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Possible states of particle 1: |Z;.), |Z1_) also | Xi4), | Xi-)
Possible states of particle 2: |2, ), |Z»_) also [Xo,), [Xo-)

Entangled state:

) = 7(|Z1+)|Z_2+>+\Z1 ) Z2-))

17(|X1+>\X2+> X)X )
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NONLOCALITY
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Measure Z component of particle 1
‘ Z1 _> implies ‘ Zg_>

Alternatively, measure X component of particle 1

implies

[ Xi4) | Xa1)
Implication: Choice of measurement on particle 1 decides the final
state of (the remotely located) particle 2.
Nonlocality! (np
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Most amazing demonstration of nonlocality

VOLUME 74, NUMBER 18 PHYSICAL REVIEW LETTERS 1 May 1995

Observation of Two-Photon “Ghost™ Interference and Diffraction

D. V. Strekalov, A.V. Sergienko, D. N, Klyshko,* and Y. H. Shih

Depariment of Physics, University of Marvland, Baltimore County, Baltimore, Marviand 21228
(Received 11 August 1994)

702nm

L] N 351 nm
702 nm BBO

Experimental setup 14 Ar Laser

Entangled photon pairs generated using
Spontaneous Parametric Down
Conversion (SPDC).

Photons move in different directions.
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Effective experiment
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Experimental results
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@ No first order interference is observed for photons 1.
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Experimental results
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L1 Double slit -

Coincidence
counter

@ No first order interference is observed for photons 1.

@ For photons 2, first order interference is neither expected, nor
seen.
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Experimental results
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L1 Double slit -

Coincidence
counter

@ No first order interference is observed for photons 1.

@ For photons 2, first order interference is neither expected, nor
seen.

@ Photons 2 detected in coincidence with a fixed D1 show an
interference pattern!
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Experimental results
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L. Double slit -

Coincidence
counter

@ No first order interference is observed for photons 1.

@ For photons 2, first order interference is neither expected, nor
seen.

@ Photons 2 detected in coincidence with a fixed D1 show an
interference pattern!

@ But photons 2 do not pass through any double slit!
Ghost interference!
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Fringe-width of ghost interference

( %: .< Lo

L+ Double slit -

Coincidence
counter

=

Fringe width follows Young’s double-slit formula

w20
d
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Fringe-width of ghost interference

( %: .< Lo

L+ Double slit -

Coincidence
counter

=1

Fringe width follows Young’s double-slit formula

w20
d

with a twist:
Particle 2 doesn’t travel the distance D! ("P
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Authors’ explanation

= =

If the optical paths from the fixed detector D, to the two
slits are equal, i.e., rci = rpi1, and if z, > d?/A (which
is true for this experiment), then ry — rg = reo — rps =
x2d/z2, and Eq. (7) can be written as

R (x3) = cos*(xamd/Azp) . (8)

Equation (8) has the form of standard Young’s double-slit
interference pattern. Here again z; = 1.8 m is the unusual
distance described above.
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Authors’ explanation

= =

If the optical paths from the fixed detector D, to the two
slits are equal, i.e., r¢ = D1 and if zo > d?/A (which
is true for this experiment), then ry — rg = reo — rps =
x2d/z2, and Eq. (7) can be written as

R (x3) = cos*(xamd/Azp) . (8)

Equation (8) has the form of standard Young’s double-slit
interference pattern. Here again z; = 1.8 m is the unusual
distance described above.

mainly daue o tne arvergence or e dFIJL beam (3> A/d).
In other words, the “blurring out” of the first order inter-
ference fringes is due to the considerably large angular
propagation uncertainty of a single SPDC photon. @
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Theoretical analysis

Theoretical analysis
Einstein-Podolsky-Rosen (EPR) state

Momentum entangled state discussed by Einstein, Podolsky and
Rosen'

V(y1, y2) :/oo en/he=Pre/hgp

—00

Problems with the EPR state:

@ Difficult to normalize
@ Wave-function is unbounded in the space variable (y; + y»).
© Most likely, not realizable in practice

'A. Einstein, B. Podolsky N. Rosen, Phys. Rev. 47, 777(1935).



