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OUTLINE
0.              review of optimal discrimination protocol 

         for two quantum states 

entanglement is useless!

entanglement can improve the discrimination !!

3.            complete solution for two Pauli channels

5.                              minimax discrimination

1.               minimum-error discrimination of two 
               unitary transformations:  

2.                 minimum-error discrimination of two 
                   quantum operations: 

4.    entanglement can improve the discrimination of EBC



MINIMUM-ERROR  DISCRIMINATION 
BETWEEN  TWO  QUANTUM  STATES

with prior probability      and 

Optimal discrimination of quantum operations

Massimiliano F. Sacchi
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(1− ‖p1ρ1 − p2ρ2‖1) , (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)
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QUIT, Unità INFM and Dipartimento di Fisica “A. Volta”, Università di Pavia, I-27100 Pavia, Italy.
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and
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, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}
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Π1 + Π2 = I

{Π1 , Π2}
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Optimal POVM:       and Π1
are the orthogonal projectors on the support 

of the positive and negative part of the operator                        
(Helstrom,1976)

Π2
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2

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)

where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.

The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
1
2

(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states,
one has

pE =
1
2

(
1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
.(6)

The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].

From the linearity of quantum operations, the follow-
ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.

Without the use of entanglement, one has

p′E =
1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound

pE ≤ 1
2

(
1−

∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I

d2

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d2

∣∣∣ + p2
d2 − 1

d2

)]
. (9)

For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].

Any quantum operation E is a completely positive
map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the
quantum system (here on, for simplicity, we consider op-
erations that map states from H to H), and satisfy the
completeness relation

∑
n K†

nKn = I, thus preserving the
trace of ρ.

Using the notation of Ref. [14] for bipartite vectors

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉

= A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

one can write the evolution under E⊗I of a pure bipartite
state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

where τ and ∗ denote transposition and complex conjuga-
tion on the basis chosen in Eq. (11). Then, the minimal
error probability in Eq. (6) rewrites

pE =
1
2

(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
, (13)

with

... for pure states

pE =
1
2

[
1 −

√
1 − 4p1p2|〈ψ1|ψ2〉|2

]
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(1− ‖p1ρ1 − p2ρ2‖1) , (3)

Look for the two-valued POVM             with
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nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states
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, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM
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with

Π1 + Π2 = I
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that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(1− ‖p1ρ1 − p2ρ2‖1) , (3)
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Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has
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tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1]

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and
dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

ρ = |ψ〉〈ψ|

2

pE =
1
2

(
1− ‖p1U1ρU†

1 − p2U2ρU†
2‖1

)
, (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)

where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.

pE =
1
2

[
1−

√
1− 4p1p2|〈ψ|U†

2U1|ψ〉|2
]

The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
1
2

(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states,
one has

pE =
1
2

(
1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
.(6)

The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].

From the linearity of quantum operations, the follow-
ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert

space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.

Without the use of entanglement, one has

p′E =
1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound

pE ≤ 1
2

(
1−

∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I

d2

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d2

∣∣∣ + p2
d2 − 1

d2

)]
. (9)

For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].

Any quantum operation E is a completely positive
map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the
quantum system (here on, for simplicity, we consider op-
erations that map states from H to H), and satisfy the
completeness relation

∑
n K†

nKn = I, thus preserving the
trace of ρ.

Using the notation of Ref. [14] for bipartite vectors

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉

= A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

one can write the evolution under E⊗I of a pure bipartite
state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

2

pE =
1
2

(
1− ‖p1U1ρU†

1 − p2U2ρU†
2‖1

)
, (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)

where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.

pE =
1
2

[
1−

√
1− 4p1p2|〈ψ|U†

2U1|ψ〉|2
]

Diagonalize

W ≡ U†
2U1 =

∑

j

eiγj |φj〉〈φj |

pE =
1
2



1−

√√√√√1− 4p1p2

∣∣∣∣∣∣

∑

j

eiγj |〈ψ|φj〉|2

∣∣∣∣∣∣

2




The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by
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1−max
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one has
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The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
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From the linearity of quantum operations, the follow-
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with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
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For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].
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lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
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interested in the possibility of exploiting entanglement
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with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.

Without the use of entanglement, one has

p′E =
1
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(
1−max
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=
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whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound

pE ≤ 1
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For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1]

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and
dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(
1− ‖p1U1ρU†

1 − p2U2ρU†
2‖1

)
, (3)

Choose     to minimize the error probability 
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as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1]

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and
dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has
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The problem of optimally discriminating two quantum operations

E1

and

E2

can be reformulated into the problem of finding in the input Hilbert space H the state ρ such that the error probability
in the discrimination of the output states

E1(ρ)

and

E2(ρ)

is minimal. We are interested in the possibility of exploiting entanglement in order to increase the distinguishability
of the output states. In this case the output states to be discriminated will be of the form (E1 ⊗ IK)ρ and (E2 ⊗ IK)ρ,
where the input ρ is generally a bipartite state of H ⊗ K, and the quantum operations act just on the first party
whereas the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal error probability when a strategy with unentangled input is
adopted. Hence, without the use of entanglement the minimal error probability is given by

p′E =
1
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(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states, one has
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1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
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The maximum of the trace norm in Eq. (6) is equivalent to the norm of complete boundedness [9], and in fact for
finite-dimensional Hilbert space one can just consider

K = H

[9, 10].
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where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following
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where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.
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The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
1
2

(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states,
one has

pE =
1
2

(
1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
.(6)

The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].

From the linearity of quantum operations, the follow-
ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.

Without the use of entanglement, one has
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whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound
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For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].
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ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].
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tary transformations [8]. In fact, the most elementary
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tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
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The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
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to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
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with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
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The use of entanglement generally improves the dis-
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it follows that in both Eqs. (5) and (6) the maximum is
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The use of entanglement generally improves the dis-
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The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
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minimal error probability is given by
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)
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The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].

From the linearity of quantum operations, the follow-
ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,
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|ψ〉 ∈ H ,
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where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.
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The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
quantum operations act just on the first party whereas
the identity map I = IK acts on the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
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The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].
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ing property of the trace norm [12]
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with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has
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operations E1 and E2 can be reformulated into the prob-
lem of finding in the input Hilbert space H the state ρ
such that the error probability in the discrimination of
the output states E1(ρ) and E2(ρ) is minimal. We are
interested in the possibility of exploiting entanglement
in order to increase the distinguishability of the output
states. In this case the output states to be discriminated
will be of the form (E1⊗ IK)ρ and (E2⊗ IK)ρ, where the
input ρ is generally a bipartite state of H ⊗ K, and the
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In the following we will denote with p′E the minimal
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The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact
for finite-dimensional Hilbert space one can just consider
K = H [9, 10].

From the linearity of quantum operations, the follow-
ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.
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dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

ρ

2

pE =
1
2

(
1− ‖p1U1ρU†

1 − p2U2ρU†
2‖1

)
, (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following
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where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
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tian, the singular values just corresponds to the absolute
value of the eigenvalues.
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is minimal. We are interested in the possibility of exploit-
ing entanglement in order to increase the distinguishabil-
ity of the output states. In this case the output states
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1]

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and
dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

ρ
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expressions for the trace norm are the following
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|Tr[UA]| =
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where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.
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and
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can be reformulated into the problem of finding in the
input Hilbert space H the state ρ such that the error
probability in the discrimination of the output states

E1(ρ)

and

E2(ρ)

is minimal. We are interested in the possibility of exploit-
ing entanglement in order to increase the distinguishabil-
ity of the output states. In this case the output states
to be discriminated will be of the form (E1 ⊗ IK)ρ and
(E2 ⊗ IK)ρ, where the input ρ is generally a bipartite
state of H ⊗K, and the quantum operations act just on
the first party whereas the identity map I = IK acts on
the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
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(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states,
one has

pE =
1
2

(
1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
.(6)

The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact for
finite-dimensional Hilbert space one can just consider

K = H

[9, 10].
From the linearity of quantum operations, the follow-

ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.
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The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact for
finite-dimensional Hilbert space one can just consider
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From the linearity of quantum operations, the follow-

ing property of the trace norm [12]
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1]

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and
dividing the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

ρ
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The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

where I denotes the identity matrix, and Tri denotes the
partial trace with respect to the ith Hilbert space.

Without the use of entanglement, one has

p′E =
1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound

pE ≤ 1
2

(
1−

∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I

d2

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d2

∣∣∣ + p2
d2 − 1

d2

)]
. (9)

For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2

[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].

Any quantum operation E is a completely positive
map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the
quantum system (here on, for simplicity, we consider op-
erations that map states from H to H), and satisfy the
completeness relation

∑
n K†

nKn = I, thus preserving the
trace of ρ.

Using the notation of Ref. [14] for bipartite vectors

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉

= A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

one can write the evolution under E⊗I of a pure bipartite
state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

where τ and ∗ denote transposition and complex conjuga-
tion on the basis chosen in Eq. (11). Then, the minimal
error probability in Eq. (6) rewrites

pE =
1
2

(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
, (13)

where ∆ is Hermitian, and in terms of the Kraus oper-
ators {K(1)

n } and {K(2)
m } of the quantum operations is

given by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

Notice that a maximally entangled state writes in the
notation of Eq. (11) as 1√

d
|U〉〉, with U unitary and

d = dim(H). From the invariance of the trace norm
‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and
V [12], one obtains the following upper bound for the
minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (15)

Exploiting unitarily invariance and the polar decompo-
sition of ξτ as ξτ = UP with U unitary and P positive,
the maximum in Eq. (13) can be searched for positive
operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (16)

This expression is very suitable for numerical evalua-
tion. Moreover, the rank of P that achieves the maxi-
mum gives directly information about the usefulness of
entanglement. There is no need of entanglement for the
optimal discrimination if and only if the maximum in Eq.
(13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when
the quantum operations can be realized from the same set
of orthogonal unitaries (namely {Un} with Tr[U†

mUn] =
dδn,m) as random unitary transformations [15]. In this
case one has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (17)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −

p2q
(2)
n . The operator ∆ is diagonal on maximally en-

tangled states with eigenvalues drn, and the bound in
Eq. (15) then writes pE ≤ 1

2 (1−
∑

n |rn|). On the other
hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (18)
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From the linearity of quantum operations, the following property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states, it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

E1(ρ) = ρ

E2(ρ) =
1
3
(σxρσx + σyρσy + σzρσz) =

1
3
(2I − ρ)

dim(H) = 2

The use of entanglement generally improves the discrimination, and such an improvement can be very remarkable
when increasing the dimension of the Hilbert space. Consider for example the situation where one has to discriminate
between the identity map and the completely depolarizing map, with dim(H) = d. One has
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(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
1
3
(2I − |ψ〉〈ψ|) |ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
1
3
(2I ⊗ Tr1[|ψ〉〈ψ|]− |ψ〉〈ψ|) |ψ〉 ∈ H⊗H ,

p′
E =

1
2
(1−

∣∣∣p1 −
p2

3

∣∣∣−
2
3
p2)

pE = 0

p1 p2

{

1
3
(1− p1) for p1 >

1
/
4

p1 for p1 ≤
1
/
4

3

E1(ρ) = ρ

E2(ρ) = σxρσx + σyρσy + σzρσz

dim(H) = 2

The use of entanglement generally improves the dis-
crimination, and such an improvement can be very re-
markable when increasing the dimension of the Hilbert
space. Consider for example the situation where one has
to discriminate between the identity map and the com-
pletely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,
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whereas, by considering an input maximally entangled
state |φ〉, one obtains the bound
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For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1
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[indeed, from what follows, one has equality in Eq. (9)
for any maximally entangled input state].

On the other hand, there are situations in which en-
tanglement is not needed to achieve the ultimate minimal
error probability, as in the case of discrimination between
two unitary transformations [8].

Any quantum operation E is a completely positive
map, and hence can be written in the Kraus form [13]

E(ρ) =
∑
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where Kn are operators on the Hilbert space H of the
quantum system (here on, for simplicity, we consider op-
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‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and
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mum gives directly information about the usefulness of
entanglement. There is no need of entanglement for the
optimal discrimination if and only if the maximum in Eq.
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error probability in Eq. (6) rewrites

pE =
1
2

(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
, (13)

where ∆ is Hermitian, and in terms of the Kraus oper-
ators {K(1)

n } and {K(2)
m } of the quantum operations is

given by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

Notice that a maximally entangled state writes in the
notation of Eq. (11) as 1√

d
|U〉〉, with U unitary and

d = dim(H). From the invariance of the trace norm
‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and
V [12], one obtains the following upper bound for the
minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (15)

Exploiting unitarily invariance and the polar decompo-
sition of ξτ as ξτ = UP with U unitary and P positive,
the maximum in Eq. (13) can be searched for positive
operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (16)

This expression is very suitable for numerical evalua-
tion. Moreover, the rank of P that achieves the maxi-
mum gives directly information about the usefulness of
entanglement. There is no need of entanglement for the
optimal discrimination if and only if the maximum in Eq.
(13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when
the quantum operations can be realized from the same set
of orthogonal unitaries (namely {Un} with Tr[U†

mUn] =
dδn,m) as random unitary transformations [15]. In this
case one has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (17)
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error probability, as in the case of discrimination between
two unitary transformations [8].

Any quantum operation E is a completely positive
map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the
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where I denotes the identity matrix, and Tri denotes the partial trace with respect to the ith Hilbert space.
Without the use of entanglement, one has

p′E =
1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled state |φ〉, one obtains the bound

pE ≤ 1
2
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∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I
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1
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p2
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∣∣∣ + p2
d2 − 1

d2

)]
. (9)

For p1 = p2 = 1/2, e.g., one has p′E = 1
2d and pE ≤ 1

2d2 [indeed, from what follows, one has equality in Eq. (9) for
any maximally entangled input state].

On the other hand, there are situations in which entanglement is not needed to achieve the ultimate minimal error
probability, as in the case of discrimination between two unitary transformations [8].

Any quantum operation E is a completely positive map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the quantum system (here on, for simplicity, we consider operations
that map states from H to H), and satisfy the completeness relation

∑
n K†

nKn = I, thus preserving the trace of ρ.
Using the notation of Ref. [14] for bipartite vectors

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉 = A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

one can write the evolution under E ⊗ I of a pure bipartite state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

where τ and ∗ denote transposition and complex conjugation on the basis chosen in Eq. (11). Then, the minimal
error probability in Eq. (6) rewrites

pE =
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(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
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where ∆ is Hermitian, and in terms of the Kraus operators {K(1)
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m } of the quantum operations is given by
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m | . (14)

Notice that a maximally entangled state writes in the notation of Eq. (11) as 1√
d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains the
following upper bound for the minimal error probability
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)
. (15)
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〈n|A|m〉 |n〉 ⊗ |m〉 = A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)
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where τ and ∗ denote transposition and complex conjugation on the basis chosen in Eq. (11). Then, the minimal
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Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1
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where ∆ is Hermitian, and in terms of the Kraus operators {K(1)
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m } of the quantum operations is given by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

Notice that a maximally entangled state writes in the notation of Eq. (11) as 1√
d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains the
following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1
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)
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where I denotes the identity matrix, and Tri denotes the partial trace with respect to the ith Hilbert space.
Without the use of entanglement, one has

p′E =
1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled state |φ〉, one obtains the bound

pE ≤ 1
2

(
1−

∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I

d2

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d2

∣∣∣ + p2
d2 − 1

d2

)]
. (9)
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any maximally entangled input state].

On the other hand, there are situations in which entanglement is not needed to achieve the ultimate minimal error
probability, as in the case of discrimination between two unitary transformations [8].

