Probing coherence aspects of adiabatic quantum computation

Debabrata Goswami

Department of Chemistry & Center for Laser Technology Indian Institute of Technology Kanpur

Funding: * Ministry of Information Technology, Govt. of India

- * Swarnajayanti Fellowship Program, DST, Govt. of India
- * Wellcome Trust International Senior Research Fellowship,

<u>Students</u>: A. Nag, A.K. De, I. Bhattacharyya, S.K.K. Kumar, T. Goswami, S. Maurya, A. Kumar, D.K. Das, D. Roy, N. Mutiyal, B. Saha, S. Ashtekar, A. Basu, P. Samineni, D. Tewari, M. Bera, S. Chakraborty, S. Mukherjee, S. Priyadarshi, S. Chapekar, A. Basu

International Conference on Quantum Computing and Information, Mar. 11, 2008

Realism in the Quest for QC & QI

• Quantum Security

(e.g. DARPA supports QC in the National Labs)

Why are Companies like HP, Microsoft interested in QC ?

- Only one time use software!
 - Neilson talked about it while he was in Microsoft
- Speed
- Future Market

Basic Principle of NMR Quantum Computer

- A nearly ideal physical system that can (NMR-QC) be used as a QC is a single molecule
 - Nuclear spins of individual atoms in the molecule represent qubits
- The quantum behavior of the spins can be exploited to perform QC
 - e.g., the carbon and hydrogen nuclei in a chloroform molecule represent two qubits
- Application of a RF pulse to the hydrogen nucleus addresses that qubit, and rotates it from |0> state (say) to a superposition state
- Interactions through chemical bonds allow multiple-qubit logic to be performed

|0
angle|0
angle

Solution NMR

International Conference on Quantum Computing and Information, Mar. 11, 2008

Major Drawbacks of NMR-QC

- Solution NMR-QC is not scalable to useful number of spins
- Ideal signal from N-bit QC scales as N.2^{-N} at room temp. Even quantum noise overwhelms quantum signal for moderate N at room temperature
- Even 10 bits (requires a totally asymmetric spin system) will be very hard and the computer will be very slow. 10-100 Hz clock frequency

Quest for other schemes necessary

- Optical schemes ?
 - Example: Control of molecular system with lasers
 - Light Polarization state, just like, the "spin"

What is Adiabatic QC ?

- Molecule is the computer as in NMR case
 - Bring in all the goodness in NMR approach
- Logical implementation of quantum gates using
 - ground states, spectral gaps & Hamiltonian language
 - Resulting quantum gate represents a device that performs a unitary transformation on selected qubits in a fixed period of time
- Computational procedure in the adiabatic QC model is described by
 - Continuous time evolution of a time-dependent Hamiltonian with limited energetic resources
 - an aspect often neglected in the unitary gate language

Problem of molecular control: Intramolecular Vibrational redistribution (IVR)

IVR occurs on a few-fs time scale, so long pulses excite entire molecule, and the weakest bond breaks, no matter which bond was excited. We need the pulse in **femtosecond** regime.

Control: Laser Molecule Interaction

- Intermolecular—Diffusion & Mobility
- D Timescales Depend on environmental conditions

Ε

С

()

Η

Ε

R

Ε

Ν

Ε

- Intramolecular—Intrinsic to Molecular States
 - Timescales typically vary from ns or below depending on whether electronic, vibrational or Rotational States are involved

Molecular Decoherence: IVR

International Conference on Quantum Computing and Information, Mar. 11, 2008

An Ultrafast Laser Pulse

 Coherent superposition of many monochromatic light waves within a range of frequencies that is inversely proportional to the duration of the pulse

Short temporal duration of the ultrafast pulses results in a very broad spectrum quite unlike the notion of monochromatic wavelength property of CW lasers.

International Conference on Quantum Computing and Information, Mar. 11, 2008

Pulse-shaping: Spatial Mask

Pulse Shaping

- Control over the amplitude, phase, frequency and/or inter-pulse separation
- Complex pulse shaping aims to control one or more of the abovementioned parameters in a programmable manner.

Can be represented by Linear Filtering Scheme:

- Time Domain: $E_{out}(t) = E_{in}(t) \otimes g(t)$, where $\otimes = >$ convolution
- Timescales not quite accessible with conventional electronics (typically ns)!
- Frequency Domain $E_{out}(\omega) = E_{in}(\omega) \times G(\omega)$

$$G(\boldsymbol{\omega}) = \int dt.g(t).e^{i\boldsymbol{\omega} t} \quad and \quad g(t) = \frac{1}{2\pi} \int dt.g(t).e^{i\boldsymbol{\omega} t}$$

A couple of representative graphs of the pulse shaping capability is shown in the data that are collected in the wavelength and time-domain respectively.

4500

Coherence: Simple
Two-Level System
$$H^{FM} = \hbar \bigcap_{n}^{\infty} \frac{\Omega_{1}^{*}}{2} \quad 0 \quad \downarrow \qquad \Delta = \omega_{R} - N\omega$$

$$\Delta = \omega_{R} - N\omega$$

$$\Delta = \omega_{R} - N\omega$$

$$\int_{\alpha_{1}(t)=k(\mu_{eff} \in (t))^{N/\hbar}} \omega_{R} = \omega_{2} - \omega_{1}$$

$$\frac{d\rho(t)}{dt} = \frac{i}{\hbar} [\rho(t), H^{FM}(t)]$$

Taylor Series Expansion of Instantaneous Phase

$$\vec{E}(t) = \mathcal{E}_{0}(t)e^{i\omega t + i\phi(t)}$$
Phase

$$\phi(t) = b_{0} + b_{1}t + b_{2}t^{2} + b_{3}t^{3} + b_{4}t^{4} + b_{5}t^{5} + \dots$$

$$\dot{\phi}(t) = b_{1} + 2b_{2}t + 3b_{3}t^{2} + 4b_{4}t^{3} + 5b_{5}t^{4} + \dots$$
Frequency
Sweep

$$\frac{d\rho(t)}{dt} = \frac{i}{\hbar}[\rho(t), H^{FM}(t)]$$

off-diagonal density element

Manifestation of IVR in Anthracene

Experimental Results: Felkar & Zewail, 82, 2961-3010 (1985)

Model Calculations with Shaped Pulses

Anthracene

Phys. Rev. Lett. 88, 177901 (2002); J. Chem. Phys. 127, 124305 (2007)

Tier Model of IVR

Example of Hadamard Gate in Molecules

Equal superposition between quantum states

Probe Coherence ⇒ Off-Diagonal Elements

From Spectroscopy: All absorptions associated with dispersion

Kramer-Kronig relationship

 \Rightarrow All absorptions composed of Real part + Imaginary part

where Real part \Rightarrow Dispersive part Imaginary part \Rightarrow Absorption

Rabi Flopping \Rightarrow Coupling through absorptionAdiabatic Process \Rightarrow Coupling through the
Dispersive part—no
absorption process \Rightarrow No population flopping

Benefits of such study:

- Quantification of 2-level character in a multilevel system
- Off-diagonal density matrix elements switch from real to imaginary
 - Excitation process changes from being resonant to completely adiabatic

J. Chem. Phys. 127, 124305 (2007)

1 mJ/pulse @ 40fs with 1 kHz rep rate

Technology

Confocal Microscope & Tweezer

4-F Pulse Shaper

References & Announcement

- Int. J. Quant. Info. 5, 179 -188 (2007)
- J. Chem. Phys. **127**, 124305 (2007).