Theoretical analysis

Theoretical analysis

Generalized EPR state

(1+¥2)2

‘U(J/u}/z) = C/oo dpe—p2/4¢72e_ipyz/heipy1/he— ot
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Theoretical analysis

Theoretical analysis

Generalized EPR state

(71 +y2)

V(ys,y2) = C/ dpe /47" g—ova/h gty /g™

Integration over p can be performed to obtain:

V(ys,y2) = \/%e (Y1—y2)P0? /12 o= (y1+y2)? /4922
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Theoretical analysis

Theoretical analysis

Generalized EPR state

(71 +y2)

V(ys,y2) = C/ dpe /47" g—ova/h gty /g™

Integration over p can be performed to obtain:

V(ys,y2) = \/%e (Y1—y2)P0? /12 o= (y1+y2)? /4922

Uncertainty in momenta of the two particles:

1/, R
Apry = Apzy = 5\ +W-

Position uncertainty:

Ay1 :AyQZ\/QQ+h2/4O'2. @
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Theoretical analysis

Time evolution

For massive particles

V(1Yo 1) = e UM (yy y0,0), H=—f2 0 120
1 2
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Theoretical analysis
Time evolution

For massive particles

_ a—iHt/h R ol R el
W(Y1;Y2,t) =e W()’1a)’270)7 H= 2m8y12 2m6y22
Alternately, for photons

WY vo. 1) = [ s [ e Ok, Ky, 0)einys i<t ghre—ictie)
2
where W(ky) = Cy/ k)? + k}? ~ Cko + %
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Theoretical analysis
Time evolution

For massive particles

B 22
2m8y12 2m8y22

\U(y1 » Y2, t) = e—i/:/t/ﬁ\u(y1 Y2, 0)7
Alternately, for photons
V(yy, Yo, t) = f aky1 f dkyo q>(ky1 ’ kyz’0)eiky1}’1—iw(ky1)fe"kyz}@—fw(kyz)f

2
where W(ky) = C4/ k)? + k}? ~ Cko + %

In time ¢, particle travels distance L Implies, 4 _ L/vport=L/c
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Theoretical analysis
Time evolution

For massive particles

_ a—ifit/n [ — 1% 2R
\U(Yh}/&t) =e W()’1a)’270)7 H = 2m8y12 2m8y22
Alternately, for photons

WY vo. 1) = [ s [ e Ok, Ky, 0)einys i<t ghre—ictie)
2
where W(ky) = C4/ k)? + k}? ~ Cko + %

In time t, particle travels distance L Implies, ¢ — L/vyort=L/c
Finally, ht/m=hL/(mvy) = A\L/2r or  ct/ky = AL/2x

P
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Theoretical analysis
Time evolution

For massive particles

—iF ~ 2 2 2 o2
\U(y1,y2,t) =€ le/ﬁ\U(y1’y270), H= _zh_maa_}ﬁz N g_maa—},g

Alternately, for photons

(11, ¥2,0) = [ dhyr [ dhyz Olkyt, Kz, 0)&Mm et ghoara—lie)t

2
where W(ky) = C4/ k)? + k}? ~ Cko + %

In time ¢, particle travels distance L Implies, 4 _ L/vport=L/c

Finally, ht/m=hL/(mvy) = A\L/2r or  ct/ky = AL/2x
After a time ty particle 1 reaches the double-slit.

1 n —ye)? (r1 +y2)
V(y1, ya, & = )
(1, ¥2, 1) \/W(Q+ Tig 7 o 4/% X exp Lz/ 2 4,m0 } exp [(492 N :mo)} @
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Theoretical analysis

Passing through the double-slit

Possibilities for particle 1:

Passes through slit A —  [¢a(y1))
Passes through slit B —  |¢g(y1))
Gets blocked by the slit —  x(y1)

These three states are orthogonal: any state of particle 1 can be
written in terms of these:

W(y1, Y2, 1)) = |0a)(0alV) + [98)(08|V) + [X) (X|V). (1)
The state after the double-slit:
(WY1, ¥2)) = loa)lva) + [¢8) 1Y) + [X) YN, (2)

P
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Theoretical analysis
Gaussian states

Throwing away the blocked part of the wave-function,

V(. 12)) = S (I6a)li) + o) ). @

where C = \/<¢A|TJJA> + (’l,Z)B|’(,Z)B> |}a), |¢g) are already normalized states.