Any quantum operation E is a completely positive map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the quantum system (here on, for simplicity, we consider operations
that map states from H to H), and satisfy the completeness relation

∑
n K†

nKn = I, thus preserving the trace of ρ.
Using the notation of Ref. [14] for bipartite vectors
Isomorphism between operators on H and bipartite vectors on H⊗H

A

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉 = A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

one can write the evolution under E ⊗ I of a pure bipartite state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

where τ and ∗ denote transposition and complex conjugation on the basis chosen in Eq. (11). Then, the minimal
error probability in Eq. (6) rewrites

pE =
1
2

(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
, (13)

where ∆ is Hermitian, and in terms of the Kraus operators {K(1)
n } and {K(2)

m } of the quantum operations is given by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

Notice that a maximally entangled state writes in the notation of Eq. (11) as 1√
d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains the
following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (15)

5

| phiME〉

where I denotes the identity matrix, and Tri denotes the partial trace with respect to the ith Hilbert space.
Without the use of entanglement, one has

p′
E =

1
2

(
1−max

|ψ〉

∥∥∥∥p1|ψ〉〈ψ|− p2
I

d

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d

∣∣∣ + p2
d− 1

d

)]
, (8)

whereas, by considering an input maximally entangled state |φ〉, one obtains the bound

pE ≤ 1
2

(
1−

∥∥∥∥p1|φ〉〈φ|− p2
I ⊗ I

d2

∥∥∥∥
1

)

=
1
2

[
1−

(∣∣∣p1 −
p2

d2

∣∣∣ + p2
d2 − 1

d2

)]
. (9)

For p1 = p2 = 1/2, e.g., one has p′
E = 1

2d and pE ≤ 1
2d2 [indeed, from what follows, one has equality in Eq. (9) for

any maximally entangled input state].
On the other hand, there are situations in which entanglement is not needed to achieve the ultimate minimal error

probability, as in the case of discrimination between two unitary transformations [8].
Any quantum operation E is a completely positive map, and hence can be written in the Kraus form [13]

E(ρ) =
∑

n

KnρK†
n , (10)

where Kn are operators on the Hilbert space H of the quantum system (here on, for simplicity, we consider operations
that map states from H to H), and satisfy the completeness relation

∑
n K†

nKn = I, thus preserving the trace of ρ.
Using the notation of Ref. [14] for bipartite vectors
Isomorphism between operators on H and bipartite vectors on H⊗H

A

|A〉〉 ≡
∑

n,m

〈n|A|m〉 |n〉 ⊗ |m〉 = A⊗ I|I〉〉 = I ⊗Aτ |I〉〉 , (11)

Tr[A†B] = 〈〈A|B〉〉

one can write the Evolution under E ⊗ I of a pure bipartite state ρ = |ξ〉〉〈〈ξ| (with Tr[ρ] = Tr[ξ†ξ] = 1) as follows

(E ⊗ I)|ξ〉〉〈〈ξ| = (I ⊗ ξτ )
∑

n

|Kn〉〉〈〈Kn| (I ⊗ ξ∗) , (12)

where τ and ∗ denote transposition and complex conjugation on the basis chosen in Eq. (11). Then, the minimal
error probability in Eq. (6) rewrites

pE =
1
2

(
1− max

Tr[ξ†ξ]=1
‖I ⊗ ξτ∆I ⊗ ξ∗‖1

)
, (13)

where ∆ is Hermitian, and in terms of the Kraus operators {K(1)
n } and {K(2)

m } of the quantum operations is given by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

6

∆ = p1(E1 ⊗ I)− p2(E2 ⊗ I)|I〉〉〈〈I| . (15)

Notice that a
maximally entangled state = 1√
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|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
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1− 1

d
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)
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Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (17)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (18)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (17) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (19)

From Eq. (20) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (20)

This result implies that in the case of Eq. (19) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (21)

In the following we consider the case of discrimination of two Pauli channels for qubits, namely

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (22)
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minimum-error probability

2

pE =
1
2

(
1− ‖p1U1ρU†

1 − p2U2ρU†
2‖1

)
, (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)

where the maximum is taken over all unitary operators,
and {si(A)} denote the singular values of A. In the case
of Eq. (3), since the operator inside the norm is Hermi-
tian, the singular values just corresponds to the absolute
value of the eigenvalues.

pE =
1
2

[
1−

√
1− 4p1p2|〈ψ|U†

2U1|ψ〉|2
]

pE =
1
2

[
1−

√
1− 4p1p2|〈〈ψ|U†

2U1 ⊗ I|ψ〉〉|2
]

U†
2U1

U†
2U1 ⊗ I

U1 U2

|ψ〉〉

{I ,σx ,σy ,σz}

Diagonalize

W ≡ U†
2U1 =

∑

j

eiγj |φj〉〈φj |

pE =
1
2



1−

√√√√√1− 4p1p2

∣∣∣∣∣∣

∑

j

eiγj |〈ψ|φj〉|2

∣∣∣∣∣∣

2




pE =
1
2



1−

√√√√√1− 4p1p2

∣∣∣∣∣∣

∑

j

eiγj |cj |2

∣∣∣∣∣∣

2




|ψ〉 =
∑

j

cj |φj〉

min
{cj}

∣∣∣∣∣∣

∑

j

eiγj |cj |2
∣∣∣∣∣∣

2

= r(U†
2U1)

The problem of optimally discriminating two quantum
operations

E1

and

E2

can be reformulated into the problem of finding in the
input Hilbert space H the state ρ such that the error
probability in the discrimination of the output states

E1(ρ)

and

E2(ρ)

is minimal. We are interested in the possibility of exploit-
ing entanglement in order to increase the distinguishabil-
ity of the output states. In this case the output states
to be discriminated will be of the form (E1 ⊗ IK)ρ and
(E2 ⊗ IK)ρ, where the input ρ is generally a bipartite
state of H ⊗K, and the quantum operations act just on
the first party whereas the identity map I = IK acts on
the second.

In the following we will denote with p′E the minimal
error probability when a strategy with unentangled input
is adopted. Hence, without the use of entanglement the
minimal error probability is given by

p′E =
1
2

(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
, (5)

whereas, by allowing the use of entangled input states,
one has

pE =
1
2

(
1− max

ρ∈H⊗K
‖p1(E1 ⊗ I)ρ− p2(E2 ⊗ I)ρ‖1

)
.(6)

The maximum of the trace norm in Eq. (6) is equivalent
to the norm of complete boundedness [9], and in fact for
finite-dimensional Hilbert space one can just consider

K = H

[9, 10].
From the linearity of quantum operations, the follow-

ing property of the trace norm [12]

‖aA + (1− a)B‖1 ≤ a‖A‖1 + (1− a)‖B‖1 (7)

with 0 ≤ a ≤ 1, and the convexity of the set of states,
it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.
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with 0 ≤ a ≤ 1, and the convexity of the set of states, it follows that in both Eqs. (5) and (6) the maximum is
achieved by pure states.

E1(ρ) = ρ

E2(ρ) =
1
3
(σxρσx + σyρσy + σzρσz) =

1
3
(2I − ρ)

dim(H) = 2

The use of entanglement generally improves the discrimination, and such an improvement can be very remarkable
when increasing the dimension of the Hilbert space. Consider for example the situation where one has to discriminate
between the identity map and the completely depolarizing map, with dim(H) = d. One has

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
I

d
|ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
I

d
⊗ Tr1[|ψ〉〈ψ|] |ψ〉 ∈ H⊗H ,

E1(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H ,

E2(|ψ〉〈ψ|) =
1
3
(2I − |ψ〉〈ψ|) |ψ〉 ∈ H ,

(E1 ⊗ I)(|ψ〉〈ψ|) = |ψ〉〈ψ| |ψ〉 ∈ H⊗H ,

(E2 ⊗ I)(|ψ〉〈ψ|) =
1
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(2I ⊗ Tr1[|ψ〉〈ψ|]− |ψ〉〈ψ|) |ψ〉 ∈ H⊗H ,

p′
E =

1
2
(1−

∣∣∣p1 −
p2

3

∣∣∣−
2
3
p2)

pE = 0

p1 p2

{

1
3
(1− p1) for p1 >

1
/
4

p1 for p1 ≤
1
/
4
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∆ = [p1(E1 ⊗ I)− p2(E2 ⊗ I)]|I〉〉〈〈I| . (15)

Notice that a
maximally entangled state = 1√

d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
the following upper bound for the minimal error probability

pE ≤ 1
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(
1− 1

d
‖∆‖1

)
. (16)

Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (17)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
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Ei(ρ) =
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n UnρU†

n ,
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n

q(i)
n = 1 (18)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (16) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has
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∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
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∑

n
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|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
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n
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∑
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(
1−

∑

n

|rn|
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=
1
2
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d
‖∆‖1

)
. (20)

This result implies that in the case of Eq. (18) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds
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n

|rn|
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α=0

q(i)
α σαρσα , (22)
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In the following we consider the case of discrimination of two Pauli channels for qubits, namely

E(i)(ρ) =
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.
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Quantum nonorthogonality is a basic feature of quantum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum entanglement, cloning, and cryptography. Nonorthogonality
is strongly related to the concept of distinguishability, and many measures have been defined to compare quantum
states [1] and quantum processes [2], according to some experimentally or theoretically meaningful criteria. Since the
pioneering work of Helstrom [3] on quantum hypothesis testing, the problem of discriminating nonorthogonal quantum
states has received a lot of attention [4], with some experimental verifications as well [5]. The most popular scenarios
are the minimal-error probability discrimination, where each measurement outcome selects one of the possible states
and the error probability is minimized, and the optimal unambiguous discrimination [6], where unambiguity is paid
by the possibility of getting inconclusive results from the measurement. Stimulated by the rapid developments in
quantum information theory, the problem of discrimination has been addressed also for bipartite quantum states,
along with the comparison of global strategies where unlimited kind of measurements is considered, with the scenario
of LOCC scheme, where only local measurements and classical communication are allowed [7].

The concepts of nonorthogonality and distinguishability can be applied also to quantum operations, namely all
physically allowed transformations of quantum states. Not very much work, however, has been devoted to the
problem of discriminating general quantum operations, and major efforts have been directed at the case of unitary
transformations [8]. In fact, the most elementary formulation of the problem can be recast to the evaluation of the
norm of complete boundedness [9], which is in general a very hard task. We recall that such a norm entered the
quantum information field as the diamond norm [10], and one of its most relevant application is found in the problem
of quantifying quantum capacities of quantum information channels [11].

In this Letter, we address the problem of discriminating with minimal error probability two given quantum oper-
ations. After briefly reviewing the case of quantum states, we formulate the problem for two quantum operations.
Differently from the case of unitary transformations [8], we show that entangled input states generally improve the
discrimination. We prove that the use of an arbitrary maximally entangled state turns out to be always an optimal
input when we are asked to discriminate two quantum operations that generalize the Pauli channel in any dimension.
In the case of qubits, we give a complete comparison of the strategies where either entangled or unentangled states
are used at the input of the Pauli channels, thus characterizing the channels where entanglement is really useful to
achieve the ultimate minimal error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}
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ations. After briefly reviewing the case of quantum states, we formulate the problem for two quantum operations.
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discrimination. We prove that the use of an arbitrary maximally entangled state turns out to be always an optimal
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, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}
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max
|ξ〉〉

‖[p1(E1 ⊗ I)− p2(E2 ⊗ I)]|ξ〉〉〈〈ξ|‖1 = max
Tr[ξ†ξ]=1

‖I ⊗ ξτ∆I ⊗ ξ∗‖1

where ∆ is Hermitian, and in terms of the Kraus operators {K(1)
n } and {K(2)

m } of the quantum operations is given
by

∆ = p1

∑

n

|K(1)
n 〉〉〈〈K(1)

n |− p2

∑

m

|K(2)
m 〉〉〈〈K(2)

m | . (14)

max
Tr[ξ†ξ]=1

‖I ⊗ ξτ∆I ⊗ ξ∗‖1 ≤
∑

n

|rn| max
Tr[ξ†ξ]=1

∥∥Un ⊗ I|ξ〉〉〈〈ξ|U†
n ⊗ I

∥∥
1

=
∑

n

|rn| (15)

∆ = [p1(E1 ⊗ I)− p2(E2 ⊗ I)]|I〉〉〈〈I| . (16)

Notice that a
maximally entangled state = 1√

d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
the following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (17)

Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (18)

p′E =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (19)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (20)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (17) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (21)

From Eq. (21) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (22)

WHEN IS ENTANGLEMENT USEFUL ?

No need of entanglement IFF 
the maximum can be achieved by a rank-one P (MFS, 2005)
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discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .
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From Eq. (19) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (16), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (20)

This result implies that in the case of Eq. (18) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (21)
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This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
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discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .
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From Eq. (20) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains
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1
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d
‖∆‖1

)
. (21)

This result implies that in the case of Eq. (19) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (22)

In the following we consider the case of discrimination of two Pauli channels for qubits, namely

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (23)

Any maximally entangled state saturates the bound

6

max
Tr[ξ†ξ]=1

‖I ⊗ ξτ∆I ⊗ ξ∗‖1 ≤
∑

n

|rn| max
Tr[ξ†ξ]=1

∥∥Un ⊗ I|ξ〉〉〈〈ξ|U†
n ⊗ I

∥∥
1

=
∑

n

|rn| (15)

∆ = [p1(E1 ⊗ I)− p2(E2 ⊗ I)]|I〉〉〈〈I| . (16)

Notice that a
maximally entangled state = 1√

d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
the following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (17)

Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (18)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (19)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (17) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (20)

From Eq. (20) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (21)

This result implies that in the case of Eq. (19) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (22)

In the following we consider the case of discrimination of two Pauli channels for qubits, namely

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (23)

example:  
two generalized 
Pauli channels 

6

max
Tr[ξ†ξ]=1

‖I ⊗ ξτ∆I ⊗ ξ∗‖1 ≤
∑

n

|rn| max
Tr[ξ†ξ]=1

∥∥Un ⊗ I|ξ〉〉〈〈ξ|U†
n ⊗ I

∥∥
1

=
∑

n

|rn| (15)

∆ = [p1(E1 ⊗ I)− p2(E2 ⊗ I)]|I〉〉〈〈I| . (16)

Notice that a
maximally entangled state = 1√

d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
the following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (17)

Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (18)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (19)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (17) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (20)

From Eq. (20) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (21)

This result implies that in the case of Eq. (19) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (22)

In the following we consider the case of discrimination of two Pauli channels for qubits, namely

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (23)

Entanglement can enhance the distinguishability of entanglement-breaking channels
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We show the rather counterintuitive result that entangled input states can strictly enhance the
distinguishability of two entanglement-breaking channels.

The class of entanglement-breaking channels—trace-
preserving completely positive maps for which the output
state is always separable—has been extensively studied
[1–8]. More precisely, a quantum channel E is called en-
tanglement breaking if

(E ⊗ I)Γ

Γ

∆

is always separable, i.e., any entangled density matrix
Γ is mapped to a separable one. The convex structure
of entanglement-breaking channels has been thoroughly
analyzed in Refs. [1, 2]. Moreover, the properties of such
a kind of channels have allowed to obtain a number of
results for the hard problem of additivity of capacity in
quantum information theory [3–11].

Channels which break entanglement are particularly
noisy in some sense. In order to check if a channel
is entanglement-breaking it is sufficient to look at the
separability of the output state corresponding just to
an input maximally entangled state [1], namely E is
entanglement-breaking iff (E ⊗ I)(|β〉〈β|) is separable for
|β〉 = d−1/2

∑d−1
j=0 |j〉 ⊗ |j〉, d being the dimension of the

Hilbert space. Another equivalent condition [1] is that
the channel E can be written as

E(ρ) =
∑

k

〈φk|ρ|φk〉|ψk〉〈ψk| , (1)

where {|φk〉〈φk|} gives a positive operator-valued mea-
sure (POVM), namely

∑
k |φk〉〈φk| = I [12]. The last

formulation has an immediate physical interpretation:
an entanglement-breaking channel can be simulated by
a classical channel, in the sense that the sender can
make a measurement on the input state ρ by means
of a POVM {|φk〉〈φk|}, and send the outcome k via
a classical channel to the receiver who then prepares
an agreed-upon pure state |ψk〉. For the above reason
one could think that entanglement—the peculiar trait of
quantum mechanics—may not be useful when one deals
with entanglement-breaking channels. In fact, entangle-
ment breaking channels have zero quantum capacity [10].

In this report, however, we will show a situation
in which the use of entanglement can be relevant also

for entanglement-breaking channels, namely when one
is asked to optimally discriminate two entanglement-
breaking channels, as in the quantum hypothesis test-
ing scenario [13]. What we mean is that an entangled
input state can strictly enhance the distinguishability of
two given entanglement-breaking channels. We will make
use of some recent results [14] on the optimal discrimi-
nation of two given quantum operations. In particular,
a complete characterization of the optimal input states
to achieve the minimum-error probability has been given
for Pauli channels [14], along with a necessary and suffi-
cient condition for which entanglement strictly improves
the discrimination. Such a condition is the following.

Given with a priori probability p1 and p2 = 1− p1 two
Pauli channels

Ei(ρ) =
3∑

α=0

q(α)
i σα ρ σα , i = 1, 2, (2)

where {σ1 ,σ2 ,σ3} = {σx ,σy ,σz} denote the customary
spin Pauli matrices, σ0 = I, and

∑3
α=0 q(α)

i = 1, the use
of entanglement strictly improves the discrimination iff
[14]

Π3
α=0 rα < 0 , (3)

with

rα = p1 q(α)
1 − p2 q(α)

2 . (4)

Moreover, the optimal input state can always be chosen
as a maximally entangled state.

In the following we explicitly show the case of two
entanglement-breaking channels that are strictly better
discriminated by means of a maximally entangled input
state. Let us consider for simplicity two different depo-
larizing channels

ED
i (ρ) = qi ρ +

1− qi

3

3∑

α=1

σα ρ σα , q1 %= q2 , (5)

The two channels are supposed to be given with a priori
probability p1 = p and p2 = 1 − p, respectively. The
coefficients rα of Eq. (4) are given in this case by

r0 = p q1 − (1− p) q2 ,

r1 = r2 = r3 = p
1− q1

3
− (1− p)

1− q2

3
. (6)

DISCRIMINATING  TWO  QUANTUM  CHANNELS :
a relevant case

diagonal on a “Bell basis”
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The maximum can be obtained from comparing the values of s1(∆′)+ s2(∆′) just for the extreme points x = 0, 1 and
the stationary points x = 1/2 and φ = kπ/2 with k integer, and one has

p′
E =

1
2

(1−M) , (33)

where

M =

max
{
|a| + |b| , 1

2
(|a + b + c + d| + |a + b− c− d|) ,

1
2
(|a + b + c− d| + |a + b− c + d|)

}
=

max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| ,
|r0 + r2| + |r1 + r3|} , (34)

and the three cases inside the brackets corresponds to using as input state an eigenstate of σz, σx, and σy, respectively.
From Eq. (33) one can see that entanglement is not needed as long as M =

∑3
i=0 |ri|, and this happens in many

situations: i) when the determinant det(∆) = 0, namely at least one of the {ri} vanishes; ii) when det(∆) > 0, so that
two of the {ri} are strictly positive and the other are strictly negative. On the other hand, entanglement is crucial
to achieve the ultimate minimal error probability when det(∆) < 0. Among these cases, there are striking examples
where the channels can be perfectly discriminated only by means of entanglement. This is the case of two channels
of the form

E1(ρ) =
∑

α "=β

qασαρσα , E2(ρ) = σβρσβ , (35)

with qα "= 0, and arbitrary a priori probability. This example can be simply understood, since the entangled-input
strategy increases the dimension of the Hilbert space such that the two possible output states will have orthogonal
support.

