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Problems

= Which is the maximum degree of nonlocality D for a six-
qgubit graph state allowing bipartite elements of reality?

= Which is the maximum D for the perfect correlations of a
n-qubit graph state?

= Which is the relation between D and 7?

= Can these results help us to make a loophole-free
experiment?

(D is the ratio between the QM value and the bound of the Bell
inequality. 77 is the minimum overall detection efficiency required for a
loophole-free experiment.)
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= Previously on the School...

= Problem #1... Solved

= Problem #2... Solved forn < 7

=  Problem #3... Solved for GHZ states
= Problem #4... Work in progress
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The Mermin inequality

(AB,C,)+(ABCy)+(AB,C,)—(ABC,)|<2

:BQM =4




The n-qubit Mermin inequality
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Graph states

Graph states are a family of multiqubit pure entangled states.

Each graph state is associated to a graph

Vertices: qubits.

Edges: entanglement between the connected qubits.



Graph states: Constructive de

For a given graph G, a preparation of the corresponding graph state |G}

consists:

L : L | 041
-+ In associating wich each vertex a qubit in the state [+) = Lﬁu
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C on the qubits aand b
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Graph states: Entanglemen

The following graphs represent LC-equivalent graph states.
Therefore, they represent LU-equivalent states.
Therefore, they have the same entanglement.

aI Ib EII Ib aI :b a b
C d ¢ d ¢ d de



All graph states up to seve

No. 1 No. 2 No. 3 No. 4
1
1
2 1 3
*—=e
2 4 2 4
2
3
Nos 1 No.6 1 No.7T 1 No.8 1
2 2 2 2
5 5 5 5
3 3 3 3
4 4 4 4
No. 9 No. 10 No. 11 No. 12
2 1 2 1 2 1 2 1
3 6 3 68 3 6 3 8
4 5 4 5 4 5 4 5
No. 13 No. 14 No. 15 No. 16
2 1 2 1 e 1 2 e—e 1
3 6 3 § 3? 6§ 3 *
4 5 4 5 4 5 4 5
No. 17 No. 18 No. 19
2 \ 2 1 2 1
3 6 3<:>6 3 §
4 s 4 5 4 5

Graphs corresponding to all possible graph states, up to

seven qubits, which are not equivalent under single-qubit

transformations and graph isomorphism, M. Hein, J.
Eisert, and H. J. Briegel, PRA 69, 062311 (2004).
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Problem

* If we distribute n qubits between two parties,
what quantum graph states and distributions of qubits
allow AVN proofs using only single-qubit measurements?




Six-qubit graph states allowing

Lﬁunnanm} + 001011} + [0T0010)
'
+[0T100T) + [100T10) + [101T0T)

+[1T0TO0) + [1T1T1T)).
L

575 ([00000) + 001001) + 010011
W

+|0T1610) + |160T1T) + |161118)

+/110T00) + [111101)),
1

57 (000000 + 001011) + [010010)
x.

+0T100T) + |100110) — |1061101)

+(1T0Tod) — [1T1111)),

(|nnanmﬁ + 001101 + [010111)

\.
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—[T11111)),



Problems

‘ = Which is the maximum degree of nonlocality D for a six-
qubit graph state allowing bipartite elements of reality?

= Which is the maximum D for the perfect correlations of a
n-qubit graph state?

= Which is the relation between D and 7?

= Can these results help us to make a loophole-free
experiment?

(D is the ratio between the QM value and the bound of the Bell
inequality. 77 is the minimum overall detection efficiency required for a
loophole-free experiment.)



Two-photon four-qubit experi

No. 1 twice No. 4a

M. Barbieri, F. De Martini, P. Mataloni, G. Vallone, E. Pomarico, P. Mataloni,
G. Vallone, and AC, F. De Martini, and V. Berardi,
PRL 97, 140407 (2006). PRL 98, 180502 (2007).
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D=2,16 terms D=2, 4terms
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No. 1 three times

D = 2.8, 64 terms
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We investigate the nonlocal properties of graph states. To this aim, we derive a family of Bell
inequalities which require three measurement settings for each party and are maximally viclated by
graph states. In turn, for each graph state there is an inequality maximally violated only by that state. We
show that for certain types of graph states the violation of these inequalities increases exponentially with
the number of qubits. We also discuss connections to other entanglement properties such as the positivity
of the partial transpose or the geometric measure of entanglement.
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The Mermin inequality
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Mermin inequalities for graph

= Guhne et al., 2005:

o
'G — E :S_'j' 84 h'—l'rf'lr.} — ‘ﬁ'r:"lr::'
=1
= Now: Find the one with the largest degree of nonlocality
of the family
zv -1
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Mermin inequalities for grap

TABLE I: Mermin inequalities for all graph states of n < 6 qubits.

