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The Bell-CHSH Expression :

where E(A,B) =< AB >

The above expression is bounded by :

|E(A1,B1)+ E(A1,B2)+ E(A2,B1)- E(A2,B2)|

(a) 2 for local realistic theory as one can easily check 
that under this assumption:

A1( B1+B2 ) + A2( B1 - B2 ) = ± 2

(b) 2�2 for Quantum mechanical Correlations.

(c) No signalling condition does not put any restriction.



(Q)What makes Quantum mechanics to limit 
the CHSH expression by Tsirelson’s bound ?

OR

So a natural question arises:

To which odd will it lead if one assumes that 
“Quantum correlations” violate the Bell-CHSH 
inequality by more than 2����2.

This presentation (our recent work) is an at-
tempt to answer this question.



An inequality in general probabilistic theory under 
different assumptions:

Assumptions :

1) Joint measurement is possible on system S1 

2) No-signalling condition holds



The probability that Alice will obtain the result AJ = A�������� can 
be written as
p(AJ = A�������� ;B) = p(AJ = A�������� = B)+p(AJ = A����J = ����B) (1)

As these probabilities are non-negative, hence:

p(AJ = A�������� = B) + p(AJ = A�������� = ����B) ����
����p(AJ = A����J = B) �������� p(AJ = A����J = ����B�������� (2)

Now the term in the right hand side can be written as

p(AJ = A�������� =B) �������� p(AJ = A�������� = ����B)�������� = ½|E(AJ, B)+E(A��������, B)���� (3)

where the correlation function E(A, B) is defined as :

E(A, B) = p(A = B) �������� p(A = ����B) = AB

The above three equations finally give us

p(AJ = A�������� ;B) ����1/2����E(AJ, B)+E(A�������� , B)����
(4)



Similarly, if we assume that Bob measures for the observable B� �
, we will obtain p(AJ = �������� A����J; B����)  �������� 1/2  �������� E(AJ,B����) �������� E(A����J , B����) ����
(5)

The No-signalling constraint tells us that :

Adding eq. (4) and (5) We get :

p(AJ = A����J; B) + p(AJ = �������� A����J ; B����)  ����
1/2 [ �������� E(AJ,B)+ E(A����J,B) �������� + �������� E(AJ,B����) �������� E(A����J, B����) �������� ] (6)

The No-signalling constraint tells us that :
p(AJ = �������� A����J;B) = p(AJ = �������� A����J;B����)
(7)
Otherwise by looking at the probabilities at her hand, Alice will 
know that what measurement Bob has performed on his 
subsystem in no time. Putting it in equation (6), we get:

p(AJ = A����J;B)+p(AJ = �������� A����J;B) ��������
1/2 [ �������� E(AJ, B) + E(A����J, B) ����+����E(AJ, B����) �������� E(A����J, B����)�������� ]

(8)



Now the LHS ,by the simple law of probability theory ,is 
equal to 1. so the above inequality ultimately reduces to:
[ ����E(AJ, B)+E(A����J, B)����+����E(AJ, B����)����E(A����J, B����)�������� ] ���� 2 (9)

If this inequality gets violated in a theory then we should 
conclude that :

(a) either there can be no joint measurement in that theory

OR

(b) If there exists joint measurement in that theory then 
the theory permits signalling.



Quantum measurements :

Theoretical Quantum measurements = Resolution of Identity 
Operator by means of non-negative self-Adjoint operators.

I = ���� Ei ,where 0 ��������Ei ��������I.

Ei´s are called ‘elements’ of measurement.In a 
measurement, probability of clicking the ith result = Tr[� Ei], 
� is the initial sate of the system.



Joint Measurement in QM

Consider two observable

1 1 2 2,F F I F F I+ = + =
Joint measurement exists iff
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Joint measurement exists iff



Unsharp  spin observable :

I =1/2 [I + �.�]+ 1/2 [I ���� �.�]

The interpretation: If in a measurement for spin along direction 
�, 1/2 [I + �.�] clicks then , we will assign 1 as the value for 
spin and will conclude that spin of particle is sharply defined 
along the direction �. And If 1/2 [I �������� �.� ] clicks then , we will 
assign -1 as the value for spin and will conclude that spin of assign -1 as the value for spin and will conclude that spin of 
particle is sharply defined along the direction �����.

