Strong subaddítívíty ín quantum information

Ujjwal Sen

Harish-Chandra Research Institute, Allahabad, INDIA

IPQI-2014

Outline

- What is strong subadditivity?
- SSA and the Holevo bound
- SSA and multiport quantum dense coding
- SSA and resonating valence bond states

Outline

- What is strong subadditivity?
- SSA and the Holevo bound
- SSA and multiport quantum dense coding
- SSA and resonating valence bond states

von Neumann entropy

- arb quantum state ρ
- von Neumann entropy of ρ, denoted S(ρ), given by

$$S(\rho) = -tr (\rho \log \rho)$$

Subadditivity

• $S(\rho_AB) \leq S_A + S_B$

• $S_ABC + S_A \leq S_AB + S_AC$

• $S_ABC + S_A \le S_AB + S_AC$

OR

• $S_B + S_C \leq S_AB + S_AC$

• $S_ABC + S_A \le S_AB + S_AC$

OR

• $S_B + S_C \leq S_AB + S_AC$

Lieb & Ruskai, J Math Phys 1973

• $S_ABC + S_A \leq S_AB + S_AC$

OR

• $S_B + S_C \leq S_AB + S_AC$

• Both versions r equivalent & imply subadditivity.

• Both versions r equivalent & imply subadditivity.

• $S_ABC + S_A \le S_A$

For version 2 to subadditivity, first go to version 1.

OR

• $S_B + S_C \leq S_AB + S_AC$

• Both versions r equivalent & imply subadditivity.

Outline

- What is strong subadditivity?
- SSA and the Holevo bound
- SSA and multiport quantum dense coding
- SSA and resonating valence bond states

 Alice (sender) encodes the classical variable x, that occurs with probability p_x, in the quantum state ρ_x. I.e., she produces the ensemble & = {p_x, ρ_x}.

- Alice (sender) encodes the classical variable x, that occurs with probability p_x, in the quantum state ρ_x. I.e., she produces the ensemble & = {p_x, ρ_x}.
- She then sends it to Bob (receiver).

• Task of Bob: Gather information about x.

- Task of Bob: Gather information about x.
- Accessible information = Maximal classical information that can be extracted by Bob from $\mathscr{E} = \{p_x, \rho_x\}$.

Holevo theorem (1973): Upper bound on accessible information

- Initial Ensemble: $\mathscr{E} = \{p_x, \rho_x\}$
- $\chi = S(\rho) \Sigma p_x S(\rho_x); \rho = \Sigma p_x \rho_x.$
- Accessible information $\leq S(\rho) \leq \log_2 d$

Lower bound: Jozsa, Robb, & Wootters, Phys. Rev. A '94

Outline of the proof of Holevo bound

• Usually involved.

Outline of the proof of Holevo bound

- Usually involved.
- But, becomes uncluttered with use of SSA.

Schumacher, Westmoreland, Wootters, PRL 1996

Outline of the proof of Holevo bound

- Usually involved.
- But, becomes uncluttered with use of SSA.
- Essential step is to prove that $\chi_AB \ge \chi_A$, and this is where SSA is used.

Schumacher, Westmoreland, Wootters, PRL 1996

LOCC counterpart of Holevo theorem: Upper bound on *locally* accessible info

 $\mathcal{E} = \{ \mathsf{p}_x, \, \rho_x \}$

Entanglement correction to Holevo theorem

• Accessible information $\leq \log_2 d$

• Locally accessible information $\leq \log_2 d - E_{av}$

- <u>Universally true</u>: Holds for arbitrary bipartite ensembles.
- SSA plays an imp role, once again.
- Badziag, Horodecki, Sen(De), & Sen, Phys. Rev. Lett. '03
- Sen(De), Sen, & Lewenstein, Phys. Rev. A '06

Outline

- What is strong subadditivity?
- SSA and the Holevo bound
- SSA and multiport quantum dense coding
- SSA and resonating valence bond states

Quantum dense coding

Alice

Sender

Bob

Receiver

Alice is in Bhubaneswar. Bob is in Delhi.

Sunny or not Windy or not

2 bits

Can be sent by using ...

Four balls of different colors.

sunny and not windy

sunny and windy

2 bits require 4 dim.

Using shared entanglement between Alice & Bob, ...

Using shared entanglement between Alice & Bob, ...

Using shared entanglement between Alice & Bob, ...

2 bits require 2 dim.

Quantum dense coding

Alice wants to send info about weather in Bhubaneswar to Bob.

2 bits require 2 dim.

Quantum dense coding

Alice wants to send info about weather in Bhubaneswar to Bob.

2 bits require 2 dim.

Capacity of quantum dense coding

 ρ_{AB}

- Capacity of quantum dense coding = amount of classical info that can be sent via a given shared state.
- The Holevo theorem can be used to find this capacity.

