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Greenberger, Horne and Zeilinger



GHZ’s proof of Bell’s theorem

• “Opened a new chapter on the hidden variables problem'‘, 
and made “the strongest case against local realism since 
Bell’s work”.

• Quantum reduction of the communication complexity. 

• Quantum secret sharing.

• Multipartite entanglement.
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GHZ’s proof of Bell’s theorem



Notation for single photon observables



GHZ’s proof of Bell’s theorem: Xi and Yi are ER



GHZ’s proof of Bell’s theorem: Contradiction!



Why “all-versus-nothing”?
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Experimental GHZ
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The Mermin inequality



The CHSH inequality

211011000 ≤−++ BABABABA

8.222QM ≈=β



The Mermin inequality

2111100010001 ≤−++ CBACBACBACBA

4QM =β



The n-qubit Mermin inequality
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The violation grows exponentially with n!!!
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Problems for an experimental demonstration

A nonlocality proof using n-qubit GHZ states requires n
space-like separated observers.

For GHZ states decoherence also grows with n.

The minimum detection efficiency for a loophole-free test 
is 0.5 (when n goes to infinity).



GHZ’s requires three observers
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Why GHZ’s requires three observers?
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Problem

• Two-observer AVN proofs?



The first two-observer AVN proof

AC, PRL 86, 1911 (2001); 87, 010403 (2001).



Notation for single photon observables



Four qubits in two photons



Rome and Hefei experiments



Rome experiment 2005
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Hefei experiment 2005



Hefei experiment 2005



Requires two-qubit measurements!



Requires two-qubit measurements!



Problem

• Two-observer AVN proof with single-qubit observables?
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Two-observer AVN proof with single qubit observables



Two-observer AVN proof with single qubit observables

AC, PRL 95, 210401 (2005).



Rome experiment 2007

PRL 98, 180502 (2007).



Rome experiment 2007

PRL 98, 180502 (2007).



Motivation #1: Six-photon six-qubit states

• Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B. 
Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J.-W. Pan,
“Experimental quantum teleportation of a two-qubit 
composite system”,
Nature Physics 2, 678 (2006).

• C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-
S. Yuan, A. Goebel, T. Yang, and J.-W. Pan,
“Experimental entanglement of six photons in graph states‘”,
Nature Physics 3, 91 (2007).

• Other groups are preparing six-photon six-qubit states.



Motivation #2: Two-photon six-qubit states

• J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat,
“Hyper-entangled photons'',
Phys. Rev. Lett. 95, 260501 (2005).

•

• Other groups are preparing six-qubit two-photon hyper-entangled states.



Problem

• If we distribute n qubits between two parties, 
what quantum pure states and distributions of qubits
allow AVN proofs using only single-qubit measurements?



First ingredient: Bipartite elements of reality

• Enough number of perfect correlations to define bipartite 
EPR's elements of reality. Every single-qubit observable 
involved in the proof must satisfy EPR's criterion; i.e., the 
result of measuring any of Alice's (Bob's) single-qubit
observables must be possible to be predicted with certainty 
using the results of spacelike separated single-qubit
measurements on Bob's (Alice's) qubits.



Second ingredient: Algebraic contradiction 

• Enough number of perfect correlations to reach into a 
contradiction with EPR's elements of reality. Any of the 
observables satisfying EPR's condition cannot have 
predefined results, because it is impossible to assign them 
values -1 or 1 satisfying all the perfect correlations predicted 
by QM.



Perfect correlations, stabilizer and graph states

• Perfect correlations are needed to establish elements of 
reality and to prove that they are incompatible with QM.

• Simultaneous eigenstates of a sufficiently large set of 
tensor operators products of single-qubit operators.

• We can restrict our attention to X, Y, Z. Stabilizer states!

• Any stabilizer state is local Clifford equivalent to a graph 
state. Graph states!!



Graph states

Graph states are a family of multiqubit pure entangled states. 

Each graph state is associated to a graph

Vertices: qubits.

Edges: entanglement between the connected qubits. 



• Initial states for measurement-based quantum computation
(some of them are universal resources)

• Quantum error correction (stabilizer states) 

• All-versus-nothing (AVN) nonlocality proofs

• Exponentially-growing-with size nonlocality

Graph states are useful



Graph states: Constructive definition

For a given graph G, a preparation of the corresponding graph state
consists:

• In associating wich each vertex a qubit in the state
then

• In applying, for each edge between two qubits a and b, the unitary 
transformation CZ on the qubits a and b
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Graph states: Algebraic definition

Eq. associated to qubit 1: XZ |φ1〉 = |φ1〉,
“ “ “ “ 2: ZX |φ1〉 = |φ1〉.
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Graph states: Entanglement
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Graph states: Entanglement

The following graphs represent LC-equivalent graph states. 
Therefore, they represent LU-equivalent states. 
Therefore, they have the same entanglement.



Graphs corresponding to all possible graph states, up to
seven qubits, which are not equivalent under single-qubit
transformations and graph isomorphism, M. Hein, J. 
Eisert, and H. J. Briegel, PRA 69, 062311 (2004).

All graph states up to seven qubits



Problem

• If we distribute n qubits between two parties, 
what quantum graph states and distributions of qubits
allow AVN proofs using only single-qubit measurements?



First ingredient: Bipartite elements of reality

AC & P. Moreno, PRL 99, 220402 (2007).



Second ingredient: Algebraic contradiction

AC & P. Moreno, PRL 99, 220402 (2007).



Second ingredient: Examples of contradictions



Four-qubit cluster state



Four-qubit graph state allowing bipartite AVN proofs
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Bipartite AVN proof with single qubit observables…

AC, PRL 95, 210401 (2005).



… the only one with four qubits!!!!



Six-qubit graph states allowing bipartite AVN proofs
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Six-qubit graph states allowing bipartite AVN proofs



Problems

Which is the maximum degree of nonlocality D for a six-
qubit graph state allowing bipartite elements of reality?

Which is the maximum D for the perfect correlations of a 
n-qubit graph state?

Which is the relation between D and η?

Can these results help us to make a loophole-free 
experiment?

(D is defined as the ratio between the QM value and the bound of the 
Bell inequality. It is related to the minimum overall detection efficiency 
η required for a loophole-free experiment.)



Answers? 

Next talk