Graph state gi A<2p—q Settings D
2 [GHZg;I g1 = .Y;[Egzg 91(]]. + Qz}l:]l +§3} E 2 2-2-2 2
gi=zZ1Xifori#1
3 (GHZ4) g =X1Z22:37, g1(1l + g2gs + g294 + g3g4) = 2 and g1 — g1gz 1-2-2-2 2
gi=Z1 X fori #1 gl +g:) (L +g5) <2and g — gige 2-2(z)-2(j)-1(k)
4 (LCy) g1 = X123, g4 = Z£3Xy (1 4 g1)g2(1 4+ g3) = 2 and g3 — gaga 2-2-2-1 2
gi =21 XNiZijpq fori =23 (1 4+ g1)g2093+ ga) = 2 and g3 — gagy 2-2-1-2
Gi — Git1
5 (GHZs) g1 = XiZ:2Z:747s, gl +gz)ill+gz){l+g4)(L 4+ gs) <4 2-2-2-2-2 4
gi=4 X fori #1
6 (Ysy) g1 =X1Zp, g5 = Z2 Xy g2[(L+ g1 + gs)(1 + g3 + g294) + (1 + g194)94)
gz = £1 X2 +Hgr+gslgs(L +g4) =7 3-3-3-3-2 L
ga = £ N34y g2 — 24 3-33-3-3
ge = L3Ny 3 — gq/f and 32 nonsymmetric more
7 (LCx) g1 =X173, g5 = ZaXy (1 + g1)[(1 + g2)g2(1l + ga) + gaga] (1 + g=) < 8 3-3-3-3-3 :
gi =23 XNyZypq fori=2,34
8 (RCj) 9 = Zi-1XiZip T+ Gigipr <9 3-3-3-3-3 z
T+ Gidier + Giditr + Fi-19i41
+gi—2Gi Git1Gi+2 + Gi—2Gi—1Gigi+1 = 9 3-3-3-3-3

¥ = % [HS::[':]]' + gi) — HE=1|:]1 - g*;']

and 105 more




Mermin inequalities for graph

TABLE II: Symmetric Mermin insqualiti=s for all graph stat=s of n = 6 qubits.

Graph staie Gu F<ip—g Setiings D
o (GHZe) g =X Zofx By En e g|_|:]1 + E'#:L @iy + EI:J:'::I!::I Sigggea) = 4 122223 4
gi=& 1 X fori#1 and g1 — gugm 122222
10 g1 = XeZg for i = 1,2,3 M+ gL+ ae il + gl +gnigs = 4 2oo122 4
ga = Nads gn — G 223123
ge = ZaXeZe (L4 g {1+ g2 i{L+ gai{ga+asigs = 4 223013
ge = &1 BadalnXe g — @ 222211
11 {Heg) g1 = X18s, g = Xofe il 4 gl + g+ g (14 guligs = 4 l-2-33%2 4
gz = XNafn, gu = Xude g+~ gz (e, permuts hem) 1-3532
= S Xe, ge = S18:X50 (1 + g1 (L + golesi L+ guloei 1 + el < 4 331223
s 3-3-2-1-2-3
12 (¥ g1 = X18a, g = ZaXe (L +glge(l 4 g+ gL+ ga) = 4 221223 4
g = 3:-1-23:3-5. gz = En-r:a
g4 = 3:-1-435.. Je = Ed-rn
13 (Ea) g1 = Xz, go = ZalXe (1 + g +gugs )[(L+g)ge + g0 +5)
g =21 K08y, ga = 23X Zs HL+ g1 igegai L +gul] = 8 2333232 3
g = EoXxZa P, g = ZxXe and 37 mors
14 (LiCs) g1 = X18a, 9 = ZuXe {1+ giigel T + g1+ gulgel L+ g5) = 4 223323 4
E = .':-'._LI.E-'H; EDCI' i =2..3.".5
15 g = Xafe, g = Xy (g 4+ ge )L g (0 + el (1 + @ )1+ ga)
o =XaZuZeo, gu = BaXoe +H(1 + gagn) (54 + saga + 5o + mse) < 18 333333 3
= EelaXufe, o = E18:80 X6 and & more
1a g1 =X1Z0, g = Z4Xs gl + g+ g2 +gige + g+ gs +pag (1 + 50
ge = £1Xo 8584, qu = ZadxNyde HL+ s gl + gs + g6l + gall + g WL + g1 + a6l
gz = daXadade HL+ g jgaga( 1 +gqe) = 12 333333 3
gs = ZxXa and % more
17 m = Xadade [#1 (L + gage) (gs + g4
ga = B Xefn, go = S0 84 Xe L+ mige +ge) (1 +gaga) (1 + g6} = 8 333333 3
o =ZaXsZy, ga = Zx X0 E0 8— mf 333333
g6 — 21X
18 (RCg) gt = &1 idap Tk s — 1= 50 g — mgags — gagags < 19 333358 22
14 m=X1828x8, gu = ZxXeEe Fe g104 + gags +mgngags +goloa + g6 + qags)
ge = E1Madnde, o = ZadaNeds  +gsim +gs +gags) + (g2 + g igaga + mge + gemgass)
g = 2180 X2y, ge = 218480 Xe +aagslmigal(l+ g + g6 )+ mmgel L + 51 +ga)| = daasss I




Problems

= Which is the maximum degree of nonlocality D for a six-
qgubit graph state allowing bipartite elements of reality?

= Which is the maximum D for the perfect correlations of a
n-qubit graph state?

‘ = Which is the relation between D and 7?

= Can these results help us to make a loophole-free
experiment?

(D is the ratio between the QM value and the bound of the Bell
inequality. 77 is the minimum overall detection efficiency required for a
loophole-free experiment.)
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- AC and P. Moreno, PRL 99, 220402 (2007).
* AC, O. Gihne and D. Rodriguez, arXiv:0708.3208.

* AC, D. Rodriguez and N. Villanueva, arXiv:0712.3268.