Hiroshima, J. Phys. A '01; Ziman & Buzek, PRA '03

Capacity of quantum dense coding

 ρ_{AB}

• Capacity of quantum dense coding =

 $\log d + S_B - S_{AB}$

Hiroshima, J. Phys. A '01; Ziman & Buzek, PRA '03

Distributed Q Dense Coding

A

B

Towards a quantum internet

C

Distributed Q Dense Coding

A

Towards a quantum internet

Bruss, D'Ariano, Lewenstein, Macchiavello, Sen(De), US, PRL 2004

Prabhu R, Pati, Sen(De), US, Phys. Rev. A 2013

Prabhu R, Pati, Sen(De), US, Phys. Rev. A 2013

Exclusion pple for Q Dense Coding Alice Neha Bob Charu

Alice wishes to perform dense coding with some of the other parties.

For every shared multiparty q state, <u>at most one</u> channel from Alice has a quantum advantage.

Only two options possible: C C C C C OR Q C C C

Alice

Note that albeit of a shown to b This monogamy is stricter than that of quantum correlations. W state have qc in AB and AC for whatever qc u may choose!

Only two options possible: C C C C C OR Q C C C

Charu

Prabhu R, Pati, Sen(De), US, Phys. Rev. A 2013

Outline of proof for 3-party states

- C_{AB} is quantum if $S_B S_{AB} \ge 0$.
- This is becoz $C_{AB} = \log d + S_B S_{AB}$, and log d can b achieved by classical means.
- And, C_{AC} is quantum if $S_{C} S_{AC} \ge 0$.
- But, SSA dictates that sum of the LHSs \leq 0.
- So, either both ≤ 0 or only one ≥ 0 .

- For larger # of parties, suppose that two (or more channels) r quantum.
- Eg. let AB and AC be quantum for $\rho_{\text{ABC}\,\dots\,\text{N}}$.
- Then ρ_{ABC} is such that AB and AC r quantum.
- This contradicts the 3-party result.

Outline

- What is strong subadditivity?
- SSA and the Holevo bound
- SSA and multiport quantum dense coding
- SSA and resonating valence bond states

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• $|(i, j)\rangle = (|up\rangle |down\rangle - |down\rangle |up\rangle)/2$

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• h is assumed to be isotropic over the lattice.

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• Coverings of only nearest neighbor dimers.

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• Coverings of only nearest neighbor dimers.
Resonating-Valence-Bond states

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• Coverings of only nearest neighbor dimers.

Resonating-Valence-Bond states

• $|\psi\rangle = \Sigma h(\mathbf{i}_1, \dots, \mathbf{i}_N; \mathbf{j}_1, \dots, \mathbf{j}_N) |(\mathbf{i}_1, \mathbf{j}_1)\rangle \dots |(\mathbf{i}_N, \mathbf{j}_N)\rangle$

• Coverings of only nearest neighbor dimers.

Resonating-Valence-Bond states

• Coverings of only nearest neighbor dimers.

Genuine multiparty entanglement

A multiparty pure quantum state is said to be genuinely multiparty entangled if

it is entangled across **every** bipartition.

CONSIDER AN ODD: REST BIPARTITE CUT

Chandran, Kaszlikowski, Sen(De), US, Vedral, PRL'07 Dhar, Sen(De), US, PRL'13

CONSIDER AN ODD: REST BIPARTITE CUT

 $\rho_{odd} = Tr_{rest} (|\psi\rangle \langle \psi|_{RVB})$

Chandran, Kaszlikowski, Sen(De), US, Vedral, PRL'07 Dhar, Sen(De), US, PRL'13

CONSIDER AN ODD: REST BIPARTITE CUT

$$\rho_{odd} = Tr_{rest}(|\psi\rangle\langle\psi|_{RVB})$$

There is no pure ho_{odd} that is rotationally invariant.

(Since RVB is rotationally invariant, ho_{odd} has to be so.)

 ho_{odd} is mixed. The bipartition ODD: rest is entangled.

Chandran, Kaszlikowski, Sen(De), US, Vedral, PRL'07 Dhar, Sen(De), US, PRL'13

CONSIDER A EVEN: REST BIPARTITE CUT

Dhar, Sen(De), US, PRL'13

ENTANGLEMENT PROPERTIES:

MULTIPARTITE ENTANGLEMENT IN ISOTROPIC RVB

CONSIDER A EVEN: REST $\langle |(a,b) \rangle$ **BIPARTITE CUT** Can be shown to be entangled by using "strong subadditivity"

Dhar, Sen(De), US, PRL'13

Dhar, Sen(De), US, PRL'13

In conclusion, ...

- Strong subadditivity is very useful.
- Has a host of important applications in QIC.

Thank you!

Pictures used may not be free, and so do not use them commercially without relevant permissions!

References r incomplete!