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von Neumann entropy 

• arb quantum state r 

• von Neumann entropy of r, denoted S(r), 
given by 

 

S(r) = -tr (r log r) 



Subadditivity 

• S(r_AB) £ S_A + S_B 
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r_ABC =                    
r_A \otimes r_BC 



Strong subadditivity 

• S_ABC + S_A £ S_AB + S_AC 

 

OR 

 

• S_B + S_C £ S_AB + S_AC 

 

• Both versions r equivalent & imply subadditivity. 

For version 2 to 
subadditivity, first go 

to version 1. 
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Holevo theorem (1973):                                 
Upper bound on accessible information 

• Initial Ensemble: E = {px, rx} 

 

• Accessible information £ c                  Holevo quantity 

 

• c = S(r) – S px S(rx);   r = S px rx . 

 

• Accessible information £ S(r) £ log2 d  

 

 

Lower bound: Jozsa, Robb, & Wootters, Phys. Rev. A ’94 
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• Usually involved. 

• But, becomes uncluttered with use of SSA. 

• Essential step is to prove that c_AB ≥ c_A, and 
this is where SSA is used. 
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LOCC counterpart of Holevo theorem: 
Upper bound on                                               

locally  accessible info 
 

 

 

                                 E = {px, rx}  

 

 

 

 

 



Entanglement correction to Holevo theorem 

• Accessible information £ log2 d 

 

• Locally accessible information £ log2 d – Eav 

 

Universally true: Holds for arbitrary bipartite 
ensembles. 

SSA plays an imp role, once again. 
Badziag, Horodecki, Sen(De), & Sen, Phys. Rev. Lett. ’03 

Sen(De), Sen, & Lewenstein, Phys. Rev. A ’06 
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Quantum dense coding 

 



 
 
 

                                                           
 
 
 

 
         

Sender Receiver 
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Bob is in Delhi.  
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Alice wants to send info about weather in 
Bhubaneswar to Bob. 

Sunny or not 
Windy or not 

2 bits require 2 dim. 

|||| 
Bennett & Wiesner 

1992 



Capacity of quantum dense coding 

 

 

 

                                                         

                                                       r
AB

 

 

 

• Capacity of quantum dense coding = amount of classical info that can 
be sent via a given shared state. 

 

• The Holevo theorem can be used to find this capacity. 

 
Hiroshima, J. Phys. A ’01; Ziman & Buzek, PRA ‘03  
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log d + SB – SAB 
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C 

Towards a 
quantum internet 

Bruss, D’Ariano, Lewenstein, Macchiavello, Sen(De), US, PRL 2004 
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N-party quantum state shared. 
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Alice wishes to perform dense coding 
with some of the other parties. 
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Exclusion pple for Q Dense Coding 

Alice 

Bob 

Charu … 

Neha 

… 

For every shared multiparty q state, 
at most one channel from Alice has a 

quantum advantage. 

Only two options possible: 
C C C ……. C 

OR 
Q C C ……. C 

Note that a classical capacity, 
albeit of a quantum channel, is 

shown to b strongly monogamous. 

Prabhu R, Pati, Sen(De), US, Phys. Rev. A 2013 

This monogamy is stricter than 
that of quantum correlations.       

W state have qc in AB and AC for 
whatever qc u may choose! 



Outline of proof for 3-party states 

• CAB is quantum if SB – SAB ≥ 0. 

• This is becoz CAB = log d + SB – SAB  ,                
and log d can b achieved by classical means. 

• And, CAC is quantum if SC – SAC ≥ 0. 

• But, SSA dictates that sum of the LHSs £ 0. 

• So, either both £ 0 or only one ≥ 0. 



• For larger # of parties, suppose that two (or 
more channels) r quantum. 

• Eg. let AB and AC be quantum for rABC … N . 

• Then rABC is such that AB and AC r quantum. 

• This contradicts the 3-party result. 
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• | =  h(i1,…iN; j1,…jN) |(i1, j1) … |(iN, jN) 

 

 

 

 

 

 

• h is assumed to be isotropic over the lattice. 

A B 

B A 

Resonating-Valence-Bond states 
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+ other nn 
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Genuine multiparty entanglement 

A multiparty pure quantum state is said to be 
genuinely multiparty entangled if  

 

it is entangled across every bipartition.  

76 



77 

Chandran, Kaszlikowski, Sen(De), US, Vedral, PRL’07 

Dhar, Sen(De), US, PRL’13 

         ENTANGLEMENT PROPERTIES:  
MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB  

CONSIDER AN ODD: REST 
BIPARTITE CUT  (𝒂, 𝒃)  
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         ENTANGLEMENT PROPERTIES:  
MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB  

 (𝒂, 𝒃)  

CONSIDER AN ODD: REST 
BIPARTITE CUT 

𝝆𝒐𝒅𝒅 = 𝑻𝒓𝒓𝒆𝒔𝒕  𝝍  𝝍 
𝑹𝑽𝑩

 

There is no pure 𝝆𝒐𝒅𝒅 that is 
rotationally invariant. 
 
(Since RVB is rotationally invariant, 
𝝆𝒐𝒅𝒅 has to be so.) 

 
𝝆𝒐𝒅𝒅 is mixed. The bipartition 
ODD: rest is entangled. 

Chandran, Kaszlikowski, Sen(De), US, Vedral, PRL’07 

Dhar, Sen(De), US, PRL’13 
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MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB  

CONSIDER A EVEN: REST 
BIPARTITE CUT 

 

Dhar, Sen(De), US, PRL’13 

 (𝒂, 𝒃)  



81 

         ENTANGLEMENT PROPERTIES:  
MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB  

CONSIDER A EVEN: REST 
BIPARTITE CUT 

Can be shown to be 
entangled by using  

“strong subadditivity” 

 

Dhar, Sen(De), US, PRL’13 
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         ENTANGLEMENT PROPERTIES:  
MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB  

 (𝒂, 𝒃)  

FOR INFINITE LATTICES: 
INIFNITE:INFINITE 
BIPARTITIONS 
 
ASSUME EACH PARTITION 
(GREEN) IS PURE 
 
WE CAN ALWAYS ISOLATE 
STRIPS THAT ARE PURE 
 
WE CAN AGAIN OBTAIN 
SINGLE SITE THAT IS 
REQUIRED TO BE PURE 

Similar proofs can show that 

INFINITE : INFINITE 

BIPARTITIONS ARE ALSO 

ENTANGLED 
 

 

Dhar, Sen(De), US, PRL’13 



In conclusion, … 

• Strong subadditivity is very useful. 

• Has a host of important applications in QIC. 



Thank you! 





   Pictures used may not be free, and so do 
not use them commercially without 
relevant permissions! 

 

   References r incomplete! 


