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Abstract

Entanglement is one of the most useful resource in quantum infor-
mation processing. It is effectively the quantum correlation between
different subsystems of a composite system. Mathematically one of
the most hard task in quantum mechanics is to characterize entangle-
ment. However progress in this field is remarkable but not complete
yet. There are many things to do with entanglement. In this lecture
we want describe some of its fundamental aspects, viz., how far we
are able to classify quantum states and what are the basic issues of
quantifying entanglement.

1 Introduction

Characterization of quantum entanglement is closely related with the follow-
ing three aspects in quantum information theory.

(i) The detection of quantum entanglement. i.e., whether a state is en-
tangled or not?

(ii) Classification of states of a composite system.
(iii) Quantification of entanglement.
We would like to address the above three aspects of quantum entangle-

ment in our lecture. However we restrict ourselves only with the composite
systems consist of two parties, i.e., only bipartite systems. Now before going
to discuss these matters we first describe some preliminary notions regarding
quantum systems.
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System. Every quantum system is associated with a separable complex
Hilbert space, say, H.

Observable. Observables are linear, self-adjoint operators (may be un-
bounded) acting on H.

State. States are represented by density operators acting on H.
By density operators we mean any self-adjoint(hermitian) linear operator

ρ acting on H that satisfies the following two relations:
(a) ρ is non-negative definite, i.e., ρ ≥ 0.
(b) tr(ρ) = 1.
Now for any density operator/matrix the following holds;

ρ2 ≤ ρ

It readily divides density operators/matrices into two distinct classes,
viz.,

(i) ρ2 = ρ, and (ii) ρ2 < ρ.
Correspondingly the states are classified for any quantum system into two

different categories;
(1) The states for which ρ2 = ρ, are called pure states. In this case

there is always a unique state vector |ψ〉 in H so that we can express ρ as
projection operator on |ψ〉, i.e., ρ = |ψ〉〈ψ|. So, pure states are identified
with vectors/rays of the Hilbert space H.

(2) The states for which ρ2 < ρ, are called mixed states. Mixed states
have no such representations like pure states. There are infinitely many ways
to represent a mixed state by mixture of pure states. They have no unique
representation.

Actually in density matrix/operator theory the set of all states is a convex
set and pure states are extreme points in that convex set.

Now for simplest quantum system, i.e., the system with dimension two,
states are known as qubits (quantum bits) like classical bits. It is interest-
ing to note that qubits has a unique geometric configuration in unit sphere
(known as Bloch sphere). In Bloch sphere representation qubits have the
following form by Pauli matrices σx, σy, σz;

ρ =
1

2
[I +−→n .−→σ ],

where, −→n = (nx, ny, nz) is called Bloch vector, −→σ = (σx, σy, σz) and I = two
dimensional identity operator. For pure qubits |−→n | = 1 and for mixed qubits
|−→n | < 1.

However, for systems with dimension greater than two there are no such
geometric configuration like qubits. The states in a d- dimensional system
are called qudits.
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2 Composite systems and Entanglement

Consider a quantum system consists of several number of parties, say, A, B,
C, D, etc. Such systems are known as multipartite systems. Mathematically,
the joint system H is described by the tensor product of individual systems
HA, HB, HC , . . .; i.e., as H = HA⊗HB ⊗HC ⊗ . . .. The first classification of
quantum states in such composite systems is as follows:

(i)Separable states: Any state ρABCD... of a composite system consists
of parties A, B, C, D, etc., is called a separable/classically correlated state
iff we can represent the state in the following manner:

ρABCD... =
∑

i

wiρ
i
A ⊗ ρi

B ⊗ ρi
C ⊗ ρi

D ⊗ · · ·

where 0 ≤ wi ≤ 1,
∑

i wi = 1, and ρi
A, ρi

B, ρi
C , ρi

D, . . . are states of different
subsystems.

In other words separable states are those which can be prepared locally.
(ii)Entangled states: The states which cannot be represented as above

considering all possible changes in local bases are known as entangled states.
Alternately, all the states other than the separable states are entangled.
It is really a hard task to characterize entangled states. Till now we

have only partial answers and this domain is one of the fundamental task in
quantum information theory. We concentrate here only with the bipartite
systems where we would find so many problems to solve.