In conclusion, we considered the problem of discriminating two quantum operations with minimal error probability
and showed that the use of entangled input states generally improves the discrimination. We gave a general upper
bound to the minimal error probability, and the exact solution for generalized Pauli channels. In the case of qubits,
we characterized in a simple way the Pauli channels where the use of entanglement definitely outperforms the scheme
with unentangled input. We hope that our results will stimulate further research on the discrimination of quantum
operations.

Acknowledgments. Stimulating discussions with G. M. D’Ariano are acknowledged. This work has been sponsored
by INFM through the project PRA-2002-CLON.
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The maximum can be obtained from comparing the values of s1(∆′)+ s2(∆′) just for the extreme points x = 0, 1 and
the stationary points x = 1/2 and φ = kπ/2 with k integer, and one has

p′
E =

1
2

(1−M) , (33)

where

M =

max
{
|a| + |b| , 1

2
(|a + b + c + d| + |a + b− c− d|) ,

1
2
(|a + b + c− d| + |a + b− c + d|)

}
=

M = max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| , |r0 + r2| + |r1 + r3|} , (34)

and the three cases inside the brackets corresponds to using as input state an eigenstate of σz, σx, and σy, respectively.
From Eq. (34) one can see that entanglement is not needed as long as M =
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i=0 |ri|, and this happens in many

situations: i) when the determinant det(∆) = 0, namely at least one of the {ri} vanishes; ii) when det(∆) > 0, so that
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with qα "= 0, and arbitrary a priori probability. This example can be simply understood, since the entangled-input
strategy increases the dimension of the Hilbert space such that the two possible output states will have orthogonal
support.

In conclusion, we considered the problem of discriminating two quantum operations with minimal error probability
and showed that the use of entangled input states generally improves the discrimination. We gave a general upper
bound to the minimal error probability, and the exact solution for generalized Pauli channels. In the case of qubits,
we characterized in a simple way the Pauli channels where the use of entanglement definitely outperforms the scheme
with unentangled input. We hope that our results will stimulate further research on the discrimination of quantum
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Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (24)

In the following we consider the case of discrimination of two Pauli channels for qubits, namely

p1 E(1)(ρ) =
3∑

i=0

q(1)
i σiρσi , (25)

p2 E(2)(ρ) =
3∑

i=0

q(2)
i σiρσi , (26)

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (27)

where {σ0 ,σ1 ,σ2 ,σ3} = {I ,σx ,σy ,σz} and
∑3

α=0 q(i)
α = 1. In particular, we are interested to understand when the

entangled-input strategy is really needed to achieve the optimal discrimination. The positive operator P in Eq. (18)
can be parameterized on the computational basis as follows

P =
(

x z
z∗ y

)
, (28)

with x, y ≥ 0, xy ≥ |z|2, and x2 + y2 + 2|z|2 = 1. The strategy with unentangled input corresponds to the values
range x + y = 1 and |z| = √

xy such that rank(P ) = 1. The operator ∆ is diagonal on the Bell basis and writes
∆ =

∑3
i=0 rα|σi〉〉〈〈σi|, where ri = p1q

(1)
i − p2q

(2)
i . On the ordered basis {|00〉 , |01〉 , |10〉 , |11〉}, one has

∆ =





a 0 0 c
0 b d 0
0 d b 0
c 0 0 a



 , (29)

with a = r0 + r3, c = r0 − r3, b = r1 + r2, and d = r1 − r2. The singular values of ∆ are given by

si(∆) = {|a ± c| , |b ± d|} , (30)

and for the previous derivation we know that the minimal error probability can be achieved by using a maximally
entangled input state, with

pE =
1
2

(
1− 1

2

3∑

i=0

si(∆)

)
=

1
2

(
1−

3∑

i=0

|ri|
)

. (31)

For the strategy with unentangled input one has

p′E =
1
2

(
1−max

P ′
‖I ⊗ P ′ ∆ I ⊗ P ′‖1

)
;

P ′ =
(

x
√

x(1− x)eiφ
√

x(1− x)e−iφ 1− x

)
,

0 ≤ x ≤ 1 , 0 ≤ φ ≤ 2π . (32)

In this case the operator ∆′ = I⊗P ′ ∆ I⊗P ′ inside the trace norm is at most rank-two, and its nonvanishing singular
values write

s1,2(∆′) =
1
2
|a + b±

√
[(a− b)(1− 2x)]2 + 4x(1− x)(c2 + d2 + 2cd cos(2φ))

∣∣∣ .
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The maximum can be obtained from comparing the values of s1(∆′)+ s2(∆′) just for the extreme points x = 0, 1 and
the stationary points x = 1/2 and φ = kπ/2 with k integer, and one has

p′
E =

1
2

(1−M) , (33)

where

M =

max
{
|a| + |b| , 1

2
(|a + b + c + d| + |a + b− c− d|) ,

1
2
(|a + b + c− d| + |a + b− c + d|)

}
=

M = max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| , |r0 + r2| + |r1 + r3|} , (34)

rank(P ′) = 1

and the three cases inside the brackets corresponds to using as input state an eigenstate of σz, σx, and σy, respec-
tively. From Eq. (34) one can see that entanglement is not needed as long as M =

∑3
i=0 |ri|, and this happens in

many situations: i) when the determinant det(∆) = 0, namely at least one of the {ri} vanishes; ii) when det(∆) > 0,
so that two of the {ri} are strictly positive and the other are strictly negative. On the other hand, entanglement is
crucial to achieve the ultimate minimal error probability when det(∆) < 0. Among these cases, there are striking
examples where the channels can be perfectly discriminated only by means of entanglement. This is the case of two
channels of the form

E1(ρ) =
∑

α "=β

qασαρσα , E2(ρ) = σβρσβ , (35)

with qα "= 0, and arbitrary a priori probability. This example can be simply understood, since the entangled-input
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input an eigenstate of 

DISCRIMINATION FOR PAULI CHANNELS

Any maximally entangled state is optimal

6

max
Tr[ξ†ξ]=1

‖I ⊗ ξτ∆I ⊗ ξ∗‖1 ≤
∑

n

|rn| max
Tr[ξ†ξ]=1

∥∥Un ⊗ I|ξ〉〉〈〈ξ|U†
n ⊗ I

∥∥
1

=
∑

n

|rn| (15)

∆ = [p1(E1 ⊗ I)− p2(E2 ⊗ I)]|I〉〉〈〈I| . (16)

Notice that a
maximally entangled state = 1√

d
|U〉〉, with U unitary and d = dim(H).

From the invariance of the trace norm ‖UAV ‖1 = ‖A‖1 for arbitrary unitary operators U and V [12], one obtains
the following upper bound for the minimal error probability

pE ≤ 1
2

(
1− 1

d
‖∆‖1

)
. (17)

Exploiting unitarily invariance and the polar decomposition of ξτ as ξτ = UP with U unitary and P positive, the
maximum in Eq. (13) can be searched for positive operators P with Tr[P 2] = 1, namely

pE =
1
2

(
1− max

P≥0 , Tr[P 2]=1
‖I ⊗ P∆I ⊗ P‖1

)
. (18)

This expression is very suitable for numerical evaluation. Moreover, the rank of P that achieves the maximum
gives directly information about the usefulness of entanglement. There is no need of entanglement for the optimal
discrimination if and only if the maximum in Eq. (13) can be achieved by a rank-one operator P .

The minimal error probability can be evaluated when the quantum operations can be realized from the same set of
orthogonal unitaries (namely {Un} with Tr[U†

mUn] = dδn,m) as random unitary transformations [15]. In this case one
has

Ei(ρ) =
∑

n

q(i)
n UnρU†

n ,
∑

n

q(i)
n = 1 (19)

and hence ∆ =
∑

n rn|Un〉〉〈〈Un|, with rn = p1q
(1)
n −p2q

(2)
n . The operator ∆ is diagonal on maximally entangled states

with eigenvalues drn, and the bound in Eq. (17) then writes pE ≤ 1
2 (1−

∑
n |rn|). On the other hand, one has

max
|ψ〉∈H⊗H

∥∥∥∥∥
∑

n

rn(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥∥∥∥
1

≤
∑

n

|rn|max
|ψ〉

∥∥(Un ⊗ I)|ψ〉〈ψ|(U†
n ⊗ I)

∥∥
1

=
∑

n

|rn| . (20)

From Eq. (20) one has pE ≥ 1
2 (1−

∑
n |rn|), and together with the upper bound (17), one obtains

pE =
1
2

(
1−

∑

n

|rn|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (21)

pE =
1
2

(
1−

3∑

i=0

|ri|
)

=
1
2

(
1− 1

d
‖∆‖1

)
. (22)

This result implies that in the case of Eq. (19) the minimal error probability can always be obtained by using an
arbitrary maximally entangled state at the input.

Notice that by dropping the condition of orthogonality of the {Un}, one just obtains the bounds

1
2

(
1−

∑

n

|rn|
)
≤ pE ≤ 1

2

(
1− 1

d
‖∆‖1

)
. (23)
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p2 E(2)(ρ) =
3∑

i=0

q(2)
i σiρσi , (24)

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (25)

where {σ0 ,σ1 ,σ2 ,σ3} = {I ,σx ,σy ,σz} and
∑3

α=0 q(i)
α = 1. In particular, we are interested to understand when the

entangled-input strategy is really needed to achieve the optimal discrimination. The positive operator P in Eq. (18)
can be parameterized on the computational basis as follows

P =
(

x z
z∗ y

)
, (26)

with x, y ≥ 0, xy ≥ |z|2, and x2 + y2 + 2|z|2 = 1. The strategy with unentangled input corresponds to the values
range x + y = 1 and |z| = √

xy such that rank(P ) = 1. The operator ∆ is diagonal on the Bell basis and writes
∆ =

∑3
i=0 rα|σi〉〉〈〈σi|, where ri = p1q

(1)
i − p2q

(2)
i . On the ordered basis {|00〉 , |01〉 , |10〉 , |11〉}, one has

∆ =





a 0 0 c
0 b d 0
0 d b 0
c 0 0 a



 , (27)

with a = r0 + r3, c = r0 − r3, b = r1 + r2, and d = r1 − r2. The singular values of ∆ are given by

si(∆) = {|a ± c| , |b ± d|} , (28)

and for the previous derivation we know that the minimal error probability can be achieved by using a maximally
entangled input state, with

pE =
1
2

(
1− 1

2

3∑

i=0

si(∆)

)
=

1
2

(
1−

3∑

i=0

|ri|
)

. (29)

For the strategy with unentangled input one has

p′E =
1
2

(
1−max

P ′
‖I ⊗ P ′ ∆ I ⊗ P ′‖1

)
;

P ′ =
(

x
√

x(1− x)eiφ
√

x(1− x)e−iφ 1− x

)
,

0 ≤ x ≤ 1 , 0 ≤ φ ≤ 2π . (30)

In this case the operator ∆′ = I⊗P ′ ∆ I⊗P ′ inside the trace norm is at most rank-two, and its nonvanishing singular
values write

s1,2(∆′) =
1
2
|a + b±

√
[(a− b)(1− 2x)]2 + 4x(1− x)(c2 + d2 + 2cd cos(2φ))

∣∣∣ .

The maximum can be obtained from comparing the values of s1(∆′)+ s2(∆′) just for the extreme points x = 0, 1 and
the stationary points x = 1/2 and φ = kπ/2 with k integer, and one has

p′E =
1
2

(1−M) , (31)
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In the following we consider the case of discrimination of two Pauli channels for qubits, namely

p1 E(1)(ρ) =
3∑

i=0

q(1)
i σiρσi , (25)

p2 E(2)(ρ) =
3∑

i=0

q(2)
i σiρσi , (26)

E(i)(ρ) =
3∑

α=0

q(i)
α σαρσα , (27)

where {σ0 ,σ1 ,σ2 ,σ3} = {I ,σx ,σy ,σz} and
∑3

α=0 q(i)
α = 1. In particular, we are interested to understand when the

entangled-input strategy is really needed to achieve the optimal discrimination. The positive operator P in Eq. (19)
can be parameterized on the computational basis as follows

P =
(

x z
z∗ y

)
, (28)

with x, y ≥ 0, xy ≥ |z|2, and x2 + y2 + 2|z|2 = 1. The strategy with unentangled input corresponds to the values
range x + y = 1 and |z| = √

xy such that rank(P ) = 1. The operator ∆ is diagonal on the Bell basis and writes
∆ =

∑3
i=0 ri|σi〉〉〈〈σi|, where ri = p1q

(1)
i − p2q

(2)
i . On the ordered basis {|00〉 , |01〉 , |10〉 , |11〉}, one has

∆ =





a 0 0 c
0 b d 0
0 d b 0
c 0 0 a



 , (29)

with a = r0 + r3, c = r0 − r3, b = r1 + r2, and d = r1 − r2. The singular values of ∆ are given by

si(∆) = {|a ± c| , |b ± d|} , (30)

and for the previous derivation we know that the minimal error probability can be achieved by using a maximally
entangled input state, with

pE =
1
2

(
1− 1

2

3∑

i=0

si(∆)

)
=

1
2

(
1−

3∑

i=0

|ri|
)

. (31)

For the strategy with unentangled input one has

p′E =
1
2

(
1−max

P ′
‖I ⊗ P ′ ∆ I ⊗ P ′‖1

)
;

P ′ =
(

x
√

x(1− x)eiφ
√

x(1− x)e−iφ 1− x

)
,

0 ≤ x ≤ 1 , 0 ≤ φ ≤ 2π . (32)

In this case the operator ∆′ = I⊗P ′ ∆ I⊗P ′ inside the trace norm is at most rank-two, and its nonvanishing singular
values write

s1,2(∆′) =
1
2
|a + b±

√
[(a− b)(1− 2x)]2 + 4x(1− x)(c2 + d2 + 2cd cos(2φ))

∣∣∣ .
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The maximum can be obtained from comparing the values of s1(∆′)+ s2(∆′) just for the extreme points x = 0, 1 and
the stationary points x = 1/2 and φ = kπ/2 with k integer, and one has

p′
E =

1
2

(1−M) , (33)

where

M =

max
{
|a| + |b| , 1

2
(|a + b + c + d| + |a + b− c− d|) ,

1
2
(|a + b + c− d| + |a + b− c + d|)

}
=

M = max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| , |r0 + r2| + |r1 + r3|} , (34)

rank(P ′) = 1

and the three cases inside the brackets corresponds to using as input state an eigenstate of σz, σx, and σy, respec-
tively. From Eq. (34) one can see that entanglement is not needed as long as M =

∑3
i=0 |ri|, and this happens in

many situations: i) when the determinant det(∆) = 0, namely at least one of the {ri} vanishes; ii) when det(∆) > 0,
so that two of the {ri} are strictly positive and the other are strictly negative. On the other hand, entanglement is
crucial to achieve the ultimate minimal error probability when det(∆) < 0. Among these cases, there are striking
examples where the channels can be perfectly discriminated only by means of entanglement. This is the case of two
channels of the form

E1(ρ) =
∑

α "=β

qασαρσα , E2(ρ) = σβρσβ , (35)

with qα "= 0, and arbitrary a priori probability. This example can be simply understood, since the entangled-input
strategy increases the dimension of the Hilbert space such that the two possible output states will have orthogonal
support.

In conclusion, we considered the problem of discriminating two quantum operations with minimal error probability
and showed that the use of entangled input states generally improves the discrimination. We gave a general upper
bound to the minimal error probability, and the exact solution for generalized Pauli channels. In the case of qubits,
we characterized in a simple way the Pauli channels where the use of entanglement definitely outperforms the scheme
with unentangled input. We hope that our results will stimulate further research on the discrimination of quantum
operations.
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Entanglement can enhance the distinguishability of entanglement-breaking channels
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We show the rather counterintuitive result that entangled input states can strictly enhance the
distinguishability of two entanglement-breaking channels.

The class of entanglement-breaking channels—trace-
preserving completely positive maps for which the output
state is always separable—has been extensively studied
[1–8]. More precisely, a quantum channel E is called en-
tanglement breaking if

(E ⊗ I)Γ

Γ

is always separable, i.e., any entangled density matrix
Γ is mapped to a separable one. The convex structure
of entanglement-breaking channels has been thoroughly
analyzed in Refs. [1, 2]. Moreover, the properties of such
a kind of channels have allowed to obtain a number of
results for the hard problem of additivity of capacity in
quantum information theory [3–11].

