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What is a quantum computer?
It is a computer whose elementary hardware components
work according to the laws of quantum mechanics.
(The hardware components of classical digital computers
work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra!
The concept of what is computable and what is not does
not change, but the criteria of computational efficiency do.

Status
Laws of quantum mechanics are precisely known.
Theoretical foundation of the subject is clear.
Elementary hardware components work as predicted.
Large scale integration (say 10 or more components) is a
technological challenge. Noone knows when that will arrive,
or what a quantum computer will be used for.
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It is inevitable
“Because the nature isn’t classical, damn it . . . ”

—R.P. Feynman

Science: Observe and explain phenomena. Theorise!
Technology: Design and control phenomena. Optimise!

Yesterday’s science becomes tomorrow’s technology.

Laws of classical physics are convenient and useful
(and yet) approximations to the laws of quantum physics.

Quantum effects (discreteness, dispersion, tunnelling etc.)
have been considered “undesirable nuisance” in the
classical computer design.
Why not go to the other extreme, where classical effects
(decoherence, thermal fluctuations etc.) become
“undersirable nuisance” in the quantum computer design?
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Shrinking computer circuits

Number of transistors on a chip doubles every two years.
1948: First transistor, size 1 cm.
Today: VLSI circuits, size 45 nm.

Atomic size, 0.1 nm, is not very far!
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It is a breakthrough
Computers are physical devices, not mere mathematical
entities to implement algorithms. Quantum mechanics
demonstrates that complex numbers are physical.
(We nevertheless carry the burden of history in the
nomenclature—“real” and “imaginary” components.)

Quantum mechanics is a theory of waves. Wavefunctions
can superpose, interfere, disperse and so on. Waves have
been widely used in communications, but hardly any use of
their properties has been made in computation.

Superposition allows multiple signals at the same point
at the same time. All of them can be simultaneously
processed, and any one of them can be selectively
observed (e.g. radio or cell-phone transmissions).
This offers an SIMD parallel computing paradigm with
no extra hardware. Which algorithms can exploit this?
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Basics
A qubit is the simplest quantum system, with two basis
vectors

� � �

and

� � �

(e.g. an electron spin). A generic qubit
state is a complex unit vector in the

�

-dim Hilbert space.� � � � � � � � � 	 � � �
 � � � � � � 	 � � � ��
A quantum register is an ordered string of � qubits.
It is a complex unit vector in the

� �

-dim Hilbert space.

��� � �
�

����� ����� � � ��� � � � � � ��� � � � � � � � � � � ��� ��� � � � � ��� � � �


�
� ��� �� � � � ��� � �

� � � � ��� � � � �!� � � � � �

A generic instruction is a rotation of the quantum state
vector in the Hilbert space. It is a unitary transformation.
This evolution is deterministic and fully reversible.

A measurement is a projection. In the computational basis,
it yields the state with probability .
This operation is probabilistic and irreversible.

Quantum Computation – p.6/23



Basics
A qubit is the simplest quantum system, with two basis
vectors

� � �

and

� � �

(e.g. an electron spin). A generic qubit
state is a complex unit vector in the

�

-dim Hilbert space.� � � � � � � � � 	 � � �
 � � � � � � 	 � � � ��
A quantum register is an ordered string of � qubits.
It is a complex unit vector in the

� �

-dim Hilbert space.

��� � �
�

����� ����� � � ��� � � � � � ��� � � � � � � � � � � ��� ��� � � � � ��� � � �


�
� ��� �� � � � ��� � �

� � � � ��� � � � �!� � � � � �

A generic instruction is a rotation of the quantum state
vector in the Hilbert space. It is a unitary transformation.
This evolution is deterministic and fully reversible.

A measurement is a projection. In the computational basis,
it yields the state

��� � � � ��� ��� � � � � ��� � � �

with probability

� � ��� ����� � � � � � �

.
This operation is probabilistic and irreversible.

