, which is unknown.

The probability-operator measurement  (POM) has K outcomes [y
that give rise to the “true” detection probabilities py in accordance
with the Born rule, px = tr{plM}.

The actual data D consist of nq, n,, ..., nk detector clicks in one
particular sequence upon measuring a total of N = n; +n, + - - + ng
copies. [You may want to verify that the sequence is not untypical.]

State estimation : Exploit the data for an educated guess about
p = (P1,P2,---,Pk); convert p — p if you can.
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Principles of quantum state estimation

1 Be guided by common sense and the methods of classical
statistical inference.*

2a Estimate event probabilities from the data, after measuring N
copies.

2b Determine the estimator p of the state from the estimated
probabilities p1, po, Ps, ... and, if necessary, invoke additional
criteria (such as Jaynes’s maximum-entropy criterion).

Note 1: n = (ng,n,...,nk) = P = (P1, - .., Pk) is what the data tell

us; p — pis often not unique, and then the data do not tell
us p and one needs those “additional criteria”.

(true

Note 2: p, — Py ) for N — oo (“consistency” — largely a tautology).

*Read (1) Edwin Jaynes’s Probability Theory — The Logic of Science and
don’tignore his advice; (2) other pertinent statistics literature.
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Reconstruction space (1)

Reconstruction space Ry: A set of ps suchthatp < pisa
one-to-one mapping.

Example 1: Qubit states p = %(1 + Xoy + Yoy + zo;) measured by
the 4-outcome crosshair POM with

pa| 1 ps| _ 1
Pl —daexn, Pl Zasy)

and constraints py +p; = 3, Ps + pa = 2, p? +pZ +p3 +p3 < 3.

Example 2 : Qubit states measured by the 3-outcome trine POM with

_1 2| _ 1,
=30, Pl ot oxavay)

and constraints py + p2 + ps = 1, p? + p3 + p3 < 1.

For both examples, the self-suggesting R is the equatorial disk of
the Bloch ball; the data provide no information about z.
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Reconstruction space (2)

Example 3 : Harmonic oscillator measured by the 2-outcome POM
with

pr=(0[p[0), P2=1-ps
and constraint p; + p, = 1.

Here, a reconstruction space consists of all p = |0>p1<0| + p2p’
where p’ is any state with no ground-state component (' could
depend on p;), and the probability space is that of a tossed coin. The
data provide only information about the ground-state probability.

General observations

— Reconstruction space (usually not unique, often not convex)
= Probability space (unique and convex): We work there!

— Because of the quantum constraints, the probability space is

usually smaller than that of the K -sided die:

Quantum State Estimation
= Classical state estimation with quantum constraints
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Point likelihood, MLE, MLR, SCR

Point likelihood : L(D|p) = p1*p5? - - - p¢ = the probability of
obtaining data D if p is the state.

Maximum-likelihood estimator (MLE)  py.: That p in R for which
the data are more likely than for any other state:

max L(Dlp) = L(D[pm.) -

How can we equip the MLE with error bars? Our answer: Use optimal
regions.

Maximum-likelihood region (MLR) Ry That region of estimators
for which the data are more likely than for any other region of the
same pre-chosen size.

Smallest credible region (SCR) Rsc: The smallest region with the
pre-chosen credibility.
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Size = Prior content

Scenario 1 : You have a pre-existing notion of size for regions in Rq?
Fine! Scale all sizes such that Ry has unit size; then assign the same
prior content to regions of the same size.

Scenario 2 : You do not have a pre-existing notion of region size?

Choose the prior of your liking and measure the size of a region by its
prior content.

Either way: Size of a region = Its prior content .

Notation : The size of region R is Sz = /(dp) where (dp) is the prior

R
probability of the infinitesimal space element at state p.

Reference: M.J. Evans, |. Guttman, T. Swartz, Can. J. Stat. 34, 113 (2006).
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MLRs and SCRs are BLRs (1)

1 Joint probability that p is in R and data D are obtained:

prob(D A R) = / (dp) L(D|p)

R

2 Prior likelihood L(D): prob(D A Ro) = L(D) / (dp) L(DIp)
Ro
3 Normalization: » "L(D[p) =1, » L(D)=1
D D

4 Two factorizations: prob(D A R) = L(D|R)Sr = Cr(D)L(D)

with the region likelihood L(D|R) and the credibility Cgz(D).