Channels which break entanglement are particularly
noisy in some sense. In order to check if a channel
is entanglement-breaking it is sufficient to look at the
separability of the output state corresponding just to
an input maximally entangled state [1], namely E is
entanglement-breaking iff (E ⊗ I)(|β〉〈β|) is separable for
|β〉 = d−1/2

∑d−1
j=0 |j〉 ⊗ |j〉, d being the dimension of the

Hilbert space. Another equivalent condition [1] is that
the channel E can be written as

E(ρ) =
∑

k

〈φk|ρ|φk〉|ψk〉〈ψk| , (1)

where {|φk〉〈φk|} gives a positive operator-valued mea-
sure (POVM), namely

∑
k |φk〉〈φk| = I [12]. The last

formulation has an immediate physical interpretation:
an entanglement-breaking channel can be simulated by
a classical channel, in the sense that the sender can
make a measurement on the input state ρ by means
of a POVM {|φk〉〈φk|}, and send the outcome k via
a classical channel to the receiver who then prepares
an agreed-upon pure state |ψk〉. For the above reason
one could think that entanglement—the peculiar trait of
quantum mechanics—may not be useful when one deals
with entanglement-breaking channels. In fact, entangle-
ment breaking channels have zero quantum capacity [10].

In this report, however, we will show a situation
in which the use of entanglement can be relevant also
for entanglement-breaking channels, namely when one
is asked to optimally discriminate two entanglement-
breaking channels, as in the quantum hypothesis test-
ing scenario [13]. What we mean is that an entangled

input state can strictly enhance the distinguishability of
two given entanglement-breaking channels. We will make
use of some recent results [14] on the optimal discrimi-
nation of two given quantum operations. In particular,
a complete characterization of the optimal input states
to achieve the minimum-error probability has been given
for Pauli channels [14], along with a necessary and suffi-
cient condition for which entanglement strictly improves
the discrimination. Such a condition is the following.

Given with a priori probability p1 and p2 = 1− p1 two
Pauli channels

Ei(ρ) =
3∑

α=0

q(α)
i σα ρ σα , i = 1, 2, (2)

where {σ1 ,σ2 ,σ3} = {σx ,σy ,σz} denote the customary
spin Pauli matrices, σ0 = I, and

∑3
α=0 q(α)

i = 1, the use
of entanglement strictly improves the discrimination iff
[14]

Π3
α=0 rα < 0 , (3)

with

rα = p1 q(α)
1 − p2 q(α)

2 . (4)

Moreover, the optimal input state can always be chosen
as a maximally entangled state.

In the following we explicitly show the case of two
entanglement-breaking channels that are strictly better
discriminated by means of a maximally entangled input
state. Let us consider for simplicity two different depo-
larizing channels

ED
i (ρ) = qi ρ +

1− qi

3

3∑

α=1

σα ρ σα , q1 %= q2 , (5)

The two channels are supposed to be given with a priori
probability p1 = p and p2 = 1 − p, respectively. The
coefficients rα of Eq. (4) are given in this case by

r0 = p q1 − (1− p) q2 ,

r1 = r2 = r3 = p
1− q1

3
− (1− p)

1− q2

3
. (6)

Hence, entanglement strictly enhances the distinguisha-
bility of the two channels ED

1 and ED
2 iff

[p q1 − (1− p) q2]
[
p

1− q1

3
− (1− p)

1− q2

3

]
< 0 ,(7)

EBC IFF for any bipartite is separable

Entanglement can enhance the distinguishability of entanglement-breaking channels

Massimiliano F. Sacchi
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The class of entanglement-breaking channels—trace-
preserving completely positive maps for which the output
state is always separable—has been extensively studied
#1–8$. More precisely, a quantum channel E is called en-
tanglement breaking if !E ! I"!!" is always separable, i.e.,
any entangled density matrix ! is mapped to a separable one.
The convex structure of entanglement-breaking channels has
been thoroughly analyzed in Refs. #1,2$. Moreover, the prop-
erties of such a kind of channel have allowed to obtain a
number of results for the hard problem of additivity of ca-
pacity in quantum information theory #3–11$.

Channels that break entanglement are particularly noisy in
some sense. In order to check if a channel is entanglement
breaking, it is sufficient to look at the separability of the
output state corresponding just to an input maximally en-
tangled state #1$; namely E is entanglement breaking if and
only if !E ! I"!%"&'"%" is separable for %"&=d−1/2( j=0

d−1%j& ! %j&,
d being the dimension of the Hilbert space. Another equiva-
lent condition #1$ is that the channel E can be written as

E!#" = (
k

'$k%#%$k&%%k&'%k% , !1"

where )%$k&'$k%* gives a positive operator-valued measure
!POVM", namely (k%$k&'$k%= I #12$. The last formulation
has an immediate physical interpretation: an entanglement-
breaking channel can be simulated by a classical channel, in
the sense that the sender can make a measurement on the
input state # by means of a POVM )%$k&'$k%*, and send the
outcome k via a classical channel to the receiver who then
prepares an agreed-upon pure state %%k&. For the above reason
one could think that entanglement—the peculiar trait of
quantum mechanics—may not be useful when one deals with
entanglement-breaking channels. In fact, entanglement
breaking channels have zero quantum capacity #10$.

In this Brief Report, however, we will show a situation in
which the use of entanglement can be relevant for
entanglement-breaking channels, such as when one is asked
to optimally discriminate two entanglement-breaking chan-
nels, as in the quantum hypothesis testing scenario #13$.
What we mean is that an entangled input state can strictly
enhance the distinguishability of two given entanglement-
breaking channels. We will make use of some recent results
#14$ on the optimal discrimination of two given quantum
operations. In particular, a complete characterization of the
optimal input states to achieve the minimum-error probabil-
ity has been given for Pauli channels #14$, along with a nec-

essary and sufficient condition for which entanglement
strictly improves the discrimination; such a condition fol-
lows.
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Moreover, the optimal input state can always be chosen as a
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We show the rather counterintuitive result that entangled input states can strictly enhance the
distinguishability of two entanglement-breaking channels.

The class of entanglement-breaking channels—trace-
preserving completely positive maps for which the output
state is always separable—has been extensively studied
[1–8]. More precisely, a quantum channel E is called en-
tanglement breaking if

(E ⊗ I)Γ

Γ

is always separable, i.e., any entangled density matrix
Γ is mapped to a separable one. The convex structure
of entanglement-breaking channels has been thoroughly
analyzed in Refs. [1, 2]. Moreover, the properties of such
a kind of channels have allowed to obtain a number of
results for the hard problem of additivity of capacity in
quantum information theory [3–11].

Channels which break entanglement are particularly
noisy in some sense. In order to check if a channel
is entanglement-breaking it is sufficient to look at the
separability of the output state corresponding just to
an input maximally entangled state [1], namely E is
entanglement-breaking iff (E ⊗ I)(|β〉〈β|) is separable for
|β〉 = d−1/2

∑d−1
j=0 |j〉 ⊗ |j〉, d being the dimension of the

Hilbert space. Another equivalent condition [1] is that
the channel E can be written as

E(ρ) =
∑

k

〈φk|ρ|φk〉|ψk〉〈ψk| , (1)

where {|φk〉〈φk|} gives a positive operator-valued mea-
sure (POVM), namely

∑
k |φk〉〈φk| = I [12]. The last

formulation has an immediate physical interpretation:
an entanglement-breaking channel can be simulated by
a classical channel, in the sense that the sender can
make a measurement on the input state ρ by means
of a POVM {|φk〉〈φk|}, and send the outcome k via
a classical channel to the receiver who then prepares
an agreed-upon pure state |ψk〉. For the above reason
one could think that entanglement—the peculiar trait of
quantum mechanics—may not be useful when one deals
with entanglement-breaking channels. In fact, entangle-
ment breaking channels have zero quantum capacity [10].

In this report, however, we will show a situation
in which the use of entanglement can be relevant also
for entanglement-breaking channels, namely when one
is asked to optimally discriminate two entanglement-
breaking channels, as in the quantum hypothesis test-
ing scenario [13]. What we mean is that an entangled

input state can strictly enhance the distinguishability of
two given entanglement-breaking channels. We will make
use of some recent results [14] on the optimal discrimi-
nation of two given quantum operations. In particular,
a complete characterization of the optimal input states
to achieve the minimum-error probability has been given
for Pauli channels [14], along with a necessary and suffi-
cient condition for which entanglement strictly improves
the discrimination. Such a condition is the following.

Given with a priori probability p1 and p2 = 1− p1 two
Pauli channels

Ei(ρ) =
3∑

α=0

q(α)
i σα ρ σα , i = 1, 2, (2)

where {σ1 ,σ2 ,σ3} = {σx ,σy ,σz} denote the customary
spin Pauli matrices, σ0 = I, and

∑3
α=0 q(α)

i = 1, the use
of entanglement strictly improves the discrimination iff
[14]

Π3
α=0 rα < 0 , (3)

with

rα = p1 q(α)
1 − p2 q(α)

2 . (4)

Moreover, the optimal input state can always be chosen
as a maximally entangled state.

In the following we explicitly show the case of two
entanglement-breaking channels that are strictly better
discriminated by means of a maximally entangled input
state. Let us consider for simplicity two different depo-
larizing channels

ED
i (ρ) = qi ρ +

1− qi

3

3∑

α=1

σα ρ σα , q1 %= q2 , (5)

The two channels are supposed to be given with a priori
probability p1 = p and p2 = 1 − p, respectively. The
coefficients rα of Eq. (4) are given in this case by

r0 = p q1 − (1− p) q2 ,

r1 = r2 = r3 = p
1− q1

3
− (1− p)

1− q2

3
. (6)

Hence, entanglement strictly enhances the distinguisha-
bility of the two channels ED

1 and ED
2 iff

[p q1 − (1− p) q2]
[
p

1− q1

3
− (1− p)

1− q2

3

]
< 0 ,(7)
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QUIT, Unità INFM and Dipartimento di Fisica “A. Volta”, Università di Pavia, I-27100 Pavia, Italy.
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Entanglement improves the discrimination IFF

2

Hence, entanglement strictly enhances the distinguisha-
bility of the two channels ED

1 and ED
2 iff

[p q1 − (1− p) q2]
[
p

1− q1

3
− (1− p)

1− q2

3

]
< 0 ,(7)

or equivalently

(q1 + q2)(2− q1 − q2)p2 − (q1 − 2q1q2 + 3q2 − 2q2
2)p

+q2(1− q2) < 0 . (8)

The solution of Eq. (8) for the prior probability p versus
q1 and q2 is given by

1− q2

2− q1 − q2
< p <

q2

q1 + q2
for q1 < q2 ,

q2

q1 + q2
< p <

1− q2

2− q1 − q2
for q1 > q2 . (9)

A depolarizing channel is entanglement breaking iff q ≤
1/2, where q is the probability pertaining to the iden-
tity transformation. This fact can be easily checked
by applying the PPT condition [15, 16] to the Werner
state [17] (E ⊗ I)(|β〉〈β|), where |β〉 denotes the maxi-
mally entangled state |β〉 = 1√

2
(|00〉 + |11〉). It follows

that the solution in Eq. (9) for q1, q2 ≤ 1/2 gives ex-
amples of situations where a maximally entangled in-
put state strictly improves the distinguishability of two
entanglement-breaking channels.

FIG. 1: The grey region represents the value of the a pri-
ori probability p for which the discrimination between a de-
polarizing channel with q ≤ 1/2 (an entanglement-breaking
channel) and a completely depolarizing channel is strictly en-
hanced by using a maximally entangled input state.

In Fig. 1 we plot such a set of solutions for the a priori
probability p in the case of discrimination between an
entanglement-breaking depolarizing channel with q1 =
q ≤ 1/2 and a completely depolarizing channel q2 = 1/4.

In conclusion, in the problem of discriminating two
quantum operations the relevant object is the map cor-
responding to the their difference, which is not a com-
pletely positive map. Using entangled states at the in-
put of entanglement-breaking channels give output sepa-
rable states that, however, can be better discriminated
since they live in a higher dimensional Hilbert space.
Curiously, we note that, on the other hand, when we
are asked to optimally discriminate two arbitrary uni-
tary transformations—which are of course entanglement-
preserving operations—entanglement never enhances the
distinguishability [18–20].
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We show the rather counterintuitive result that entangled input states can strictly enhance the
distinguishability of two entanglement-breaking channels.

The class of entanglement-breaking channels—trace-
preserving completely positive maps for which the output
state is always separable—has been extensively studied
[1–8]. More precisely, a quantum channel E is called en-
tanglement breaking if

(E ⊗ I)Γ

Γ

∆

is always separable, i.e., any entangled density matrix
Γ is mapped to a separable one. The convex structure
of entanglement-breaking channels has been thoroughly
analyzed in Refs. [1, 2]. Moreover, the properties of such
a kind of channels have allowed to obtain a number of
results for the hard problem of additivity of capacity in
quantum information theory [3–11].

Channels which break entanglement are particularly
noisy in some sense. In order to check if a channel
is entanglement-breaking it is sufficient to look at the
separability of the output state corresponding just to
an input maximally entangled state [1], namely E is
entanglement-breaking iff (E ⊗ I)(|β〉〈β|) is separable for
|β〉 = d−1/2

∑d−1
j=0 |j〉 ⊗ |j〉, d being the dimension of the

Hilbert space. Another equivalent condition [1] is that
the channel E can be written as

E(ρ) =
∑

k

〈φk|ρ|φk〉|ψk〉〈ψk| , (1)

where {|φk〉〈φk|} gives a positive operator-valued mea-
sure (POVM), namely

∑
k |φk〉〈φk| = I [12]. The last

formulation has an immediate physical interpretation:
an entanglement-breaking channel can be simulated by
a classical channel, in the sense that the sender can
make a measurement on the input state ρ by means
of a POVM {|φk〉〈φk|}, and send the outcome k via
a classical channel to the receiver who then prepares
an agreed-upon pure state |ψk〉. For the above reason
one could think that entanglement—the peculiar trait of
quantum mechanics—may not be useful when one deals
with entanglement-breaking channels. In fact, entangle-
ment breaking channels have zero quantum capacity [10].

In this report, however, we will show a situation
in which the use of entanglement can be relevant also

for entanglement-breaking channels, namely when one
is asked to optimally discriminate two entanglement-
breaking channels, as in the quantum hypothesis test-
ing scenario [13]. What we mean is that an entangled
input state can strictly enhance the distinguishability of
two given entanglement-breaking channels. We will make
use of some recent results [14] on the optimal discrimi-
nation of two given quantum operations. In particular,
a complete characterization of the optimal input states
to achieve the minimum-error probability has been given
for Pauli channels [14], along with a necessary and suffi-
cient condition for which entanglement strictly improves
the discrimination. Such a condition is the following.

Given with a priori probability p1 and p2 = 1− p1 two
Pauli channels

Ei(ρ) =
3∑

α=0

q(α)
i σα ρ σα , i = 1, 2, (2)

where {σ1 ,σ2 ,σ3} = {σx ,σy ,σz} denote the customary
spin Pauli matrices, σ0 = I, and

∑3
α=0 q(α)

i = 1, the use
of entanglement strictly improves the discrimination iff
[14]

Π3
α=0 rα < 0 , (3)

with

rα = p1 q(α)
1 − p2 q(α)

2 . (4)

Moreover, the optimal input state can always be chosen
as a maximally entangled state.

In the following we explicitly show the case of two
entanglement-breaking channels that are strictly better
discriminated by means of a maximally entangled input
state. Let us consider for simplicity two different depo-
larizing channels

ED
i (ρ) = qi ρ +

1− qi

3

3∑

α=1

σα ρ σα , q1 %= q2 , (5)

The two channels are supposed to be given with a priori
probability p1 = p and p2 = 1 − p, respectively. The
coefficients rα of Eq. (4) are given in this case by

r0 = p q1 − (1− p) q2 ,

r1 = r2 = r3 = p
1− q1

3
− (1− p)

1− q2

3
. (6)
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larizing channels

ED
i (ρ) = qi ρ +

1− qi

3

3∑

α=1

σα ρ σα , q1 %= q2 , (5)

The two channels are supposed to be given with a priori
probability p1 = p and p2 = 1 − p, respectively. The
coefficients rα of Eq. (4) are given in this case by

r0 = p q1 − (1− p) q2 ,

r1 = r2 = r3 = p
1− q1

3
− (1− p)

1− q2

3
. (6)

Two depolarizing channels

2

Hence, entanglement strictly enhances the distinguisha-
bility of the two channels ED

1 and ED
2 iff

[p q1 − (1− p) q2]
[
p

1− q1

3
− (1− p)

1− q2

3

]
< 0 ,(7)

or equivalently

(q1 + q2)(2− q1 − q2)p2 − (q1 − 2q1q2 + 3q2 − 2q2
2)p

+q2(1− q2) < 0 . (8)

The solution of Eq. (8) for the prior probability p versus
q1 and q2 is given by

1− q2

2− q1 − q2
< p <

q2

q1 + q2
for q1 < q2 ,

q2

q1 + q2
< p <

1− q2

2− q1 − q2
for q1 > q2 . (9)

A depolarizing channel is entanglement breaking iff q ≤
1/2, where q is the probability pertaining to the iden-
tity transformation. This fact can be easily checked
by applying the PPT condition [15, 16] to the Werner
state [17] (E ⊗ I)(|β〉〈β|), where |β〉 denotes the maxi-
mally entangled state |β〉 = 1√

2
(|00〉 + |11〉). It follows

that the solution in Eq. (9) for q1, q2 ≤ 1/2 gives ex-
amples of situations where a maximally entangled in-
put state strictly improves the distinguishability of two
entanglement-breaking channels.

FIG. 1: The grey region represents the value of the a pri-
ori probability p for which the discrimination between a de-
polarizing channel with q ≤ 1/2 (an entanglement-breaking
channel) and a completely depolarizing channel is strictly en-
hanced by using a maximally entangled input state.

