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OUTLINE

review of optimal discrimination protocol
for two quantum states

minimum-error discrimination of two
[unitary transformations:j

entanglement is useless!

minimum-error discrimination of two
[ quantum operations: j

entanglement can improve the discrimination !!

complete solution for two Pauli channels

entanglement can improve the discrimination of

minimax discrimination




MINIMUM-ERROR DISCRIMINATION
BETWEEN TWO QUANTUM STATES

p1 and p2 with prior probability p1 and p2 =1—p

Look for the two-valued POVM {1 .1} with 1 +11, =1
that minimizes the error probability

[ pe = p1Tr|p11ls] 4+ poTr|poIl ] ]

Optimal POVM: II; and II,
are the orthogonal projectors on the support

of the positive and negative part of the operator
P1pP1 — P22 (HGIStrOm, I 976)

1
[ pE = 5 (1= [lp1p1 - p2,02|1)] with 1141 = TrVATA = max [ThUA] = 3 si(4)

... for pure states

4 )

PE = % [1 —1- 4p1p2\<¢1\¢2>\2}

. J




MINIMUM-ERROR DISCRIMINATION OF
TWO UNITARY TRANSFORMATIONS

Ui
P or
Uy ?

Choose p to minimize the error probability

1
PE = = (1 — ||p1U1PU1]_L —szz,OUTHl)

2

Concavity == ,=[¥)(¥| pure [pE— [ — 1~ dpip (BT T )2 D

Diagonalize w=ujv, =Y c¢™ls,)¢;l and write 4= ¢lé;)
J

J

2 | e
1 — 4pip2 Z e"i[c;|? , el

j _ ) (Acin et al.,

> D - : D’Ariano et al.,
T(UQTUl)Q j 2001 )

1
PE=§




DOES ENTANGLEMENT
IMPROVE THE DISCRIMINATION ?

Ui

or
) U; 1 '

error probability: pE = % [1 — /1= 4pipal(IUJU, @ I!¢>>!2]

NO !

ujts and ultiel have the same spectrum !

however...
entanglement can improve the discrimination among
unitaries in a larger set
Example: {I,0,,0,,0.} can be perfectly distinguished
using a maximally entangled state and a Bell measurement




WHAT ABOUT DISCRIMINATING
BETWEEN TWO QUANTUM CHANNELS ?

&1
P or '
g !

Choose p to minimize the error probability

1
e = 5 (1= maxllns ) - paeaol

Can entanglement be useful ?
&1

or
& !

1
=—(1-— E1RL)p —pa(Ea ®T
pe =5 (1- max (€0 Do - alE 0 Dol )

In both scenarios, the optimal o is pure
Separable states are useless

CB-norm
K=H




Example

1

Z (21 —p)

1
= g(axpax + oypo, +0,p0,) = 3

E(|lP) D) =10yl ) er,

S|l [v) e,
Wh=lowl W eHon,

() (2I®Tr1[|¢><w\] [o)l) ) e HOHR,

Ex([){(W]) =
(&1 @I)(

¥
(E2 @ T)(|y

)
V)
Without entanglement

Using a maximally
entangled state |¢)

perfect discrimination




WHEN IS ENTANGLEMENT USEFUL ?

Isomorphism between operators on H and bipartite vectors on H ® H

A <s—=|[4) = ) (n]Alm)|n)®|m) =A@ I|I) =1 AT|I) Tr[A'B] = (A|B))

A =|UDV) =UQVT|ID) =UxV" Z dp|n) ® |n) = rank(A) = Schmidt number of |A))

n=1

maximally entangled state = \/LE |U)), with U unitary and d = dim(H)

pr &, P2 & [A:[pl(&@I)p2(52®1)]1>><<IJ

mace||[p1 (€1 ©T) — pa(E2 @ DYEN (el = max [T©EAT@E,

minimum-error probability

-
1

1
PE = 5 (1 — Tmax HI@{TAI@f*Hl) == (1 — max |I®PAI®P|1>}

[£T€]=1 2 P>0, Tr[P2]=1
\_

No need of entanglement IFF
the maximum can be achieved by a rank-one P (MFS, 2005)




DISCRIMINATING TWO QUANTUM CHANNELS :
a relevant case

r

A diagonal on a “Bell basis”

\_ J

A=), mn|Un){Un Te[U}},Un] = dén,m

max |[IQEAIRET], < r,| max ||U,® [ U),:@I = Tn
e IO AT e, <3 Il max U HEN(EUT @ 1], = I

n

Any maximally entangled state saturates the bound

example: ; ;
pie. Ep) =) aVUnpU}, > a) =1
two generalized z "

Pauli channels Tn = P1qn’ — P2gn

(1) (2)




DISCRIMINATION FOR PAULI CHANNELS

3

ED(p) =" qVoipoi

1=0

A=30 rilo) (o ri=pig.") — pag”

Any maximally entangled state is optimal

When does entanglement strictly improve the discrimination !
, 1

pp =5 (1-max|l@ P AT P|,) ;

2

;) T \/a;(l—:zz)ei‘/j ran N
P_(\/ac(lzzj)ei‘f5 | —5 >’ ank(B) =1

0<x<1, 0<o¢p<2r.