Assume: |¢a), |¢g) are Gaussian states:

paly1) = ;e‘(“‘y(’)z/ez, o8(y1) = ——m e 1)/

Vev'/2 eV/r/2

where d = 2y, = slit-separation, ¢ is slit-width.
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Theoretical analysis

Entangled Gaussian wave-packets

The state which emerges from the double slit, now assumes the form

/12

V1P 0¥ V1H0)?  erh)?

V(yr,yo)=ce < e r4+ce 2 e T , (5)

where ¢ = (1//7€)(V/Tr + %)‘1/2 and

2 24 ikt . 5ih
O 4 LIy 4 2 4 dinity/m + 2 ©)
5ihty h2

2
€'
1+ @2 T aem t 40252
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Theoretical analysis

Entangled Gaussian wave-packets

The state which emerges from the double slit, now assumes the form

)2

_Wi=) _(Y2—,V6)2 _ W +0)? _(y2+y{))2
V(y1,y2)=ce 2 e T +ce 2 e T (5)
where ¢ = (1//me)(V/Tr + %)—1/2 and
2. B .
(’2—2(1 4 & tihlg/m +4’gtg/m) + € + dihty/m + 2
r= 14 & | Sty 12 (6)
Q2 T aazZm T 4072

After a further time ¢,
particle 1 reaches detector D1, particle 2 reaches D2.

P
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Theoretical analysis
Coincident counts and ghost interference

The probability of coincident click of D1 and D2 is given by
P(y1,y2) = |W,(y1, y2, t)|2, which has the following form

P(y1, y2)

2(y1 — yp)? 2(y2 — yp)?

e (exp {_ FrOL/mR A+ (AD/m)z]
2(y1 + ¥0)? 2(yo + ¥9)?

ree [_ E+ (L /meR | A2+ (AD/m)Z]

€2 + (ALy/me)? B

o |- 2O ) 20 + %)
72 + (AD/7)?
X2008 (011 + 02)2]) »

_ AyodLy/m — _MAD/m
where 64 = EReI et O = S 4N2DZ /2

fringe width of the pattern for particle 2 is given by

yy— 20D 2T AD
27 7"d "2d\D" d
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Theoretical analysis

Ghost interference

Probability of coincident counting of D1 and D2

0.35

03

0.25

0.2

015

[#(yy :‘)’2:ﬂ|2

01

0.05

yz (mm)

P. Chingangbam, T. Qureshi, Prog. Theor. Phys. 127, 383-392 (2012).

(CTP, JMI) Understanding Ghost Interference



Theoretical analysis

Physics of Ghost interference

@ Entanglement leads to formation of a virtual double-slit for particle
2 (in coincident counting).

@ Because of entanglement each particle carried which-path
information about the other.

@ By detecting particle 2, one can tell which slit particle 1 passed
through.

@ By Bohr’s complementarity principle, no interference is possible in
such a situation.
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Theoretical analysis

Physics of Ghost interference

@ Entanglement leads to formation of a virtual double-slit for particle
2 (in coincident counting).

@ Because of entanglement each particle carried which-path
information about the other.

@ By detecting particle 2, one can tell which slit particle 1 passed
through.

@ By Bohr’s complementarity principle, no interference is possible in
such a situation.

@ By detecting particle 1 (sufficiently far) behind the double-slit, one
essentially erases the information about which slit the particle
passed through.

@ Consequently, one loses information on which virtual slit particle 2
passed through.

@ Interference is possible in this situation - ghost interference. ("P
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Theoretical analysis

Two-color ghost interference

AIP ADVANCES 2, 032177 (2012)

Two-color ghost interference with photon pairs generated
in hot atoms

Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi,? Xu-Bo Zou,

and Guang-Can Guo
Key Laboratory of Quantum Information, University of Science and Technology of China,

Hefei 230026, China
(Received 7 June 2012; accepted 11 September 2012; published online 19 September 2012)

Entangled photons generated via spontaneous four-wave mixing
(SFWM) A1 = 1530 nm, Ao = 780 nm.