In Fig. 1 we plot such a set of solutions for the a priori
probability p in the case of discrimination between an
entanglement-breaking depolarizing channel with q1 =
q ≤ 1/2 and a completely depolarizing channel q2 = 1/4.

In conclusion, in the problem of discriminating two
quantum operations the relevant object is the map cor-
responding to the their difference, which is not a com-
pletely positive map. Using entangled states at the in-
put of entanglement-breaking channels give output sepa-
rable states that, however, can be better discriminated
since they live in a higher dimensional Hilbert space.
Curiously, we note that, on the other hand, when we
are asked to optimally discriminate two arbitrary uni-
tary transformations—which are of course entanglement-
preserving operations—entanglement never enhances the
distinguishability [18–20].
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MINIMAX  DISCRIMINATION 
BETWEEN  TWO  QUANTUM  STATES

Look for the two-valued POVM            that minimizes 

“minimum risk”

2

namely !P ≡ (P1, P2), where Pi for i = 1, 2 are nonnega-
tive operators satisfying P1 + P2 = I.

In the usually considered Bayesian approach to the dis-
crimination problem, the states are given with a priori
probability distribution !a ≡ (a1, a2), respectively, and
one looks for the POVM that minimizes the average er-
ror probability

pE = a1Tr[ρ1P2] + a2Tr[ρ2P1]. (1)

The solution can then be achieved by taking the orthog-
onal POVM made by the projectors on the support of
the positive and negative part of the Hermitian operator
a1ρ1 − a2ρ2, and hence one has [1]

p(Bayes)
E =

1
2

(1− ‖a1ρ1 − a2ρ2‖1) , (2)

where ‖A‖1 denotes the trace norm of A.
In the minimax problem, one does not have a priori

probabilities. However, one defines the error probability
εi(!P ) = Tr[ρi(I − Pi)] of failing to identify ρi. The opti-
mal minimax solution consists in finding the POVM that
achieves the minimax

ε = min
!P

max
i=1,2

εi(!P ), (3)

min
{Π1,Π2}

max(Tr[ρ1Π2],Tr[ρ2Π1])

max
{Π1,Π2}

min(Tr[ρ1Π1],Tr[ρ2Π2])

or equivalently, that maximizes the smallest of the
probabilities of correct detection

1− ε = max
!P

min
i=1,2

[1− εi(!P )] = max
!P

min
i=1,2

Tr[ρiPi]. (4)

The minimax and Bayesian strategies of discrimination
are connected by the following theorem.

Theorem 1 If there is an a priori probability !a =
(a1, a2) for the states ρ1 and ρ2, and a measurement !B
that achieves the optimal Bayesian average error for !a,
with equal probabilities of correct detection, i.e.

Tr[ρ1B1] = Tr[ρ2B2], (5)

then !B is also the solution of the minimax discrimination
problem.

Proof. In fact, suppose on the contrary that there
exists a POVM !P such that mini=1,2 Tr[ρiPi] >
mini=1,2 Tr[ρiBi]. Due to assumption (5) one has
Tr[ρiPi] > Tr[ρiBi] for both i = 1, 2, whence

∑

i

ai Tr(ρiPi) >
∑

i

ai Tr(ρiBi) (6)

which contradicts the fact that !B is optimal for !a.!
The existence of an optimal !B as in Theorem 1 will be

shown in the following.
First, by labeling with !P (a) an optimal POVM for the

Bayesian problem with prior probability distribution !a =
(a, 1− a), and defining

χ(a, !P ) .= a Tr(ρ1P1) + (1− a)Tr(ρ2P2), (7)

we have the following lemma.

Lemma 1 The function f(a) .= Tr(ρ1P
(a)
1 )−Tr(ρ2P

(a)
2 )

is monotonically nondecreasing, with minimum value
f(0) " 0, and maximum value f(1) # 0.

In fact, consider !P (a) and !P (b) for two values a and b
with a < b and define !D = !P (b) − !P (a). Then

χ(a, !P (b)) = χ(a, !P (a)) + χ(a, !D)

χ(b, !P (a)) = χ(b, !P (b))− χ(b, !D).
(8)

Now, since χ(a, !P (a)) is the optimal probability of correct
detection for prior a, and analogously χ(b, !P (b)) for prior
b, then χ(a, !D) " 0 and χ(b, !D) # 0, and hence

0 ≤ χ(b, !D)− χ(a, !D) = (b− a)[Tr(ρ1D1)− Tr(ρ2D2)].

It follows that Tr(ρ1D1) # Tr(ρ2D2), namely

Tr(ρ1P
(b)
1 )− Tr(ρ1P

(a)
1 ) # Tr(ρ2P

(b)
2 )− Tr(ρ2P

(a)
2 ) (9)

or, equivalently,

Tr(ρ1P
(b)
1 )−Tr(ρ2P

(b)
2 ) # Tr(ρ1P

(a)
1 )−Tr(ρ2P

(a)
2 ). (10)

Equation (10) states that the function f(a) is monoton-
ically nondecreasing. Moreover, for a = 0 the POVM
detects only the state ρ2, whence Tr(ρ2P

(0)
2 ) = 1, and

one has f(0) = −1 + Tr[ρ1P
(0)
1 ] " 0. Similarly one can

see that f(1) # 0.!
We can now prove the following theorem.

Theorem 2 An optimal !B as in Theorem 1 always ex-
ists.

Proof. Consider the value a0 of a where f(a) changes
its sign from negative to positive, and there take the left
and right limits

!P (∓) = lim
a→a∓0

!P (a). (11)

For f(a+
0 ) = f(a−0 ) = 0 just define !B = !P (a0). For

f(a+
0 ) > f(a−0 ) define the POVM !B

!B =
f(a+

0 )!P (−) − f(a−0 )!P (+)

f(a+
0 )− f(a−0 )

. (12)

with a=r0+r3, b=r1+r2, c=r0−r3, and d=r1−r2. Notice that
the term !a+b!= !2p−1! corresponds to the trivial guessing
"E1 if p1= p!1/2 , E2 if p"1/2#.

We can also rewrite Eq. $10% as

RB!$p% = min
i=1,2,3

RB!$p,#i% . $13%

From Eqs. $8%–$11% one can see that entanglement is not
needed to achieve the minimal-error probability as long as
C=&i=0

3 !ri!, which is equivalent to the condition 'i=0
3 ri$0.

On the other hand, we can find instances where the channels
can be perfectly discriminated only by means of entangle-
ment, for example in the case of two channels of the form

E1$%% = &
&!'

q&#&%#&, E2$%% = #'%#', $14%

with q&!0, and arbitrary a priori probability.

III. MINIMAX DISCRIMINATION OF QUANTUM STATES

In the following we briefly review some results of Ref.
(11) about minimax discrimination of quantum states that are
needed to solve the problem of discrimination of Pauli chan-
nels in the next section, namely, we review just the case of
two states. We are given two states %1 and %2, and we want to
find the optimal measurement to discriminate between them
in a minimax approach. In this scenario there are no a priori
probabilities, and the optimal solution consists in finding the
POVM "M! =M1 ,M2# with Mi$0 for i=1, 2 and M1+M2
= I, that achieves the minimax

RM$%1,%2% = min
M!

max"Tr$%1M2%,Tr$%2M1%# , $15%

namely, one minimizes the largest of the probabilities of in-
correct detection. The minimax and Bayesian schemes of
discrimination of two states are connected by the following
theorems (11).

Theorem 1. There is a measurement B! that is optimal in
the Bayes scheme for some a priori probability $p* ,1− p*%
such that

Tr$%1B1% = Tr$%2B2% . $16%

This measurement is optimal in the minimax scheme as well,
and one has RM$%1 ,%2%=RB$p*%=Tr$%1B2%.

Theorem 2. The solution in the minimax problem is
equivalent to the solution of the problem

RM$%1,%2% = max
p

RB$p% , $17%

and the a priori probability achieving the maximum corre-
sponds to the value p= p* in Theorem 1.

IV. MINIMAX DISCRIMINATION OF PAULI CHANNELS

As in the Bayesian approach, the minimax discrimination
of two channels consists in finding the optimal input state
such that the two possible output states are discriminated

with minimum risk. Again, we will consider the two cases
with and without ancilla, upon defining

RM = min
("H!K

RM„$E1 ! I%$(%,$E2 ! I%$(%… ,

RM! = min
%"H

RM„E1$%%,E2$%%… , $18%

where RM$%1 ,%2% is given in Eq. $15%. Since for all M! , %, and
p, one has

max"Tr($E1 ! I%$%%M2),Tr($E2 ! I%$%%M1)#

$ pTr($E1 ! I%$%%M2) + $1 − p%Tr($E2 ! I%$%%M1) ,

$19%

then RM $RB$p% for all p. Analogously, RM! $RB!$p% for all
p.

Theorems 1 and 2 can be immediately applied to state that
the minimax discrimination of two unitaries is equivalent to
the Bayesian one. In fact, the optimal input state in the Baye-
sian problem which achieves the minimum error probability
of Eq. $6% does not depend on the a priori probabilities.
Therefore it is also optimal for the minimax problem and
there is no need of entanglement (and the minimax risk RM
will be equivalent to the Bayes risk RB$1/2%).

Let us now consider the problem of discriminating the
Pauli channels of Eq. $7% in the minimax framework. In the
following theorem, we show that an $arbitrary% maximally
entangled state always allows one to achieve the optimal
minimax discrimination as in the Bayesian problem.

Theorem 3. The minimax risk RM for the discrimination
of two Pauli channels can be achieved by using an arbitrary
maximally entangled input state. Moreover, the minimax risk
is then the Bayes risk for the worst a priori probability:

RM = max
p

RB$p% . $20%

Proof. Let us discriminate between the states %i
= $Ei ! I%$(e%, where (e is a maximally entangled state. By
Theorem 1 there are a priori probabilities $p* ,1− p*% whose
optimal Bayes measurement satisfies

Tr$%1B1% = Tr$%2B2% . $21%

Since the input state (e is always optimal in the Bayes prob-
lem we infer RB$p*%=Tr$%1B2%, and moreover RM$%1 ,%2%
=RB$p*%. Now, one has also RM =RM$%1 ,%2%, since if it were
not be true, then there would be an input state % and a mea-
surement M! for which

max"Tr($E1 ! I%$%%M2),Tr($E2 ! I%$%%M1)# " RB$p*% ,

and hence

p*Tr($E1 ! I%$%%M2) + $1 − p*%Tr($E2 ! I%$%%M1) " RB$p*% ,

which is a contradiction. Equation $20% simply comes from
the relation RM $RB$p% for all p, along with RM =RB$p*%.

Notice the nice correspondence between Eqs. $17% and
$20%. Theorem 3 holds true also in the case of generalized
Pauli channels in higher dimension, since entangled states
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.

In the problem of discrimination two quantum states

ρ1 ρ2

, given with a priori probability

p1 p2 = 1− p1

, respectively, one has to look for the two-values POVM

{Πi ≥ 0 , i = 1, 2}

with

Π1 + Π2 = I

{Π1 , Π2}

that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite

pE = p1 − Tr[(p1ρ1 − p2ρ2)Π1]
= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(1− ‖p1ρ1 − p2ρ2‖1) , (3)

the largest of the probabilities of misidentification 
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

Quantum nonorthogonality is a basic feature of quan-
tum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum
entanglement, cloning, and cryptography. Nonorthogo-
nality is strongly related to the concept of distinguisha-
bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
ing to some experimentally or theoretically meaningful
criteria. Since the pioneering work of Helstrom [3] on
quantum hypothesis testing, the problem of discriminat-
ing nonorthogonal quantum states has received a lot of
attention [4], with some experimental verifications as well
[5]. The most popular scenarios are the minimal-error
probability discrimination, where each measurement out-
come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].
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1
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{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has

pE =
1
2

(1− ‖p1ρ1 − p2ρ2‖1) , (3)

where ‖A‖1 denotes the trace norm of A. Equivalent
expressions for the trace norm are the following

‖A‖1 = Tr
√

A†A = max
U

|Tr[UA]| =
∑

i

si(A) , (4)
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No a priori probabilities

                                                 equiv.   to maximize the smallest of the probabilities 
   of correct detection 

2

namely !P ≡ (P1, P2), where Pi for i = 1, 2 are nonnega-
tive operators satisfying P1 + P2 = I.

In the usually considered Bayesian approach to the dis-
crimination problem, the states are given with a priori
probability distribution !a ≡ (a1, a2), respectively, and
one looks for the POVM that minimizes the average er-
ror probability

pE = a1Tr[ρ1P2] + a2Tr[ρ2P1]. (1)

The solution can then be achieved by taking the orthog-
onal POVM made by the projectors on the support of
the positive and negative part of the Hermitian operator
a1ρ1 − a2ρ2, and hence one has [1]

p(Bayes)
E =

1
2

(1− ‖a1ρ1 − a2ρ2‖1) , (2)

where ‖A‖1 denotes the trace norm of A.
In the minimax problem, one does not have a priori

probabilities. However, one defines the error probability
εi(!P ) = Tr[ρi(I − Pi)] of failing to identify ρi. The opti-
mal minimax solution consists in finding the POVM that
achieves the minimax

ε = min
!P

max
i=1,2

εi(!P ), (3)

min
{Π1,Π2}

max(Tr[ρ1Π2],Tr[ρ2Π1])

max
{Π1,Π2}

min(Tr[ρ1Π1],Tr[ρ2Π2])

or equivalently, that maximizes the smallest of the
probabilities of correct detection

1− ε = max
!P

min
i=1,2

[1− εi(!P )] = max
!P

min
i=1,2

Tr[ρiPi]. (4)

The minimax and Bayesian strategies of discrimination
are connected by the following theorem.

Theorem 1 If there is an a priori probability !a =
(a1, a2) for the states ρ1 and ρ2, and a measurement !B
that achieves the optimal Bayesian average error for !a,
with equal probabilities of correct detection, i.e.

Tr[ρ1B1] = Tr[ρ2B2], (5)

then !B is also the solution of the minimax discrimination
problem.

Proof. In fact, suppose on the contrary that there
exists a POVM !P such that mini=1,2 Tr[ρiPi] >
mini=1,2 Tr[ρiBi]. Due to assumption (5) one has
Tr[ρiPi] > Tr[ρiBi] for both i = 1, 2, whence

∑

i

ai Tr(ρiPi) >
∑

i

ai Tr(ρiBi) (6)

which contradicts the fact that !B is optimal for !a.!
The existence of an optimal !B as in Theorem 1 will be

shown in the following.
First, by labeling with !P (a) an optimal POVM for the

Bayesian problem with prior probability distribution !a =
(a, 1− a), and defining

χ(a, !P ) .= a Tr(ρ1P1) + (1− a)Tr(ρ2P2), (7)

we have the following lemma.

Lemma 1 The function f(a) .= Tr(ρ1P
(a)
1 )−Tr(ρ2P

(a)
2 )

is monotonically nondecreasing, with minimum value
f(0) " 0, and maximum value f(1) # 0.

In fact, consider !P (a) and !P (b) for two values a and b
with a < b and define !D = !P (b) − !P (a). Then

χ(a, !P (b)) = χ(a, !P (a)) + χ(a, !D)

χ(b, !P (a)) = χ(b, !P (b))− χ(b, !D).
(8)

Now, since χ(a, !P (a)) is the optimal probability of correct
detection for prior a, and analogously χ(b, !P (b)) for prior
b, then χ(a, !D) " 0 and χ(b, !D) # 0, and hence

0 ≤ χ(b, !D)− χ(a, !D) = (b− a)[Tr(ρ1D1)− Tr(ρ2D2)].

It follows that Tr(ρ1D1) # Tr(ρ2D2), namely

Tr(ρ1P
(b)
1 )− Tr(ρ1P

(a)
1 ) # Tr(ρ2P

(b)
2 )− Tr(ρ2P

(a)
2 ) (9)

or, equivalently,

Tr(ρ1P
(b)
1 )−Tr(ρ2P

(b)
2 ) # Tr(ρ1P

(a)
1 )−Tr(ρ2P

(a)
2 ). (10)

Equation (10) states that the function f(a) is monoton-
ically nondecreasing. Moreover, for a = 0 the POVM
detects only the state ρ2, whence Tr(ρ2P

(0)
2 ) = 1, and

one has f(0) = −1 + Tr[ρ1P
(0)
1 ] " 0. Similarly one can

see that f(1) # 0.!
We can now prove the following theorem.

Theorem 2 An optimal !B as in Theorem 1 always ex-
ists.

Proof. Consider the value a0 of a where f(a) changes
its sign from negative to positive, and there take the left
and right limits

!P (∓) = lim
a→a∓0

!P (a). (11)

For f(a+
0 ) = f(a−0 ) = 0 just define !B = !P (a0). For

f(a+
0 ) > f(a−0 ) define the POVM !B

!B =
f(a+

0 )!P (−) − f(a−0 )!P (+)

f(a+
0 )− f(a−0 )

. (12)
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bility, and many measures have been defined to compare
quantum states [1] and quantum processes [2], accord-
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come selects one of the possible states and the error prob-
ability is minimized, and the optimal unambiguous dis-
crimination [6], where unambiguity is paid by the pos-
sibility of getting inconclusive results from the measure-
ment. Stimulated by the rapid developments in quantum
information theory, the problem of discrimination has
been addressed also for bipartite quantum states, along
with the comparison of global strategies where unlimited
kind of measurements is considered, with the scenario of
LOCC scheme, where only local measurements and clas-
sical communication are allowed [7].