1
pp==-(1-M), M = max{|ro + rs| + |r1 +r2|,|ro + 71|+ |ra + 73|, |ro + 12| + |r1 + 73|}

: 4 )

input an eigenstate of ¢ o




ENTANGLEMENT CAN IMPROVE THE DISCRIMINATION
OF ENTANGLEMENT-BREAKING CHANNELS

EBC IFF for any bipartite r (€® I is separable

|FF E(P)=§<¢k|p|¢k>|¢k><¢k| with 2. |ok)(ok| = 1

EBC can be simulated by a measure-and-prepare channel

Two depolarizing channels

3
1 —gq
g‘f)(p):q%p—l_?zaapaa) QI#QZ7 p1=pandp2:1—p

a=1

Entanglement improves the discrimination IFF T, 7a <0

ro=pq —(1—p)q,
I —q1
3

1 _
12 p< 12 fOI' Q1<QQ7
2—q1 — qo q1 + g2
g2 I —qo
P

q1 + q2
For q¢1,92 < 1/2 both channels are EBC

1 —qo

—(1-p) 3

" —=T9 =T33 =D

for g > qs .




p  prior probability of a depolarizing channel with g<1/2

(1-p) prior probability of a completely depolarizing channel
Both channels are EBC

(MFS, 2005)

0 g.1 0.2 0.3 0.4 0.5
q

In the blue region a maximally entangled state
strictly improves the distinguishability




MINIMAX DISCRIMINATION
BETWEEN TWO QUANTUM STATES

Two quantum states p1 and p2
No a priori probabilities
Look for the two-valued POVM {1 .1} that minimizes
the largest of the probabilities of misidentification

[RM(pl,pz>= min max(Tr[p1Ilz], Tr[po114]) J “minimum risk’

{11,102 }

equiv. to maximize the smallest of the probabilities
of correct detection  max min(Tr[pil1,], Tr[pa1lo])

{II1,II2}




Relation bewteen MINIMAX and

MINIMUM-ERROR strategies

(D’Ariano, MFS, Kahn, 2005)

1

“Bayes risk” Rp(p) = 5 (1= llppr = (1= p)p21)

Thm |: There is a measurement {1,.1,} that is optimal
in the Bayes scheme for some a priori probability

(p*,l—p*) SUCh that Tr[plﬂl] :TI’[,OQHQD.
This measurement is optimal in the minimax scheme
as well, and one has Ru(p1,p2) = Rp(p.) = Tr[pi 1],

Thm 2: The minimum risk is given by [RM(PL/%) = max Rp( )j

and the a priori probability achieving the maximum is
p=p« of Thm |




Optimal minimax measurement given
by a non-orthogonal POVM

. 1 O
Consider plzlo 0], P

1
3

Re(r) is maximal for »p=

: 1
Imposing  TrlpuIl] = Trlpalla] = o

<>

The optimal minimax POVM is
unique and non-orthogonal




Conclusions & open problems

® The problems of discriminating between two unitary
transformations and between two quantum operations
have quite different solutions

® Entanglement can improve the discrimination

® Even if both QO’s are entanglement-breaking

® Multiple copies of QO: serial, parallel, mixed schemes
® Suitable distance measure is still lacking

® Unambigous discrimination

® LOCC discrimination

® Minimax discrimination
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Intro
® No-go theorems == better understanding of Q.M.

® What about correlations ?
® Quantum/classical

® Beneficial/detrimental for specific tasks

® Correlation of optimal clones are the worst for state
estimation (Demkowicz-Dobrzanzki, PRA 2005)

® Features of correlations between clones ?

® Cloning without correlations ?

® Can we erase correlations ? Qudits vs Continuous
Variables

® Quantum version of the classical cocktail-party problem ?




Cocktail-party problem
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Sources Outputs

Noise deconvolution

Demixing by Independent Component Analysis:
the p.d. of the sum of independent random variables is
“more Gaussian” than the p.d. of the independent
random variables themselves




Quantum cocktail-party problem

courtesy by Tomasz Szkodzinski

W(t))ape = V(Ua(t) @ Up(t) ® 1)|0) ® |0) ® |E).