1 Doub_le Slit D
y
| Particle 1 Source  particle 2 D2
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Theoretical analysis
Two-color ghost interference: Theoretical analysis

V(y1,y2) = \/%e_(ﬁ —y2)?0? /12 o= (y1+y2)? /427

Hamiltonian governing the time evolution,
2 g2 2 92
B he 0 he 0

_2m1 8}/%2 B 2m2 8}/22
ht/m1 = )\1L/27T and ht/mg = )\2L/27T.
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Theoretical analysis

Two-color ghost interference: Theoretical analysis

V(yy, y2) = 4 /ﬁe 1=y2)?0? /12 o= (y1+y2)? /427

Hamiltonian governing the time evolution,
- 202 n? 9P
H=— —
2my 8}/%2 2mo 8}/22

ht/m1 = )\1L/27T and ht/m2 = )\2L/27T.
After a time {,

1

V(yi, Y2, o) = .
VT (Q+ ) (o + 2k
-1 — ) —(1 +y)?
o it S oo (ase - 8) |
where M = my + mp and pp = 72 (np

my—+mo
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Theoretical analysis

Two-color ghost interference: Theoretical analysis

Without the converging lens

The fringe width of the pattern for particle 2 is given by

. 2 . )\QD + ()\1 — )\Z)LQ ’}/471'2

_2r_ 7
W=, = d d daDrdy —a)lp P

For m2 < Xolp, oLy, A1 Lo, we get a simplified double-slit interference
formula,

Mo(Ly + L ML
wy ~ 22 - 2) | =3 (®)

P
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Theoretical analysis

Two-color ghost interference: Theoretical analysis

Without the converging lens

The fringe width of the pattern for particle 2 is given by

. 2 . )\QD + ()\1 — )\2)L2 ’}/471'2

W=, T d d oD+ d(M — ra)lo

(7)

For m2 < Xolp, oLy, A1 Lo, we get a simplified double-slit interference
formula,

Mo(Ly + L ML
wy ~ 22 - 2) | =3 (®)

For A1 = )\o we recover the formula of the original ghost interference

xeD Ja(Ly +2Lp)
T T

P
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Theoretical analysis
Effect of the converging lens

Effect of a lens — a unitary transformation 2

o mRAT (o _ w2 -
N o2 +iAL 5+ N4 52 1 iNL—4f) )’

o — initial width of the wave-packet
L — distance travelled by the wave-packet before the lens.

N2(L — 4f)? N2[2
6’24‘%:024‘—2. (9)

g g
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Theoretical analysis
Effect of the converging lens

Effect of a lens — a unitary transformation 2

o mRAT (o _ w2 -
N i o2 4 AL Jo 1 40 2L iNL— 4 )’

o — initial width of the wave-packet
L — distance travelled by the wave-packet before the lens.

2 _ 2 272
5—2+/\(L~—4f)=0-2_|_&_

52 a2

Satisfies the thin lens equation

t_1_1
v u f

1'I'. Qureshi, Prog. Theor. Phys. 127, 645 (2012).
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Theoretical analysis

Two-color ghost interference

In the presence of a converging lens

A simplified double-slit interference formula, 3

Mo(Ly + Lo — 4f AL
W2%2(1d2 )+1dz.

Probability of coincident counting of D1 and D2

0.14
0.12 1
0.1 |
0.08
0.06
0.04
0.02

0
-10 -5 0 5 10

Yo (mm)

[ (y,yo.0)2

38. Shafaq, T. Qureshi, Eur. Phys. J. (2014) (in press); arXiv:1308.4680 [quant-ph].
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Theoretical analysis

Conclusions

@ Ghost interference is the combined effect of
o virtual double-slit formation due to entanglement
@ quantum erasure of which-path information
@ No first-order interference behind double-slit — because
which-path information for particle 1 is carried by particle 2.

@ Interference for particle 1 can also be obtained by
coincident-counting it with a fixed detector for particle 2.

@ Prediction: In the two-color ghost interference, the fringe width of
photon 2 pattern depends on the wavelength of photon 1 too!
Can be verified in a modified experiment

\ Pravabati Chingangbam, Tabish Qureshi
Ghost interference and quantum erasure
Prog. Theor. Phys. 127, 383-392 (2012).

Theoretical analysis of two-color ghost interference
Eur. Phys. J. D (2014) (in press) arXiv:1308.4680 [quant-ph]
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