Quantum Computation – p.6/23



Applications
Complexity of a quantum algorithm is decided by the
trade-off between the number of evolution steps and the
number of states that can be coherently superposed.
The gain may be exponential or just marginal (factor of 2).

Simulation: A quantum computer can simulate quantum
models efficiently. (Generically, quantum models are hard
to simulate on digital computers.)

Cryptography: Key distribution protocols have been
formulated and demonstrated, where an eavesdropper
(unaware of the signal basis) cannot extract any information
from the transmission without disturbing the signal.
(Coding theory allows full protection from bounded noise.)

Pattern recognition: Clever superposition and interference
can amplify the desired feature. The gain depends on the
structure of the pattern in the data.
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Factorisation
No polynomial (in the number of digits) classical algorithm
for factoring a number is known. Security of public key
cryptography (e.g. RSA) relies on this fact.
The problem of factoring a number

"

can be reduced to
finding the period of the function

# $� % � & ' ( ) * "

.
( & is chosen coprime to

"

, no. of remainders is limited.)

Period :
When is even, . So either

or has a factor in common with .

Example: and .
.

Both and are factors of 15.
Periodic patterns are easily detected by Fourier Transform,
which is a unitary operation (common in quantum theory).
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Quantum Fourier Transform

' # $� % � � � � 8 �9: ' ; �=< � ' 8 - : # $� % ��> �
Let

" � � �

, and use the same tricks as in FFT.
In binary notation, � � � �@? �A � � ? � � � � � � � �A � � � �.BDC EF $ ' 8: % � > �@? � $� � � % � > � ? � $� � �� � % � � � � � > � $� � �@? � � � � � � %

.

Unitary rotation of QFT:

Factorisation reduces QFT to single qubit rotations.
The components can be processed in superposition.

Peter Shor gave this polynomial factorisation algorithm.
Fourier Transform is a multiplication by an matrix.
FFT factorisation reduces the operations to .
QFT parallelism cuts down the operations to .
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Quantum random walk
Efficient solutions of many practical problems require
non-deterministic algorithms, which contain probabilistic
branched evolution trees.
These problems are typically described using graphs,
with vertices denoting the states and edges denoting the
evolutionary routes.

A classical computer can explore only one branch at a time,
and random numbers (or equivalently coin toss instructions)
are used to explore different evolutionary branches.
A particular evolution corresponds to a specific walk on the
graph. The final solution is obtained by combining the
results for many random walks.

Quantum computers can explore multiple evolutionary
branches of an algorithm—in a single attempt—by using
clever superpositions of states. (Coin is unnecessary.)
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Quantum diffusion
Random walks represent a diffusion process.
Classical diffusion operator is the Laplacian:

]^ ]_ � ` �ba
.

A spatial mode with wave vector

ced

evolves as fg h $. i $ ced %kj %

,
with

i $ cld %�m � cld � �

. The slowest propagating modes (small

cld

)
produce the characteristic Brownian motion signature:noqp j & � � ;m j o r ;

Non-relativistic quantum mechanics (Schrödinger equation)
uses the same Laplacian operator, with the same scaling.
But there is an alternative. Relativistic Dirac equation uses
the diffusion operator ( are anticommuting objects,
e.g. Pauli matrices) with and the signature:

Any NP-complete problem speeds up at least quadratically.
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Random walk on a line

00

-60 -40 -20 20 40 60

0.02

0.04

0.06

0.08

n

ÈΨsÈ2

s tvuvw x y{z �|�N } ~W T �M� � } ���� � � z � } �

N � � } �W � � � Q � } �W � � V� s t uw x y� u z � � |� }�� W |� } �� � � � �b� z �

� � u ��� s t uw x y� u z � }N � |� }�� W |� } �� ��� ���� � � �b� z x

� u � s t uw x y� u z x � |� }�� W |� }� � ���� � � �b� z � t ��� � � y x�

Probability distributions for symmetric random walks:
Left: The classical one is a Gaussian.
Right: The quantum one is double peaked.
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Quantum database search
Consider an unsorted database with