The concepts of nonorthogonality and distinguishabil-
ity can be applied also to quantum operations, namely
all physically allowed transformations of quantum states.
Not very much work, however, has been devoted to the
problem of discriminating general quantum operations,
and major efforts have been directed at the case of uni-
tary transformations [8]. In fact, the most elementary
formulation of the problem can be recast to the evalua-
tion of the norm of complete boundedness [9], which is
in general a very hard task. We recall that such a norm
entered the quantum information field as the diamond
norm [10], and one of its most relevant application is
found in the problem of quantifying quantum capacities
of quantum information channels [11].

In this Letter, we address the problem of discriminat-
ing with minimal error probability two given quantum
operations. After briefly reviewing the case of quantum
states, we formulate the problem for two quantum oper-
ations. Differently from the case of unitary transforma-
tions [8], we show that entangled input states generally

improve the discrimination. We prove that the use of an
arbitrary maximally entangled state turns out to be al-
ways an optimal input when we are asked to discriminate
two quantum operations that generalize the Pauli chan-
nel in any dimension. In the case of qubits, we give a com-
plete comparison of the strategies where either entangled
or unentangled states are used at the input of the Pauli
channels, thus characterizing the channels where entan-
glement is really useful to achieve the ultimate minimal
error probability in the discrimination.
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Π1 + Π2 = I
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that minimizes the error probability

pE = p1Tr[ρ1Π2] + p2Tr[ρ2Π1] . (1)

We can rewrite
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= p2 + Tr[(p1ρ1 − p2ρ2)Π2]

=
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{1− Tr[(p1ρ1 − p2ρ2)(Π1 −Π2)]} , (2)

where the third line can be obtained by summing and di-
viding the two lines above. The minimal error probabil-
ity can then be achieved by taking the orthogonal POVM
made by the projectors on the support of the positive and
negative part of the Hermitian operator p1ρ1−p2ρ2, and
hence one has
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(1− ‖p1ρ1 − p2ρ2‖1) , (3)

4

Theorem 1. There is a measurement !B that is optimal in the Bayes scheme for some a priori probability (p∗, 1− p∗)
such that

Tr[ρ1B1] = Tr[ρ2B2] . (16)

This measurement is optimal in the minimax scheme as well, and one has RM (ρ1, ρ2) = RB(p∗) = Tr[ρ1B2].

Theorem 2. The solution in the minimax problem is equivalent to the solution of the problem

RM (ρ1, ρ2) = max
p

RB(p) , (17)

and the a priori probability achieving the maximum corresponds to the value p = p∗ in Theorem 1.

IV. MINIMAX DISCRIMINATION OF PAULI CHANNELS

As in the Bayesian approach, the minimax discrimination of two channels consists in finding the optimal input state
such that the two possible output states are discriminated with minimum risk. Again, we will consider the two cases
with and without ancilla, upon defining

RM = min
ξ∈H⊗K

RM ((E1 ⊗ I)(ξ), (E2 ⊗ I)(ξ)) ,

R′
M = min

ρ∈H
RM (E1(ρ), E2(ρ)) , (18)

where RM (ρ1, ρ2) is given in Eq. (15). Since for all !M , ρ, and p, one has

max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]}
≥ p Tr[(E1 ⊗ I)(ρ)M2] + (1− p)Tr[(E2 ⊗ I)(ρ)M1] , (19)

then RM ≥ RB(p) for all p. Analogously, R′
M ≥ R′

B(p) for all p.
Theorems 1 and 2 can be immediately applied to state that the minimax discrimination of two unitaries is equivalent

to the Bayesian one. In fact, the optimal input state in the Bayesian problem which achieves the minimum error
probability of Eq. (6) does not depend on the a priori probabilities. Therefore it is also optimal for the minimax
problem and there is no need of entanglement [and the minimax risk RM will be equivalent to the Bayes risk RB(1/2)].

Let us now consider the problem of discriminating the Pauli channels of Eq. (7) in the minimax framework. In
the following theorem, we show that an (arbitrary) maximally entangled state always allows to achieve the optimal
minimax discrimination as in the Bayesian problem.

Theorem 3. The minimax risk RM for the discrimination of two Pauli channels can be achieved by using an arbitrary
maximally entangled input state. Moreover, the minimax risk is then the Bayes risk for the worst a priori probability:

RM = max
p

RB(p) . (20)

Proof. Let us discriminate between the states ρi = (Ei⊗I)(ξe), where ξe is a maximally entangled state. By Theorem
1 there are a priori probabilities (p∗, 1− p∗) whose optimal Bayes measurement fulfills

Tr[ρ1B1] = Tr[ρ2B2] . (21)

Since the input state ξe is always optimal in the Bayes problem we infer RB(p∗) = Tr[ρ1B2], and moreover
RM (ρ1, ρ2) = RB(p∗). Now, one has also RM = RM (ρ1, ρ2), since if it would not be true, then there would be
an input state ρ and a measurement !M for which max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]} < RB(p∗), and hence
p∗ Tr[(E1 ⊗ I)(ρ)M2] + (1 − p∗)Tr[(E2 ⊗ I)(ρ)M1] < RB(p∗), which is a contradiction. Equation (20) simply comes
from the relation RM ≥ RB(p) for all p, along with RM = RB(p∗).

Notice the nice correspondence between Eqs. (17) and (20). Theorem 3 holds true also in the case of generalized
Pauli channels in higher dimension, since entangled states again achieve the optimal Bayesian discrimination, whatever
the a priori probability [12]. More generally, Eq. (20) will hold in the discrimination of any couple of quantum
operations for which the minimal Bayes risk RB(p) can be achieved by the same input state for any p.

Now we establish some visual images on which to read the minimax risks. We must look at the function RB(p) given
in Eq. (8) drawn on [0, 1]. By Eq. (20), we know that its maximum is RM . As the rα defined in (9) are increasing

such that
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with and without ancilla, upon defining
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RM ((E1 ⊗ I)(ξ), (E2 ⊗ I)(ξ)) ,

R′
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RM (E1(ρ), E2(ρ)) , (18)

where RM (ρ1, ρ2) is given in Eq. (??). Since for all !M , ρ, and p, one has

max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]}
≥ p Tr[(E1 ⊗ I)(ρ)M2] + (1− p)Tr[(E2 ⊗ I)(ρ)M1] , (19)

then RM ≥ RB(p) for all p. Analogously, R′
M ≥ R′

B(p) for all p.
Theorems ?? and ?? can be immediately applied to state that the minimax discrimination of two unitaries is

equivalent to the Bayesian one. In fact, the optimal input state in the Bayesian problem which achieves the minimum
error probability of Eq. (??) does not depend on the a priori probabilities. Therefore it is also optimal for the
minimax problem and there is no need of entanglement [and the minimax risk RM will be equivalent to the Bayes
risk RB(1/2)].

Let us now consider the problem of discriminating the Pauli channels of Eq. (??) in the minimax framework. In
the following theorem, we show that an (arbitrary) maximally entangled state always allows to achieve the optimal
minimax discrimination as in the Bayesian problem.

Theorem 3. The minimax risk RM for the discrimination of two Pauli channels can be achieved by using an arbitrary
maximally entangled input state. Moreover, the minimax risk is then the Bayes risk for the worst a priori probability:

RM = max
p

RB(p) . (20)

Proof. Let us discriminate between the states ρi = (Ei⊗I)(ξe), where ξe is a maximally entangled state. By Theorem
?? there are a priori probabilities (p∗, 1− p∗) whose optimal Bayes measurement fulfills

Tr[ρ1B1] = Tr[ρ2B2] . (21)

Since the input state ξe is always optimal in the Bayes problem we infer RB(p∗) = Tr[ρ1B2], and moreover
RM (ρ1, ρ2) = RB(p∗). Now, one has also RM = RM (ρ1, ρ2), since if it would not be true, then there would be
an input state ρ and a measurement !M for which max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]} < RB(p∗), and hence
p∗ Tr[(E1 ⊗ I)(ρ)M2] + (1 − p∗)Tr[(E2 ⊗ I)(ρ)M1] < RB(p∗), which is a contradiction. Equation (??) simply comes
from the relation RM ≥ RB(p) for all p, along with RM = RB(p∗).

Notice the nice correspondence between Eqs. (??) and (??). Theorem ?? holds true also in the case of generalized
Pauli channels in higher dimension, since entangled states again achieve the optimal Bayesian discrimination, whatever
the a priori probability [? ]. More generally, Eq. (??) will hold in the discrimination of any couple of quantum
operations for which the minimal Bayes risk RB(p) can be achieved by the same input state for any p.
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the channel, as it happens in the Bayesian approach. On the contrary, the optimal input state for a strategy where
no ancillary system is used can be different in the minimax approach with respect to the Bayesian one. In the latter
the optimal input can always be chosen as an eigenstate of one of the Pauli matrices, whereas in the former this may
not be the case. In the concluding section, we summarize the main results of the paper.

II. BAYESIAN DISCRIMINATION OF TWO PAULI CHANNELS

In the problem of optimal Bayesian discrimination of two quantum states ρ1 and ρ2, given with a priori probability
p1 = p and p2 = 1− p, respectively, one has to look for the two-values probability operator-valued measure (POVM)
"B ≡ {B1, B2} with Bi ≥ 0 for i = 1, 2 and B1 + B2 = I, that minimizes the error probability (or “Bayes risk”)

RB(p, "B) = p1Tr[ρ1B2] + p2Tr[ρ2B1] . (1)

We can rewrite

RB(p, "B) = p1 − Tr[(p1ρ1 − p2ρ2)B1]
= p2 + Tr[(p1ρ1 − p2ρ2)B2]

=
1
2
{1− Tr[(p1ρ1 − p2ρ2)(B1 −B2)]} , (2)

where the third line can be obtained by summing and dividing the two lines above. The minimal error probability
RB(p) ≡ min !B RB(p, "B) can then be achieved by taking the orthogonal POVM made by the projectors on the support
of the positive and negative part of the Hermitian operator p1ρ1 − p2ρ2, and hence one has [5, 9]

RB(p) =
1
2

(1− ‖pρ1 − (1− p)ρ2‖1) , (3)

where ‖A‖1 = Tr
√

A†A denotes the trace norm of A. Notice that the optimal POVM does not appear in the expression
of the minimal error probability (3), as the trace norm implicitly takes it into account.

The problem of optimally discriminating two quantum operations E1 and E2 can be reformulated into the problem
of finding the state ρ in the input Hilbert space H, such that the error probability in the discrimination of the output
states E1(ρ) and E2(ρ) is minimal. The possibility of exploiting entanglement with an ancillary system can increase
the distinguishability of the output states [12]. In this case the output states to be discriminated will be of the form
(E1⊗ IK)ρ and (E2⊗ IK)ρ, where the input ρ is generally a bipartite state of H⊗K, and the quantum operations act
just on the first party whereas the identity map IK acts on the second.

Upon denoting with R′
B(p) the minimal error probability when a strategy without ancilla is adopted, one has

R′
B(p) =

1
2

(
1−max

ρ∈H
‖p1E1(ρ)− p2E2(ρ)‖1

)
. (4)

On the other hand, by allowing the use an ancillary system, we have

RB(p) =
1
2

(
1− max

ξ∈H⊗K
‖p1(E1 ⊗ I)ξ − p2(E2 ⊗ I)ξ‖1

)
. (5)

The maximum of the trace norm in Eq. (5) with the supremum over the dimension of K is equivalent to the norm
of complete boundedness [17] of the map p1E1 − p2E2, and in fact for finite-dimensional Hilbert space the supremum
is achieved for dim(K) = dim(H) [17, 18], and in the following we will drop the subindex K from the identity map.
Moreover, due to linearity of quantum operations and convexity of the trace norm, the maximum in both Eqs. (4)
and (5) is achieved on pure states.

Clearly, RB(p) ≤ R′
B(p). In the case of discrimination between two unitary transformations U and V [14], one has

RB(p) = R′
B(p), namely there is no need of entanglement with an ancillary system to achieve the ultimate minimum

error probability, which is given by

RB(p) = min
|ψ〉∈H

1
2

(
1−

√
1− 4p1p2|〈ψ|U†V |ψ〉|2

)

=
1
2

(
1−

√
1− 4p1p2D2

)
, (6)



Optimal minimax measurement given 
by a non-orthogonal POVM 

probability; hence there exists an optimal POVM for the
minimax discrimination that coincides with the optimal
Bayesian one, which is orthogonal. Uniqueness of the mini-
max optimal POVM follows from the considerations after
the proof of Theorem 2 when restricted to the subspace
spanned by the two states.

Remark 2. There are couples of mixed states for which the
optimal minimax POVM is unique and nonorthogonal.

For example, consider the following states in dimension
2:

!1 = !1 0

0 0
", !2 = ! 1

2 0

0 1
2
" . #14$

Then an optimal minimax POVM is given by

P1 = ! 2
3 0

0 0
", P2 = ! 1

3 0

0 1
" . #15$

In fact, clearly there is an optimal POVM of the diagonal
form. We need to maximize mini=1,2Tr#!iPi$, whence, ac-
cording to Theorem 2, we need to maximize Tr#!1P1$ with
the constraints Tr#!1P1$=Tr#!2P2$ and P2= I− P1. Such an
optimal POVM is unique, otherwise there would exist a con-
vex combination a0!1− #1−a0$!2 with kernel at least two di-
mensional, which is impossible in the present example #see
comments after the proof of Theorem 2$.

Notice that when the optimal POVM for the minimax
strategy is unique and nonorthogonal, then there is a prior
probability distribution a! for which the optimal POVM for
the Bayes problem is not unique, and the nonorthogonal
POVM that optimizes the minimax problem is also optimal
for the Bayes one. In the example of Remark 2 the optimal
POVM #15$ is also optimal for the Bayes problem with a!
= # 1

3 , 2
3

$ as one can easily check. However, in the Bayes case
one can always choose an optimal orthogonal POVM,
whereas in the minimax case you may have to choose a
nonorthogonal POVM.

Finally, notice that, unlike in the Bayesian case, the opti-
mal POVM for the minimax strategy may also be not ex-
tremal.

III. OPTIMAL MINIMAX DISCRIMINATION OF NÐ2
QUANTUM STATES

We now consider the easiest case of discrimination with
more than two states, namely, the discrimination among a
covariant set. In a fully covariant state discrimination, one
has a set of states %!i& with !i=Ui!0Ui

† ∀ i, for fixed !0 and
%Ui& a #projective$ unitary representation of a group. In the
Bayesian case full covariance requires that the prior prob-
ability distribution %ai& is uniform. Then one can easily prove
#see, for example, Ref. '8($ that also the optimal POVM is
covariant, namely, it is of the form Pi=UiKUi

†, for suitable
fixed operator K"0.

Theorem 3. For a fully covariant state discrimination
problem, there is an optimal measurement for the minimax
strategy that is covariant, and coincides with an optimal
Bayesian measurement.

Proof. A covariant POVM %Pi& gives a probability p
=Tr#!iPi$ independent of i. Moreover, there always exists an
optimal Bayesian POVM that is covariant and maximizes p,
which then is also the maximum over all POVM’s of the
average probability of correct estimation Tr#!iPi$ for uni-
form prior distribution '8(. Now, suppose by contradiction
that there exists an optimal minimax POVM %Pi!& maximiz-
ing p!=mini Tr#!iPi!$, for which p!# p. Then, one has p
$ p!%Tr#!iPi!$, contradicting the assertion that an optimal
Bayesian POVM maximizes Tr#!iPi$ over all POVM’s.
Therefore, p= p!, and the covariant Bayesian POVM also
solves the minimax problem. !

Notice that in the covariant case also for any optimal
minimax POVM %Pi& one has Tr#!iPi$ independent of i,
since the average probability of correct estimation is equal to
the minimum one.

In the following we generalize Theorem 1 for two states
to the case of N"2 states and arbitrary weights. We have the
following theorem.

Theorem 4. For any set of states %!i&2%i%N and any set of
weights wij #price of misidentifying i with j$ the solution of
the minimax problem

r = inf
P!

sup
i

)
j

wijTr#!iPj$ #16$

is equivalent to the solution of the problem

r = max
a!

rB#a$ , #17$

where rB#a!$ is the Bayesian risk

rB#a!$ " max
P!

)
i

ai)
j

wijTr#!iPj$ . #18$

Proof. The minimax problem in Eq. #16$ is equivalent to
looking for the minimum of the real function &= f#P! $ over P! ,
with the constraints

)
j

wijTr#!iPj$ % &, ∀ i ,

Pj " 0, ∀ j ,

)
j

Pj = I . #19$

Upon introducing the Lagrange multipliers

'i " R+, ∀ i ,

0 % Zi " Md#C$, ∀ i ,

Y† = Y " Md#C$ , #20$

Md#C$ denoting the d(d matrices on the complex field, the
problem is equivalent to

r = inf
P! ,&

sup!
'! ,Z! ,Y

l#P! ,&,'! ,Z! ,Y$ ,
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

RB(p)

p =
1
3

= min
(
p1,

p2

d

)

= min
(
p1,

p2

d2

)

|A〉〉 = |UDV 〉〉 = U ⊗ V τ |D〉〉 = U ⊗ V τ
r∑

n=1

dn|n〉 ⊗ |n〉

rank(A) = Schmidt number of |A〉〉

Quantum nonorthogonality is a basic feature of quantum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum entanglement, cloning, and cryptography. Nonorthogonality
is strongly related to the concept of distinguishability, and many measures have been defined to compare quantum
states [1] and quantum processes [2], according to some experimentally or theoretically meaningful criteria. Since the
pioneering work of Helstrom [3] on quantum hypothesis testing, the problem of discriminating nonorthogonal quantum
states has received a lot of attention [4], with some experimental verifications as well [5]. The most popular scenarios
are the minimal-error probability discrimination, where each measurement outcome selects one of the possible states
and the error probability is minimized, and the optimal unambiguous discrimination [6], where unambiguity is paid
by the possibility of getting inconclusive results from the measurement. Stimulated by the rapid developments in
quantum information theory, the problem of discrimination has been addressed also for bipartite quantum states,
along with the comparison of global strategies where unlimited kind of measurements is considered, with the scenario
of LOCC scheme, where only local measurements and classical communication are allowed [7].