Now we consider first the case of pure bipartite states. All the pure sepa-
rable states have the product form, called usually pure product states. Sym-
bolically, if |ψ〉AB is a pure product state, then we can write it always as
|ψ〉AB = |χ〉A ⊗ |φ〉B.

For pure entangled states, if |ψ〉AB is a pure entangled state, then we can
write it always as,

|ψ〉AB =
k≤min{dim(HA),dim(HB)}∑

i

√
λi|i〉A ⊗ |i〉B

where 0 ≤ λi,
∑

i λi = 1 and {|i〉A}, {|i〉B} are two orthonormal bases of
systems A and B respectively. Here it should be noted that for pure entangled
states the number of non-zero terms in the above sum must be at least two.
The form what we have written above for pure entangled states is known
as Schmidt decomposition of pure states. The non-zero elements λi are
called Schmidt terms/coefficients. This is a consequence of singular value
decomposition theorem in linear operator theory. Actually we can write any
pure state in the above form whether product or entangled.
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However for mixed states we have no such theorem by which we can
find whether a state is entangled or separable. We need further tools to
detect entangled states. We first describe some good detectors of entangle-
ment/separability.

2.1 Bell Inequalities:

These are very good detectors of entanglement. Any state of composite sys-
tem that violets some Bell type inequalities is known to be an entangled state.
For separability, all separable states would satisfy Bell type inequalities. The
most common Bell inequalities are known as Bell-CHSH inequalities, given
by,

tr(ρB) ≤ 2,

where B is the Bell operator,

B = −→a .−→σ ⊗ (
−→
b +

−→
b′ ).−→σ +

−→
a′ .−→σ ⊗ (

−→
b −−→b′ ).−→σ

with −→a ,
−→
b ,
−→
a′ ,
−→
b′ are three dimensional unit vectors.

For two qubit system an equivalent inequality is given by Horodecki et.al.,
as follows;

M(ρ) ≤ 1

where M(ρ) is constructed by the following prescription:
Write the two-qubit state ρ in the form:

ρ =
1

4
[I ⊗ I +−→r .−→σ ⊗ I + I ⊗−→s .−→σ +

∑

i,j=x,y,z

tijσi ⊗ σj]

Now form the real matrix T = (tij) and find the sum of the two greater
eigenvalues of the matrix T †T . This sum is M(ρ).

The Bell-inequalities are not sufficient to detect all entangled states. All
pure entangled states violet some Bell-inequalities. However there are mixed
entangled states that satisfy all the standard Bell inequalities. In the simplest
dimension, i.e., in 2 × 2 the so-called Werner states provide us an example
that satisfies Bell-CHSH inequalities but entangled for large region. The
entanglement is found initially by the flip-operator. In 2 × 2, Werner states
are given by,

ρW = p|ψ−〉〈ψ−|+ 1− p

4
I

where −1
3
≤ p ≤ 1 and |ψ−〉, I are the singlet state and the identity operator

in 2 × 2. It is easy to check that, for p > 1√
2
, ρW violets Bell-inequalities.

However, for 1
3

< p ≤ 1√
2
, they remain entangled. We now present the most

useful detector of entanglement via partial transposition.
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2.2 Partial transposition:

Suppose ρAB be a bipartite state shared between two parties A and B and
{|i〉A}, {|i〉B} be two orthonormal bases of the corresponding systems. Then
we can represent ρAB as follows;

ρAB =
∑

i,j,k,l

ρij,kl|ij〉AB〈kl|

where by |ij〉AB〈kl| we mean |i〉A〈k| ⊗ |j〉B〈l|. The partial transposition of
ρAB with respect to system, say B, is then defined by;

ρTB
AB =

∑

i,j,k,l

ρij,kl|il〉AB〈kj|

Or, in other words, the matrix elements of ρTB
AB is defined as;

ρTB
ij,kl = ρil,kj

In linear operator theory the operation transposition is a positive oper-
ator but not completely positive(which are positive in all possible extended
spaces). The consequence of not a completely positive map, partial trans-
position is unable to preserve positivity of density matrices/operators but
preserves hermiticity. So after partial transposition a state cannot be re-
main in general a state, it may have negative eigenvalues. We then classify
bipartite states in two distinct classes:

(i) states with positive partial transposition or, PPT states, i.e., after
partial transposition they remain positive operator; and

(ii) states with negative partial transposition or, NPT states, i.e., after
partial transposition they have at least one negative eigenvalues.