Both are conditional probabilities: The region likelihood is the probability of

obtaining the data D if the state is in the region R; the credibility is the

probability that the actual state is in the region R if the data D have been
obtained—the posterior probability of the region.
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MLRs and SCRs are BLRs (2)

4 Two factorizations: prob(D A R) = L(D|R)Sg = Cr(D)L(D)

5 MLR: Maximize the region likelihood for given size,
max L(D|R) = L(D|Rw.) with Sk =s
6 SCR: Minimize the size for given credibility,
m%n Sk =Sz, with Cx(D) =c¢

7 These optimization problems are duals of each other:

| MLR | SCR
Sk given minimize
prob(D A R) | maximize given

Each MLR is a SCR, each SCR is a MLR.
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MLRs and SCRs are BLRs (3)

8 Infinitesimal variation of region R from a distortion of its boundary R

9 Null response of Sk and prob(D A R):
55w = [ dh(p)-3(p) = 0.
R

5prob(D A R) = / dA(p) - 5(p)L(D]p) = O
OR
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MLRs and SCRs are BLRs (4)

10 Requiring that both §Sz = 0 and éprob(D A R) = 0 implies that the
point likelihood L(D|p) is constant on R, and larger inside than on
the boundary:

The MLRs and the SCRs are bounded-likelihood regions  (BLRS),
which consist of all ps for which L(D|p) exceeds a threshold value.

Reference: M.J. Evans, |. Guttman, T. Swartz, Can. J. Stat. 34, 113 (2006).
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MLRs and SCRs are BLRs (5)

11 The set of BLRs is independent of the prior; each BLR contains the
MLE.

12 Notation: R is the BLR with L(D|p) > AL(D|pw); Sx = size of R;
¢, = credibility of R,. We have c) > s, for0 < A < 1.

13 From sy to Cy:
Sx

14 _ 1
o )‘SX—’_/id)\S)‘ B

X 1 -
/d)\SA A+B
0
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MLRs and SCRs are BLRs (6)

14 In the limit of A — 1, the BLR R, degenerates into the one-point
region that contains the MLE, and ¢, — 0, s, — 0, while

Cx L(D|pw.)

S\ — 7L(D) >1.

15 In the limit of A — 0, the R becomes the full reconstruction space
Rg,and ¢y — 1, s\, — 1.

16 The outcome of the data analysis is reported by communicating the
size s, and the credibility ¢, as functions of \. If the probability space
is low-dimensional, we can also draw the boundaries of selected
BLRs, but this is not possible for high-dimensional Rgs.
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Choice of prior

0 Consistency: SCRs should be data-dominated, rather than
prior-dominated, for large enough N.

1 Uniformity — a red herring: All priors are uniform.
2 Utility: Be guided by the eventual application.

3 Symmetry: Helpful if used with care.

4 Invariance — form invariance, really.

5 Conjugation: Mock posterior for a target state.

6 Marginalization: Convert a prior on the full state space to its
marginal on the reconstruction space.

One reference of many: R.E. Kass, L. Wasserman, J. Am. Stat. Assoc. 91,
1343 (1996)
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Examples of priors, illustrated by uniform tilings (1)

Tiling (a): A prior in the full-qubit space that is rotationally invariant
and uniform in the purity, marginalized onto the unit disk.

Tiling (b): The common primitive qubit prior of the crosshair POM and
the trine POM.




Examples of priors, illustrated by uniform tilings (2)

Tilings (c1) and (c2): Jeffreys prior for the crosshair POM.
Tilings (d1) and (d2): Jeffreys prior for the trine POM.
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Examples of SCRs: single qubit

Cy = ()\SAJF/:d/\’sX)//OldXsX

SCRs for credibility ¢ = 0.5 and ¢ = 0.9; 24 copies measured (in a

simulated experiment); primitive (red) and Jeffreys (blue) prior.

(a) crosshair POM: counts (ny,nz, N3, ng) = (8,5,10,1) and
(6,3,10,5)

(b) trine POM: counts (ny,ny,n3) = (15,8,1) and (13,7,4)
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Examples of SCRs: qubit pairs

1

Two POMs
top: double crosshair
bottom: trine-antitrine

0.8k

0.6
Sa, Ca

i Two priors

a: primitive prior
b: Jeffreys prior

0.2

Note: The data for the
top plot are untypical,
those for the bottom
are typical. The true
state is inside the BLR
for A < 3.368 x 102
(top) and X\ < 0.2486
(bottom).
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Take-home messages

1 Quantum state estimation = Classical state estimation with quantum
constraints.

Quantum aspects of the problem enter only through the Born rule.
Except for the implied restrictions on the probabilities, there is no
difference between state estimation in quantum mechanics and
statistics. Accordingly, quantum mechanicians can benefit much
from methods developed by statisticians.

2 Bounded-likelihood regions are optimal error regions.
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Outlook

1 While we already have efficient methods for calculating the MLE for
the data at hand (Many thanks to the Olomouc group!), we still need
to further develop the algorithms for computing s», and then c,, and
thus finding the SCR.

2 For the evaluation of the multi-dimensional integrals for s,, one needs
good sampling strategies. The bottleneck is the verification that a set
of candidate probabilities obeys the quantum constraints. Recent
progress: 100 hours of CPU time — 10 hours — 30 minutes.

3 Itis possible to reduce the dimensionality of the problem if one is
really only interested in a few properties of the state (such as the
fidelity with a target state or the concurrence of a two-qubit state).

Discussions with David Nott (Department of Statistics and Applied
Probabilty, NUS) are gratefully acknowledged.
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THANK YOU
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