The concepts of nonorthogonality and distinguishability can be applied also to quantum operations, namely all
physically allowed transformations of quantum states. Not very much work, however, has been devoted to the
problem of discriminating general quantum operations, and major efforts have been directed at the case of unitary
transformations [8]. In fact, the most elementary formulation of the problem can be recast to the evaluation of the
norm of complete boundedness [9], which is in general a very hard task. We recall that such a norm entered the
quantum information field as the diamond norm [10], and one of its most relevant application is found in the problem
of quantifying quantum capacities of quantum information channels [11].

In this Letter, we address the problem of discriminating with minimal error probability two given quantum oper-
ations. After briefly reviewing the case of quantum states, we formulate the problem for two quantum operations.
Differently from the case of unitary transformations [8], we show that entangled input states generally improve the
discrimination. We prove that the use of an arbitrary maximally entangled state turns out to be always an optimal
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Theorem 1. There is a measurement !B that is optimal in the Bayes scheme for some a priori probability (p∗, 1− p∗)
such that

Tr[ρ1Π1] = Tr[ρ2Π2] . (16)

This measurement is optimal in the minimax scheme as well, and one has RM (ρ1, ρ2) = RB(p∗) = Tr[ρ1Π2].

Theorem 2. The solution in the minimax problem is equivalent to the solution of the problem

RM (ρ1, ρ2) = max
p

RB(p) , (17)

and the a priori probability achieving the maximum corresponds to the value p = p∗ in Theorem ??.

IV. MINIMAX DISCRIMINATION OF PAULI CHANNELS

As in the Bayesian approach, the minimax discrimination of two channels consists in finding the optimal input state
such that the two possible output states are discriminated with minimum risk. Again, we will consider the two cases
with and without ancilla, upon defining

RM = min
ξ∈H⊗K

RM ((E1 ⊗ I)(ξ), (E2 ⊗ I)(ξ)) ,

R′
M = min

ρ∈H
RM (E1(ρ), E2(ρ)) , (18)

where RM (ρ1, ρ2) is given in Eq. (??). Since for all !M , ρ, and p, one has

max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]}
≥ p Tr[(E1 ⊗ I)(ρ)M2] + (1− p)Tr[(E2 ⊗ I)(ρ)M1] , (19)

then RM ≥ RB(p) for all p. Analogously, R′
M ≥ R′

B(p) for all p.
Theorems ?? and ?? can be immediately applied to state that the minimax discrimination of two unitaries is

equivalent to the Bayesian one. In fact, the optimal input state in the Bayesian problem which achieves the minimum
error probability of Eq. (??) does not depend on the a priori probabilities. Therefore it is also optimal for the
minimax problem and there is no need of entanglement [and the minimax risk RM will be equivalent to the Bayes
risk RB(1/2)].

Let us now consider the problem of discriminating the Pauli channels of Eq. (??) in the minimax framework. In
the following theorem, we show that an (arbitrary) maximally entangled state always allows to achieve the optimal
minimax discrimination as in the Bayesian problem.

Theorem 3. The minimax risk RM for the discrimination of two Pauli channels can be achieved by using an arbitrary
maximally entangled input state. Moreover, the minimax risk is then the Bayes risk for the worst a priori probability:

RM = max
p

RB(p) . (20)

Proof. Let us discriminate between the states ρi = (Ei⊗I)(ξe), where ξe is a maximally entangled state. By Theorem
?? there are a priori probabilities (p∗, 1− p∗) whose optimal Bayes measurement fulfills

Tr[ρ1B1] = Tr[ρ2B2] . (21)

Since the input state ξe is always optimal in the Bayes problem we infer RB(p∗) = Tr[ρ1B2], and moreover
RM (ρ1, ρ2) = RB(p∗). Now, one has also RM = RM (ρ1, ρ2), since if it would not be true, then there would be
an input state ρ and a measurement !M for which max{Tr[(E1 ⊗ I)(ρ)M2], Tr[(E2 ⊗ I)(ρ)M1]} < RB(p∗), and hence
p∗ Tr[(E1 ⊗ I)(ρ)M2] + (1 − p∗)Tr[(E2 ⊗ I)(ρ)M1] < RB(p∗), which is a contradiction. Equation (??) simply comes
from the relation RM ≥ RB(p) for all p, along with RM = RB(p∗).

Notice the nice correspondence between Eqs. (??) and (??). Theorem ?? holds true also in the case of generalized
Pauli channels in higher dimension, since entangled states again achieve the optimal Bayesian discrimination, whatever
the a priori probability [? ]. More generally, Eq. (??) will hold in the discrimination of any couple of quantum
operations for which the minimal Bayes risk RB(p) can be achieved by the same input state for any p.
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We address the problem of discriminating with minimal error probability two given quantum
operations. We show that the use of entangled input states generally improves the discrimination.
For Pauli channels we provide a complete comparison of the optimal strategies where either entangled
or unentangled input states are used.

RB(p)

p =
1
3

= min
(
p1,

p2

d

)

= min
(
p1,

p2

d2

)

|A〉〉 = |UDV 〉〉 = U ⊗ V τ |D〉〉 = U ⊗ V τ
r∑

n=1

dn|n〉 ⊗ |n〉

rank(A) = Schmidt number of |A〉〉

Quantum nonorthogonality is a basic feature of quantum mechanics that has deep implications in many areas,
as quantum computation and communication, quantum entanglement, cloning, and cryptography. Nonorthogonality
is strongly related to the concept of distinguishability, and many measures have been defined to compare quantum
states [1] and quantum processes [2], according to some experimentally or theoretically meaningful criteria. Since the
pioneering work of Helstrom [3] on quantum hypothesis testing, the problem of discriminating nonorthogonal quantum
states has received a lot of attention [4], with some experimental verifications as well [5]. The most popular scenarios
are the minimal-error probability discrimination, where each measurement outcome selects one of the possible states
and the error probability is minimized, and the optimal unambiguous discrimination [6], where unambiguity is paid
by the possibility of getting inconclusive results from the measurement. Stimulated by the rapid developments in
quantum information theory, the problem of discrimination has been addressed also for bipartite quantum states,
along with the comparison of global strategies where unlimited kind of measurements is considered, with the scenario
of LOCC scheme, where only local measurements and classical communication are allowed [7].

The concepts of nonorthogonality and distinguishability can be applied also to quantum operations, namely all
physically allowed transformations of quantum states. Not very much work, however, has been devoted to the
problem of discriminating general quantum operations, and major efforts have been directed at the case of unitary
transformations [8]. In fact, the most elementary formulation of the problem can be recast to the evaluation of the
norm of complete boundedness [9], which is in general a very hard task. We recall that such a norm entered the
quantum information field as the diamond norm [10], and one of its most relevant application is found in the problem
of quantifying quantum capacities of quantum information channels [11].

In this Letter, we address the problem of discriminating with minimal error probability two given quantum oper-
ations. After briefly reviewing the case of quantum states, we formulate the problem for two quantum operations.
Differently from the case of unitary transformations [8], we show that entangled input states generally improve the
discrimination. We prove that the use of an arbitrary maximally entangled state turns out to be always an optimal

probability; hence there exists an optimal POVM for the
minimax discrimination that coincides with the optimal
Bayesian one, which is orthogonal. Uniqueness of the mini-
max optimal POVM follows from the considerations after
the proof of Theorem 2 when restricted to the subspace
spanned by the two states.

Remark 2. There are couples of mixed states for which the
optimal minimax POVM is unique and nonorthogonal.

For example, consider the following states in dimension
2:

!1 = !1 0

0 0
", !2 = ! 1

2 0

0 1
2
" . #14$

Then an optimal minimax POVM is given by

P1 = ! 2
3 0

0 0
", P2 = ! 1

3 0

0 1
" . #15$

In fact, clearly there is an optimal POVM of the diagonal
form. We need to maximize mini=1,2Tr#!iPi$, whence, ac-
cording to Theorem 2, we need to maximize Tr#!1P1$ with
the constraints Tr#!1P1$=Tr#!2P2$ and P2= I− P1. Such an
optimal POVM is unique, otherwise there would exist a con-
vex combination a0!1− #1−a0$!2 with kernel at least two di-
mensional, which is impossible in the present example #see
comments after the proof of Theorem 2$.

Notice that when the optimal POVM for the minimax
strategy is unique and nonorthogonal, then there is a prior
probability distribution a! for which the optimal POVM for
the Bayes problem is not unique, and the nonorthogonal
POVM that optimizes the minimax problem is also optimal
for the Bayes one. In the example of Remark 2 the optimal
POVM #15$ is also optimal for the Bayes problem with a!
= # 1

3 , 2
3

$ as one can easily check. However, in the Bayes case
one can always choose an optimal orthogonal POVM,
whereas in the minimax case you may have to choose a
nonorthogonal POVM.

Finally, notice that, unlike in the Bayesian case, the opti-
mal POVM for the minimax strategy may also be not ex-
tremal.

III. OPTIMAL MINIMAX DISCRIMINATION OF NÐ2
QUANTUM STATES

We now consider the easiest case of discrimination with
more than two states, namely, the discrimination among a
covariant set. In a fully covariant state discrimination, one
has a set of states %!i& with !i=Ui!0Ui

† ∀ i, for fixed !0 and
%Ui& a #projective$ unitary representation of a group. In the
Bayesian case full covariance requires that the prior prob-
ability distribution %ai& is uniform. Then one can easily prove
#see, for example, Ref. '8($ that also the optimal POVM is
covariant, namely, it is of the form Pi=UiKUi

†, for suitable
fixed operator K"0.

Theorem 3. For a fully covariant state discrimination
problem, there is an optimal measurement for the minimax
strategy that is covariant, and coincides with an optimal
Bayesian measurement.

Proof. A covariant POVM %Pi& gives a probability p
=Tr#!iPi$ independent of i. Moreover, there always exists an
optimal Bayesian POVM that is covariant and maximizes p,
which then is also the maximum over all POVM’s of the
average probability of correct estimation Tr#!iPi$ for uni-
form prior distribution '8(. Now, suppose by contradiction
that there exists an optimal minimax POVM %Pi!& maximiz-
ing p!=mini Tr#!iPi!$, for which p!# p. Then, one has p
$ p!%Tr#!iPi!$, contradicting the assertion that an optimal
Bayesian POVM maximizes Tr#!iPi$ over all POVM’s.
Therefore, p= p!, and the covariant Bayesian POVM also
solves the minimax problem. !

Notice that in the covariant case also for any optimal
minimax POVM %Pi& one has Tr#!iPi$ independent of i,
since the average probability of correct estimation is equal to
the minimum one.

In the following we generalize Theorem 1 for two states
to the case of N"2 states and arbitrary weights. We have the
following theorem.

Theorem 4. For any set of states %!i&2%i%N and any set of
weights wij #price of misidentifying i with j$ the solution of
the minimax problem

r = inf
P!

sup
i

)
j

wijTr#!iPj$ #16$

is equivalent to the solution of the problem

r = max
a!

rB#a$ , #17$

where rB#a!$ is the Bayesian risk

rB#a!$ " max
P!

)
i

ai)
j

wijTr#!iPj$ . #18$

Proof. The minimax problem in Eq. #16$ is equivalent to
looking for the minimum of the real function &= f#P! $ over P! ,
with the constraints

)
j

wijTr#!iPj$ % &, ∀ i ,

Pj " 0, ∀ j ,

)
j

Pj = I . #19$

Upon introducing the Lagrange multipliers

'i " R+, ∀ i ,

0 % Zi " Md#C$, ∀ i ,

Y† = Y " Md#C$ , #20$

Md#C$ denoting the d(d matrices on the complex field, the
problem is equivalent to

r = inf
P! ,&

sup!
'! ,Z! ,Y

l#P! ,&,'! ,Z! ,Y$ ,
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The optimal minimax POVM is 
unique and non-orthogonal



• The problems of discriminating between two unitary 
transformations and between two quantum operations 
have quite different solutions

• Entanglement can improve the discrimination

• Even if both QO’s are entanglement-breaking 

• Multiple copies of QO:  serial, parallel, mixed schemes 

• Suitable distance measure is still lacking

• Unambigous discrimination

• LOCC discrimination

• Minimax discrimination

Conclusions & open problems
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• No-go theorems             better understanding of Q.M.  

• What about correlations ?

• Quantum/classical

• Beneficial/detrimental for specific tasks

• Correlation of optimal clones are the worst for state 
estimation (Demkowicz-Dobrzanzki, PRA 2005)

• Features of correlations between clones ?

• Cloning without correlations ?

• Can we erase correlations ? Qudits vs Continuous 
Variables

• Quantum version of the classical cocktail-party problem ?

Intro 



Cocktail-party problem

Sources Outputs

Noise deconvolution

Demixing by Independent Component Analysis:
the p.d. of the sum of independent random variables is 

“more Gaussian” than the p.d. of the independent 
random variables themselves
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FIG. 1: When we join a cocktail party and we hear two peo-
ple speaking simultaneously, their voices come together in a
single signal to our ears (which we can simulate by two micro-
phones). If we want to digitalise the two speeches separately,
we then need to de-mix the two voices, and this is generally
a hard task for a neural-network software, a problem which
is indeed commonly known as the cocktail party problem. In
Quantum Mechanics we can also consider a situation of de-
correlating two signals, but in this case the signals are not
classical, and are encoded using quantum states. [Picture
courtesy by Tomasz Szkodziński].

locally at time t on subsystems A and B, respectively.
The communication of quantum signals will amount to
sending the states [UA(t) ⊗ UB(t)]|0〉 ⊗ |0〉 at different
times t, each time rotated by a different pair of unitary
matrices UA(t) and UB(t), depending on the quantum
message intended to be transmitted. After this encod-
ing, the system passes through the environment which
causes the two signals to be mixed in analogy to classi-
cal mixing of signals in microphones. This mixing can
be represented by a unitary operation V that entangles
both qubits with the environment state |E〉 as follows

|ψ(t)〉ABE = V (UA(t)⊗ UB(t)⊗ I)|0〉 ⊗ |0〉 ⊗ |E〉. (4)

The analog of the classical cocktail-party problem would
be now to determine the “signals” UA(t) and UB(t)—or
the state [UA(t)⊗UB(t)]|0〉⊗|0〉—from the output state of
AB only, without even knowing the interaction with the
environment V : this would be a strict quantum analog
of blind independent component separation. In this sense
we would de-correlate the signals UA(t) and UB(t). This
quantum version of the cocktail-party problem is much
harder than its classical counterpart, for many reasons,
including the no-cloning theorem, which forbids to deter-
mine the output state from a single copy: an approximate
solution, if possible, would need at least some additional
assumptions about the time self-correlation of each sep-
arate signal, along with the aid of a quantum memory

to store the whole time-sequence of output states of AB
and a full joint measurement on the whole sequence.

We pose here a simpler, but a closely related problem of
de-correlating two quantum signals, in the scenario where
the signals UA, UB are encoded on a correlated state ρAB

as: UA⊗UBρABU†
A⊗U†

B , but no additional mixing oper-
ation V is applied. We want to de-correlate the received
state, and the desired result is two completely uncorre-
lated systems A and B, each one in a state that carries
information about the signals UA and UB , respectively.

Therefore, according to the above scenario, let ρAB be
a density matrix of two (generally correlated) quantum
systems. The hardest case will be when the two systems
A and B are identical, and the state ρAB doesn’t change
under permutation of them. The information is encoded
on the state ρAB via the local unitary transformations as
follows

ρAB(α, β) .= UA(α)⊗ UB(β)ρABU†
A(α)⊗ U†

B(β), (5)

α and β denoting random variables. The de-correlating
quantum transformation D we are seeking should act as
follows:

ρAB(α,β) −→ ρ̃A(α)⊗ ρ̃B(β) (6)

with ρ̃A(α) .= UA(α)ρ̃AU†
A(α), and ρ̃B(β) .=

UB(β)ρ̃BU†
B(β). This means that the map acts covari-

antly with respect to the action of UA(α)⊗ UB(β). The
output state is uncorrelated, and we want the matrices
ρ̃A(α) and ρ̃B(β) to contain as little noise as possible,
namely they will carry the same signal, but possibly with
higher noise. In other words, we want the states ρ̃A(α)
and ρ̃B(β) to be as close as possible to the input marginal
states ρA(α) = TrB [ρAB(α,β)], ρB(β) = TrA[ρAB(α, β)],
respectively.

