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Definitions

• A pure state is separable iff

where                           denotes the basis of

respectively.

• A mixed state     is entangled iff it cannot be represented 

as
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Introduction

• Quantum entanglement has been used as an
efficient resource for several quantum
communication protocols.

• In general, if a state is maximally entangled
then the optimal success of a communication
protocol is a certainty.

• In an open system it is practically not possible
to keep the state with cent percent purity.

• We have to deal with mixed entangled
resources for quantum information
processing.



Relation between teleportation and singlet fraction

• A mixed two-qubit entangled state useful for

teleportation if the singlet fraction is greater than ½.

• Singlet fraction:

• Teleportation fidelity:
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M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A 60, 1888 (1999).



Result of Badziag et.al.

• Badzaig and Horodecki have shown that there exist 

mixed states with fidelity smaller than 1/2, for which 

local trace preserving protocols exist that transform 

this state into a state with fidelity larger than 1/2 

without the help of classical communication.

• Is it possible to show that any entangled state is

useful for teleportation?

P. Badzia̧g, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A 62, 012311 (2000).



Result of Verstraete and Verschelde

• Proved that the optimal trace preserving protocol for

maximizing the singlet fraction of a given state

always belongs to a class of one-way communication

(1-LOCC).

• Shown that any entangled two-qubit mixed state can

be used as a resource for quantum teleportation

using certain trace preserving local operations and

classical communications.

F. Verstraete and H. Verschelde, Phys. Rev. Lett. 90, 097901 (2003)



• A filter is constructed in such a way so that the cost 

function defined below is maximal.

• Cost function (K): 

• The optimal filter and singlet fraction       can be 

found by solving the convex semidefinite program.

Result of Verstraete and Verschelde
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F. Verstraete and H. Verschelde, Phys. Rev. Lett. 90, 097901 (2003)



• Convex optimization problem:

Result of Verstraete and Verschelde
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F. Verstraete and H. Verschelde, Phys. Rev. Lett. 90, 097901 (2003)



Result

• Verstraete and Verschelde have shown that using

trace preserving optimal local operations, the

maximal achievable singlet fraction for the

family of states is
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Motivation 



Theorem

• For any real          matrix C and a positive semidefinite

operator B, the following inequality holds

Y. Fang, K. A. Loparo, and X. Feng, IEEE Transactions on Automatic Control 39, 

2489 (1994).
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Upper bound on singlet fraction

• The upper bound depends on the state parameter

and hence, must have a maximum achievable value

for every particular value of the state parameter. This

value would be provided by Dembo's bound.
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Dembo’s Bound

Theorem: For any           positive semidefinite

operator      with eigenvalues ,

Dembo’s bound can be given by 

A. Dembo, IEEE Trans. Inform. Theory 34, 352 (1988).
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Modified upper bound on singlet fraction

• Using Dembo’s bound it can be easily shown that the 

upper bound on optimal singlet fraction is
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Calculation of Dembo’s bound

The upper bound on singlet fraction      is*
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Comparison of maximal singlet fraction      and upper 

bound on singlet fraction      obtained using Dembo's

bound
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Local operations and classical communication 

• Our next task is to find a way by which we can
obtain this bound experimentally i.e. would it
be possible to increase the value of optimal
singlet fraction performing local operations
and classical communication on the filtered
state i.e. can we achieve the upper bound of
singlet fraction given by Dembo's bound?

• Our results show that the bound is indeed
achievable by performing local operations and
classical communication.



Singlet fraction after second filtering operation

• In order to enhance the value of optimal singlet fraction F, 

we perform another filtering operation on the filtered 

state such that the singlet fraction of the output state can 

be given as

where p is the success probability multiplied with the 

optimal singlet fraction of the state coming out of the 

second filter.
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• Define                  where       denotes the success probability 

of the first filter. 

Then for                            ,   where                                .

can be re-expressed as
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Comparison between the singlet fraction 

obtained after the first and second filter

For the state described by the density operator
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Optimal value of the probability 

• For     to be high,       must be minimized.

• The minimum value of should be chosen in such a
way that the value of singlet fraction for the second
filter must not exceed Dembo's bound.

• The minimum value of       would be

• With this minimum value of       , we have

• This shows that one can achieve the maximum singlet 
fraction equals to Dembo's bound by using the filtering 
operations twice.
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Illustration

For the state

The minimum success probability of the filter is

Hence the optimal singlet fraction would be
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• In the above example, we have 

• Applying the filter twice will always result in achieving 

the upper bound on singlet fraction for any two-qubit

mixed density operator.
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Comparison between the probabilities of 

success after passing through the First Filter 



Summary

• We have established a relation between Dembo's upper 

bound and singlet fraction (and hence with teleportation 

fidelity) of a mixed two-qubit entangled state.

• This relation is used to demonstrate that any two-qubit

mixed entangled state can be used as a resource to 

achieve maximum possible teleportation fidelity.

• we found that the maximum fidelity obtained earlier can 

be increased with additional local operations with certain 

non-zero probability.



THANK YOU