V.Ua,Up unknown

quite hard...

v

( Determine the SIGNALS U 4, UB)




Faithful decorrelation

N-partite quantum state p € S

[ Dp)=p;®...0 py ] p; 1s the ith party reduced density matrix of p

IMPOSSIBLE (nonlinear) if S = all density matrices

Terno, PRA 1999
IMPOSSIBLE if S contains »'» p”

and a convex combination of them, and the reduced
states of p', p” are different at least for two parties

DDPS, PRL 2007

What about approximate decorrelation ?




Decorrelation for covariant set of states

§ N-partite “seed” quantum state p
§ Encode information via a UIR of a group G

pglz Ug1®...®UgN,0U;r1®---®U:€ILN

Look for a decorrelating map that maximizes
the averaged single-site fidelity

Z /G F(U, T o|UL Trs | 2(UypUD))),

(

§ w.l.o.g.look for covariant map | Z (UgpU}) = UgZ (p) U}

g
"

that decorrelates the seed state %(p) =p1 ®...pN

§ Thanks to covariance, correlations in all states
of the orbit will be erased




|. Two qubits with different signals

§ Permutation invariant seed state => Pasblock diagonal
form w.r.t. singlet-triplet subspaces

pap(a, B) = Ula) ® U(B)pagU(a)t ® U(B)

pala) = Trglpap(a, B)] = Y1 +/nn,(a) - o]

Local :
§ Local states ps(B) = Tralpas(c, B)] = A1 +ans(B) - o).

§ Group and permutational

. D (pap) = apap T bDi(pap) + cDy(pap),
covariant maps.

where D (pap) = {pa® 1+ 18 pg— pap),
Dr(pap) =541®1 —2p, @1 —21® pg + pyp),

1 +/fn,(a) - o),
1 +\gnp(B) - o],

§ Output states:




§ Imposing  D(pap) = 5% = [}(1 + 7jo)]2

nontrivial decorrelation ( 7> 0) is possible only
when the seed state has the form

[pAB=Z[]1®]1—I-n(0'Z®]1+]1®0'Z)—)\0'Z®0'Z].]

§ All states are separable

§ Maximal achievable 7 vs 17 and A

1_.

0.5}

O




ll. Two qubits with identical signals

§ The decorrelation condition D(p,,) = 5> is nontrivially
satisfied for paz diagonal in the singlet-triplet basis

pas =PIV XY+ (1 = p)pynm with

[ psym=z[]1®]1+n(nz®]1—l—]1®gz)+(1+/\)/2(0'x®a'x+0'y®0'y)—/\a'z®a'z].]

1

§ Correlation cannot be erased for

p=1  maximally entangled

n=2~0 diagonal on Bell basis ~ o

output clones
[A = —1/3 J of a universal
cloning machine!!!




N to M universal cloning of qudits
without correlations is impossible

§ w.l.o.g. M=N+I and pure states
(use partial trace and depolarizing channels)

§ Universal covariance implies
1 — i QN+1
ALY @)™ = (nl#xol + 1)

2
§ Consider [¢) = (10) + ¢?[1))/V/2,

=> rh.s. poly(e™'?) with degree N+1| and
.h.s poly(e=?) with degree at most N (for linearity)

§ Should hold for[any qu => necessarily [77 = 0]

§ The proof just uses linearity => impossible even for
asymmetric and probabilistic cloning




more generally...

cloning with factorized clones is impossible for any set of
pure states which contains a finite arch of states of the form

¢) := v/p|0) + /1 — pe'|1)

What about discrete set of states ?

Conjecture: linearly dependent set of states
cannot be cloned without correlations

Linear independent states can be probabilistically
perfectly cloned via unambiguous state discrimination




lll. Gaussian states
§ It is always possible to decorrelate any state in the set

D(a) ® D(B)papD(a) @ D(B)T

where P4z is a two-mode Gaussian state

§ Just use a covariant Gaussmn decorrelating channel

2(p) d'we™ ™ “*D(x)pD' (z)

_\/M/

with suitable positive matrix G.

§ Z(pas) will be still Gaussian, with new block-diagonal
covariance matrix M ,i.e.decorrelated

§ The channel is covariant => decorrelation for any «, B




Cloning without correlations for GS

1. Use N-splitter to concentrate
the signal in one mode

2. Amplify the signal by a PIA
with power gain M/N

3. Distribute the amplified mode
by a M-splitter with (M-1)
—vaciuum madas

thermal states with
suitable photon nhumber




Conclusions & open problems

® Only few states can be decorrelated if the covariance group
is “large”

® Any joint Gaussian state can be decorrelated

® Covariant cloning without correlations:
NO for qudits, YES for CV

® ! Experimental set-up for covariant decorrelation for qudits

® ! Optimal decorrelators for CV

® ! Restriction to bilocal or LOCC operations

® ? No-cloning without correlations for discrete set of states
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