"

items.
Starting from an unbiased state, the desired item is to be
found using the smallest number of binary oracle calls.
States:

� o �

any item,

�p �

starting state,
� j �

target state.�� o �p � � � � � 7 "
 �� o � j � � � � � � _ �
Operators: Reflections along

� j �

and
�p �

directions.�_ � ��. � � j �� j �

(Potential energy attraction)��� � ��. � �p �� p �
(Kinetic energy diffusion)

Algorithm:

$. ��� �_ % � �p � � � j �
Solution:

$ � � � � %�� ��� ? � $ � 7 " % �   7 � � 6 � �   " 7 1

The algorithm is optimal, evolving the starting state

�p �

to the target state
� j �

along the shortest geodesic route.

Lov Grover gave this

Z $ " %

algorithm.
(Any Boolean logic algorithm needs

Z $ " %

oracle calls.)
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An example
The steps of the algorithm for the simplest case of 4 items
in the database. Let the first item be desired by the oracle.

Amplitudes Algorithmic Steps Physical Implementation

(1) 0

0.5
Uniform
distribution

Equilibrium
configuration
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A mechanical model
Grover’s algorithm is an amplitude amplification process.
A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of   for
the appropriate mode) can be efficiently implemented.

In the quantum version, gives the probability of a state,
and the algorithm solves the database search problem.
In the classical wave version, gives the energy of a
mode, and the algorithm provides the fastest method for
energy redistribution through the phenomenon of beats.

Consider identical coupled harmonic oscillators.
Identical coupling between them is arranged by attaching
them to a big oscillator through the centre-of-mass mode.
Elastic reflection of an oscillator implements the binary
oracle in velocity space. Evolution by half an oscillation
period implements the reflection about average operation.
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them to a big oscillator through the centre-of-mass mode.
Elastic reflection of an oscillator implements the binary
oracle in velocity space. Evolution by half an oscillation
period implements the reflection about average operation.
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A mechanical model
Grover’s algorithm is an amplitude amplification process.
A system of coupled wave modes can execute it, provided
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Possible uses
Decoherence of quantum behaviour is extremely fast, but
vibrational systems with small damping can be made easily.

Focusing of energy:
Concentration of total energy of a coupled oscillator system
into a specific oscillator can have potential applications in
processes that are highly sensitive to energy availability.

Nanomechanical devices: A coupled oscillator system can
provide efficient focusing of energy at a specific location,
when one cannot directly control the component concerned.

For example,
a comb-shaped
cantilever beam
can be used as a
selective switch.
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Catalysis: There exist many processes that need crossing
of an energy threshold for completion. Their rates are
typically governed by the Boltzmann factor for the energy
barrier, fg h $. iª©H«¬ ¬  ®¬ 7 d¯ %

. Energy amplification can speed
up the rates of such processes by large factors.

Dispersal of energy:
The algorithm is fully reversible, and running it backwards,
i.e. , distributes large initial energy in one
of the oscillators equally among its partners.

Shock absorbers and vibrational isolation: Instead of
damping a single perturbed oscillator, it is much more
efficient to disperse the energy into several oscillators
while damping them together.
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A hierarchical system of oscillators—four small ones
coupled to a big one at every level with appropriate mass,
spring and damping parameters—can provide a practical
realisation of this idea.

(The initial impulse is taken to be a local disturbance,
which subsequently spreads out.)
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Genetic languages

1. What is the information processing task carried out by
the genetic code?
Assembling molecules by picking up components from
an unsorted database.

2. What is the optimal way of carrying out this task?
Lov Grover’s quantum search algorithm.
(Requires wave dynamics.)

3. What is the signature of this algorithm?

$ � � � � %� � � ? � �9 : � < � � 6

� � �
 N=4� � �
 N=10.5� � 5
 N=20.2
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