Immediate consequence of the above classification is as follows:
(a) all NPT states are entangled;
(b) all separable states are PPT states.
However there are entangled states which are PPT states and also they

have another fundamental property of bound entanglement, for which we
require some notions of quantification that are necessary for information
processing. One can now check that Werner states in 2 × 2 are entangled
if p > 1

3
and they are separable for p ≤ 1

3
. For 2 × 2 and 2 × 3 systems

partial transposition is a necessary and sufficient condition for separability,
however for higher dimensional systems it is only a necessary condition for
separability, i.e., all separable states are necessarily PPT.

Now to characterize further and also to use entanglement as a resource for
information processing, we have to describe some quantification schemes for
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entanglement. After reviewing some notions of measure of entanglement and
the problem of quantification, we again describe some other useful detector
like, reduction criterion, maximally entangled fraction, etc. Before going to
the concept of measure of entanglement, we first describe some notions of
physical operations and local operations with classical communications (in
short, LOCC).

2.3 Physical operations and LOCC

Suppose a physical system is described by a state ρ. By a physical operation
on ρ we mean a completely positive map E acting on the system and described
by

E(ρ) =
∑

k

AkρA†
k

where each Ak is positive linear operator that satisfies the relation
∑

k A†
kAk ≤

I. If
∑

k A†
kAk = I, then the operation is trace preserving. When the state

is shared between a number of parties, say, A, B, C, D,. .... and each Ak has
the form Ak = LA

k ⊗LB
k ⊗LC

k ⊗LD
k ⊗ · · · with all the LA

k , LB
k , LC

k , LD
k , · · · are

linear positive operators, the operator is then called a separable superopera-
tor. Now every LOCC is a separable superoperator but it is unknown to us
whether the converse is also true or not.

2.4 Measure of entanglement

Entanglement can be used to perform various tasks which are otherwise im-
possible. To apply this resource perfectly the quantification is very much
necessary. However there are no measure of entanglement which satisfies all
the properties of a good measure of entanglement. Now we will discuss about
some important measures of entanglement.

2.4.1 Von-Neumann entropy and Pure state entanglement

The Von-Neumann entropy for any state whose density matrix is ρ, is given
by

S(ρ) = tr(ρ log ρ)

Now for a pure bipartite state |Ψ〉AB, the entanglement of the state is
defined by the Von-Neumann entropy of any of its reduced density matrices.
Interestingly, this is the unique measure of pure state entanglement.
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2.4.2 Entanglement of formation

Entanglement of Formation EF of a bipartite mixed state ρAB is defined to
be the minimum value of convex sum of pure state entanglements E(ξ) over
all possible ensembles of pure states ξ ≡ {pi, |Ψi〉} which realizes the mixed
state ρAB, i.e., ρAB can be prepared from a mixture of that ensemble as
ρAB =

∑
i pi|Ψi〉〈Ψi| and EF (ρAB) = minξ[piE(|Ψi〉)].

2.4.3 Distillable entanglement

The distillable entanglement ED(ρAB) is defined formally as

ED(ρAB) = sup
m

ζm ≡ lim
n→∞

m

n
(1)

where m copies of Bell state |Φ+〉 ≡ |00〉+|11〉√
2

can be extracted from n copies
of ρAB.

It is interesting to note that distillable entanglement of any PPT state
is zero. The entangled states which have zero distillable entanglement are
called bound entangled states.

There are some other well known measures like, Relative entropy of En-
tanglement, Logarithmic Negativity, Squashed Entanglement, Concurrence,
etc. For some specific tasks they are very much usable.

Now we describe our last detection criterion, known as reduction criterion.

2.5 Reduction criteria:

Separable states must satisfy the following two inequalities

I ⊗ %B − %AB ≥ 0 , %A ⊗ I − %AB ≥ 0

If any one of the above two conditions is violated then the state %AB

would be entangled.
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