Another resolution(due to P.Busch) :

I = E λλλλ(�) + E λλλλ(-�) where E λλλλ(�) = 1/2 [I + � �.�] and 0 < � ��������1
The interpretation:The spectral decomposition of E λλλλ(�) is given 
by
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From this representation it is clear that the POVM ����E λλλλ(�) , E λλλλ(-
�) ���� is a smeared version of the projective measurement

����1/2 [I + �.� ], 1/2 [I �������� �.� ]����.
This is the formal sense in which the former represents 
unsharp spin measurement in the direction � . Noteworthy here 
is that for � = 1, it represents the usual sharp (projective) spin is that for � = 1, it represents the usual sharp (projective) spin 
measurement along �. The eigen values r and u of E λλλλ(�) 
where;

r =1/2(1+�) > 1/2

and

u =1/2(1 ���������) < 1/2

are interpretated respectively as reality degree and the 
degree of unsharpness of the spin property along �.



Joint measurement of spin :

Projective measurements are too restrictive. In the framework 
of projective measurements, there are observables which 
cannot be measured jointly. This distinguishing feature of 
quantum mechanics is popularly known as Complementarity. 
Examples of complementary observables are position and Examples of complementary observables are position and 
momentum observables, spin bservables in different directions 
etc. But in the more general framework, it

has been shown that certain complementary observables (in 
standard measurement) can be measured jointly if they are 
represented by a particular form of POVM (having an 
interpretation in terms of  unsharpness) instead of being 
represented by projection operators.



Joint measurement of spin observables in different directions 
has been extensively studied by P. Busch . He, by exploiting 
the necessary and sufficient condition for co-existence of two 
effects as given by Kraus , showed that a pair of unsharp spin 
properties Eλλλλ1(�1) and Eλλλλ2( �2) are co-existent (i.e. can be 
jointly measured) if and only if :

���� ���� ���� �������� ���� ������ ������ ������ ��

For �1 = �2 = � i.e for equal unsharpness for both the spin 
properties, the condition reduces to :

�[ ���������1 + �2 ����+���������1 ���������2 ��������] � ��� ��� ��� ��2 
(12)

����(�1 �1 + �2 �2 )����+����(�1 �1 ���������2 �2 )���� ������ ������ ������ ��2 
(11)



�[ ���������1 + �2 ����+���������1 ���������2 ��������] � ��� ��� ��� ��2 
(12)

The term in brackets has maximum value 2				2. Hence the 
coexistence condition is satisfied for all pairs of directions �1
and �2 if and only if � � � 1 �2. 
i.e. The overall structure of Quantum mechanics is such that 
it permits joint-measurement of spin along two different 
directions upto a degree of unsharpness � = 1 				2

Violation of TSirelson’s bound implies signalling in QM.

directions upto a degree of unsharpness � = 1 				2

Now we consider a situation where the system consists of 
two, two level quantum systems in a state � (say). Out of the 
two observers Alice and Bob, Alice; on her subsystem, 
measures for the unsharp spin observables AU or A�������� (whose 
joint measurement is possible in quantum mechanics)



Where : AU = 1/2 [ I + �a.� ]

and

A�������� = ½ [ I +�a����.� ].

We will denote the sharp counterparts of these observables 
by A and A���� respectively.

Bob on his subsystem measures either

B = 1/2 [ I + b.� ]

or

B��������= 1/2 [I + b����.�]



For these observables inequality (9) reduces to :

����E(AU,B)+E(A�������� ,B)����+����E(AU,B����)����E(A�������� ,B����)��� ���� ���� ���� �2 (13)

where E(AU, B) stands for Tr(� AU B);

E(A�������� ,B) for Tr(� A�������� B) and so on.

E(AU, B) =Tr(� AUB) = �Tr(�AB)= �E(A, B),
Similarly   E(A��������, B) = �E(A����,B) and so on. It is noteworthy 
here that E(A, B), E(A����, B) etc. denote the usual quantum-
mechanical expectations.

1 1
( 1) [ . ] ( 1) [ . ] ( . )

2 2UA I Iλα σ λα σ λ α σ= + + + − − =



As we have seen in the previous discussion that value of �
can go maximum up to 1/ 				2 in order to make joint 
measurement of spin along any two different directions 
possible within quantum mechanics. Hence, for no violation 

With the help of above analysis equation (13) can be rewritten 
as

�[ ��������E(A, B)+E(A����, B) ��������+ ��������E(A, B����)����E(A����, B����) ��������] � �� �� �� �2 (14)

of the ‘no signalling condition’ the term in the parentheses of 
equation (14) should be either less than or equal to 2				2; i.e
there will be no superluminal signalling in quantum 
mechanics as long as :

[ ��������E(A,B) + E(A����,B) ��������+ ��������E(A,B����)����E(A����,B����) ��������] � ��� ��� ��� ��2����2    
(15)

���� ��������E(A,B) + E(A����,B) + E(A,B����) ��������E(A����,B����) �������� � ��� ��� ��� ��2����2 
i.e as long as quantum correlations satisfy Tsirelson’s bound.