At the output the two classical signals α and β encoded
on the joint state ρAB(α, β) are recovered by separate
identical measurements on systems A and B, yielding
the probability distribution

pAB(α′,β′|α,β) = Tr[Π(α′)⊗Π(β′)ρAB(α, β)], (7)

where Π(α) and Π(β) are positive operators describing
the local measurements on A and B, fulfilling the nor-
malization condition

∫
dα′Π(α′) =

∫
dβ′Π(β′) = 11.

If instead we first apply the de-correlation operation
D , and then perform the measurements we get the prob-
ability distribution

pD
AB(α′, β′|α, β) =Tr[Π(α′)⊗Π(β′)ρ̃A(α)⊗ ρ̃B(β)]

=pA(α′|α)pB(β′|β),
(8)

achieving the solution of the cocktail party problem as in
Eq. (3). We want to stress that the de-correlated prob-
abilities pA(α′|α) and pB(β′|β) will be generally more
noisy than the respective marginals of the original joint

V, UA, UB unknown

Determine the SIGNALS UA, UB

quite hard...

Quantum cocktail-party problem
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sending the states [UA(t) ⊗ UB(t)]|0〉 ⊗ |0〉 at different
times t, each time rotated by a different pair of unitary
matrices UA(t) and UB(t), depending on the quantum
message intended to be transmitted. After this encod-
ing, the system passes through the environment which
causes the two signals to be mixed in analogy to classi-
cal mixing of signals in microphones. This mixing can
be represented by a unitary operation V that entangles
both qubits with the environment state |E〉 as follows

|ψ(t)〉ABE = V (UA(t) ⊗ UB(t) ⊗ I)|0〉 ⊗ |0〉 ⊗ |E〉. (4)

The analog of the classical cocktail-party problem would
be now to determine the “signals” UA(t) and UB(t)—or
the state [UA(t)⊗UB(t)]|0〉⊗|0〉—from the output state of
AB only, without even knowing the interaction with the
environment V : this would be a strict quantum analog
of blind independent component separation. In this sense
we would de-correlate the signals UA(t) and UB(t). This
quantum version of the cocktail-party problem is much
harder than its classical counterpart, for many reasons,
including the no-cloning theorem, which forbids to deter-
mine the output state from a single copy: an approximate
solution, if possible, would need at least some additional
assumptions about the time self-correlation of each sep-
arate signal, along with the aid of a quantum memory

to store the whole time-sequence of output states of AB
and a full joint measurement on the whole sequence.
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de-correlating two quantum signals, in the scenario where
the signals UA, UB are encoded on a correlated state ρAB
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ation V is applied. We want to de-correlate the received
state, and the desired result is two completely uncorre-
lated systems A and B, each one in a state that carries
information about the signals UA and UB, respectively.

Therefore, according to the above scenario, let ρAB be
a density matrix of two (generally correlated) quantum
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set

PRL 99, 070501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

0031-9007=07=99(7)=070501(4) 070501-1  2007 The American Physical Society

Erasable and Unerasable Correlations
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input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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§        Look for a decorrelating map that maximizes 
       the averaged single-site fidelity    

2

of information (N signals [6]) g = (g1, . . . , gN ) ∈ GN :

ρg := Ug1 ⊗ · · ·⊗ UgN ρU†
g1
⊗ · · ·⊗ U†

gN
. (2)

The above state is clearly correlated due to the correla-
tion of the seed state ρ. The problem of decorrelation is
to find a single operation D that would decorrelate [see
Eq. (1)] all states belonging to the set:

S(Ug, ρ) = {ρg,∀g ∈ GN}. (3)

If we have additional constraints on the signals (e.g. we
know that they are identical g1 = · · · = gN ) the above
set is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of ρg are related to the reduced density matrices of ρ
by UgiρiU†

gi
, and as a result the decorrelated state still

carries the same signals as the initial one. We stress that
we do not deal here with decorrelation of signals, but
rather with decorrelation of states carrying them (hence,
there is no contradiction in performing decorrelation and
still claiming, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quan-
tum information cannot be copied or broadcast exactly,
due to the no-cloning theorem. Nevertheless, one can
find approximate optimal cloning operations which in-
crease the number of copies of a state at the expense
of the quality. In the presence of noise, however, (i. e.
when transmitting “mixed” states), it can happen that
we are able to increase the number of copies without los-
ing the quality, if we start with sufficiently many identi-
cal originals. Indeed, it is even possible to purify in such
a broadcasting process—the so-called super-broadcasting
[7, 8]. Clearly, a larger number of copies cannot increase
the available information about the original input state,
and this is due to the fact that the final copies are not
statistically independent, and the correlations between
them limit the extractable information [9]. It is now nat-
ural to ask if we can remove such correlations and make
them independent again (notice that in this decorrelation
problem, the signals gi – which in this case correspond to
the cloned states – are identical). Clearly, such quantum
decorrelation cannot be achieved exactly, otherwise we
would increase the information on the state. A priori it
is not excluded, however, that it is possible to decorre-
late clones at the expense of introducing some additional
noise – such that state estimation fidelity after decorrela-
tion is no greater than before. One of the results of this
paper is that clones obtained by most cloning machines
(e.g. universal, covariant) cannot be decorrelated even
within this relaxed condition (see IV). This also implies
that the non-increase of distinguishability of states is not
in general a sufficient condition for decorrelability. Apart
from this negative result, we provide in this paper exam-
ples of classes of states for which decorrelation is possible,
and calculate the minimal amount of local noise that has
to be added to achieve this.

II. COVARIANCE CONSTRAINTS

Due to the structure of the set of states S(Ug, ρ) (3)
that we want to decorrelate, which is the orbit of the seed
state ρ state under the action of a unitary representation,
a natural figure of merit for assessing the amount of local
noise added by decorrelation is the average single site
fidelity. This quantity is defined as follows

F [ρ, D ] =
1
N

N∑

i=1

∫

GN

dg F (UgiTr̄i[ρ]U†
gi

,Tr̄i[D(UgρU†
g)]),

(4)
where F (σ, τ) := Tr[(

√
στ
√

σ) 1
2 ] is the Uhlmann fidelity,

and Trī denotes the partial trace over all spaces but the

i-th. Using the fact that
√

UgρU†
g = Ug

√
ρU†

g and the
strong concavity of fidelity we obtain the following bound

F [ρ, D ] ≤ (5)

1
N

N∑

i=1

F

(
Tr̄i[ρ],

∫

GN

dg U†
gi

Tr̄i[D(UgρU†
g)]Ugi

)
(6)

From the last inequality it is clear that the map

D̃(•) =
∫

GN

dg U†
gD(Ug • U†

g)Ug, (7)

has a higher average fidelity than D . This proves that it is
not restrictive to consider maps of the form of Eq. (7) for
the sake of maximization of average fidelity. Exploiting
the invariance property of the Haar measure dg, one can
easily prove that a map D is the group average of some
map E as in Eq. (7) if and only if it enjoys the covariance
property, which is expressed by the following equation

D
(
UgρU†

g

)
= UgD (ρ) U†

g ∀ρ. (8)

We will then require the following conditions for the oper-
ation D to decorrelate the set S(Ug, ρ): (i) D decorrelates
the seed state ρ; (ii) D fulfills the covariance condition.

In general we have then decorrelation with additional
noise on the output local states, namely

D(ρ) = ρ̃1 ⊗ . . . ρ̃N , (9)

where ρ̃i is not necessary equal to ρi. As a result, sub-
systems are still perfectly decorrelated, but some infor-
mation about reduced density matrices may be lost. The
quality of decorrelation will be judged based on the min-
imal amount of noise that needs to be added in order
to allow for decorrelation, and the noise will be calcu-
lated in terms of fidelity to the input local state—as we
anticipated at the beginning of the present section.

We will focus attention on the case of qubit systems,
in which the fidelity of two states has a simple expression
in terms of their Bloch vector. It is not clear, a priori,
whether it is possible to have a decorrelating covariant
map that increases the length of Bloch vectors of local
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state ! if the following
equation holds

 D !!" # !1 $ . . . $ !N; (1)

where !i is the ith party reduced density matrix of !. Now,
the problem of decorrelability can be stated as follows:
given a set of states S # f!g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state ! in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element !,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing $N

i#1!i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states !0, !00 and their convex combination
"!0 % !1& ""!00, and the reduced states of !0 and !00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state !, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1 $ . . . $UgN on
the seed state ! should be regarded as encoding N pieces of
information (N signals [5]) g # !g1; . . . ; gN" 2 GN:

 !g :# Ug1 $ . . . $UgN!U
y
g1 $ . . . $Uy

gN : (2)

The above state is clearly correlated due to the correlation
of the seed state !. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S!Ug;!" # f!g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 # . . . # gN) the above set
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of information (N signals [6]) g = (g1, . . . , gN ) ∈ GN :

ρg := Ug1 ⊗ · · ·⊗ UgN ρU†
g1
⊗ · · ·⊗ U†

gN
. (2)

The above state is clearly correlated due to the correla-
tion of the seed state ρ. The problem of decorrelation is
to find a single operation D that would decorrelate [see
Eq. (1)] all states belonging to the set:

S(Ug, ρ) = {ρg,∀g ∈ GN}. (3)

If we have additional constraints on the signals (e.g. we
know that they are identical g1 = · · · = gN ) the above
set is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of ρg are related to the reduced density matrices of ρ
by UgiρiU†

gi
, and as a result the decorrelated state still

carries the same signals as the initial one. We stress that
we do not deal here with decorrelation of signals, but
rather with decorrelation of states carrying them (hence,
there is no contradiction in performing decorrelation and
still claiming, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quan-
tum information cannot be copied or broadcast exactly,
due to the no-cloning theorem. Nevertheless, one can
find approximate optimal cloning operations which in-
crease the number of copies of a state at the expense
of the quality. In the presence of noise, however, (i. e.
when transmitting “mixed” states), it can happen that
we are able to increase the number of copies without los-
ing the quality, if we start with sufficiently many identi-
cal originals. Indeed, it is even possible to purify in such
a broadcasting process—the so-called super-broadcasting
[7, 8]. Clearly, a larger number of copies cannot increase
the available information about the original input state,
and this is due to the fact that the final copies are not
statistically independent, and the correlations between
them limit the extractable information [9]. It is now nat-
ural to ask if we can remove such correlations and make
them independent again (notice that in this decorrelation
problem, the signals gi – which in this case correspond to
the cloned states – are identical). Clearly, such quantum
decorrelation cannot be achieved exactly, otherwise we
would increase the information on the state. A priori it
is not excluded, however, that it is possible to decorre-
late clones at the expense of introducing some additional
noise – such that state estimation fidelity after decorrela-
tion is no greater than before. One of the results of this
paper is that clones obtained by most cloning machines
(e.g. universal, covariant) cannot be decorrelated even
within this relaxed condition (see IV). This also implies
that the non-increase of distinguishability of states is not
in general a sufficient condition for decorrelability. Apart
from this negative result, we provide in this paper exam-
ples of classes of states for which decorrelation is possible,
and calculate the minimal amount of local noise that has
to be added to achieve this.

II. COVARIANCE CONSTRAINTS

Due to the structure of the set of states S(Ug, ρ) (3)
that we want to decorrelate, which is the orbit of the seed
state ρ state under the action of a unitary representation,
a natural figure of merit for assessing the amount of local
noise added by decorrelation is the average single site
fidelity. This quantity is defined as follows

F [ρ, D ] =
1
N

N∑

i=1

∫

GN

dg F (UgiTr̄i[ρ]U†
gi

,Tr̄i[D(UgρU†
g)]),

(4)
where F (σ, τ) := Tr[(

√
στ
√

σ) 1
2 ] is the Uhlmann fidelity,

and Trī denotes the partial trace over all spaces but the

i-th. Using the fact that
√

UgρU†
g = Ug

√
ρU†

g and the
strong concavity of fidelity we obtain the following bound

F [ρ, D ] ≤ (5)

1
N

N∑

i=1

F

(
Tr̄i[ρ],

∫

GN

dg U†
gi

Tr̄i[D(UgρU†
g)]Ugi

)
(6)

From the last inequality it is clear that the map

D̃(•) =
∫

GN

dg U†
gD(Ug • U†

g)Ug, (7)

has a higher average fidelity than D . This proves that it is
not restrictive to consider maps of the form of Eq. (7) for
the sake of maximization of average fidelity. Exploiting
the invariance property of the Haar measure dg, one can
easily prove that a map D is the group average of some
map E as in Eq. (7) if and only if it enjoys the covariance
property, which is expressed by the following equation

D
(
UgρU†

g

)
= UgD (ρ)U†

g ∀ρ. (8)

We will then require the following conditions for the oper-
ation D to decorrelate the set S(Ug, ρ): (i) D decorrelates
the seed state ρ; (ii) D fulfills the covariance condition.

In general we have then decorrelation with additional
noise on the output local states, namely

D(ρ) = ρ̃1 ⊗ . . . ρ̃N , (9)

where ρ̃i is not necessary equal to ρi. As a result, sub-
systems are still perfectly decorrelated, but some infor-
mation about reduced density matrices may be lost. The
quality of decorrelation will be judged based on the min-
imal amount of noise that needs to be added in order
to allow for decorrelation, and the noise will be calcu-
lated in terms of fidelity to the input local state—as we
anticipated at the beginning of the present section.

We will focus attention on the case of qubit systems,
in which the fidelity of two states has a simple expression
in terms of their Bloch vector. It is not clear, a priori,
whether it is possible to have a decorrelating covariant
map that increases the length of Bloch vectors of local
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of information (N signals [6]) g = (g1, . . . , gN ) ∈ GN :

ρg := Ug1 ⊗ · · ·⊗ UgN ρU†
g1
⊗ · · ·⊗ U†

gN
. (2)

The above state is clearly correlated due to the correla-
tion of the seed state ρ. The problem of decorrelation is
to find a single operation D that would decorrelate [see
Eq. (1)] all states belonging to the set:

S(Ug, ρ) = {ρg,∀g ∈ GN}. (3)

If we have additional constraints on the signals (e.g. we
know that they are identical g1 = · · · = gN ) the above
set is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of ρg are related to the reduced density matrices of ρ
by UgiρiU†

gi
, and as a result the decorrelated state still

carries the same signals as the initial one. We stress that
we do not deal here with decorrelation of signals, but
rather with decorrelation of states carrying them (hence,
there is no contradiction in performing decorrelation and
still claiming, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quan-
tum information cannot be copied or broadcast exactly,
due to the no-cloning theorem. Nevertheless, one can
find approximate optimal cloning operations which in-
crease the number of copies of a state at the expense
of the quality. In the presence of noise, however, (i. e.
when transmitting “mixed” states), it can happen that
we are able to increase the number of copies without los-
ing the quality, if we start with sufficiently many identi-
cal originals. Indeed, it is even possible to purify in such
a broadcasting process—the so-called super-broadcasting
[7, 8]. Clearly, a larger number of copies cannot increase
the available information about the original input state,
and this is due to the fact that the final copies are not
statistically independent, and the correlations between
them limit the extractable information [9]. It is now nat-
ural to ask if we can remove such correlations and make
them independent again (notice that in this decorrelation
problem, the signals gi – which in this case correspond to
the cloned states – are identical). Clearly, such quantum
decorrelation cannot be achieved exactly, otherwise we
would increase the information on the state. A priori it
is not excluded, however, that it is possible to decorre-
late clones at the expense of introducing some additional
noise – such that state estimation fidelity after decorrela-
tion is no greater than before. One of the results of this
paper is that clones obtained by most cloning machines
(e.g. universal, covariant) cannot be decorrelated even
within this relaxed condition (see IV). This also implies
that the non-increase of distinguishability of states is not
in general a sufficient condition for decorrelability. Apart
from this negative result, we provide in this paper exam-
ples of classes of states for which decorrelation is possible,
and calculate the minimal amount of local noise that has
to be added to achieve this.

II. COVARIANCE CONSTRAINTS

Due to the structure of the set of states S(Ug, ρ) (3)
that we want to decorrelate, which is the orbit of the seed
state ρ state under the action of a unitary representation,
a natural figure of merit for assessing the amount of local
noise added by decorrelation is the average single site
fidelity. This quantity is defined as follows

F [ρ, D ] =
1
N

N∑

i=1

∫

GN

dg F (UgiTr̄i[ρ]U†
gi

,Tr̄i[D(UgρU†
g)]),

(4)
where F (σ, τ) := Tr[(

√
στ
√

σ) 1
2 ] is the Uhlmann fidelity,

and Trī denotes the partial trace over all spaces but the

i-th. Using the fact that
√

UgρU†
g = Ug

√
ρU†

g and the
strong concavity of fidelity we obtain the following bound

F [ρ, D ] ≤ (5)

1
N

N∑

i=1

F

(
Tr̄i[ρ],

∫

GN

dg U†
gi

Tr̄i[D(UgρU†
g)]Ugi

)
(6)

From the last inequality it is clear that the map

D̃(•) =
∫

GN

dg U†
gD(Ug • U†

g)Ug, (7)

has a higher average fidelity than D . This proves that it is
not restrictive to consider maps of the form of Eq. (7) for
the sake of maximization of average fidelity. Exploiting
the invariance property of the Haar measure dg, one can
easily prove that a map D is the group average of some
map E as in Eq. (7) if and only if it enjoys the covariance
property, which is expressed by the following equation

D
(
UgρU†

g

)
= UgD (ρ)U†

g ∀ρ. (8)

We will then require the following conditions for the oper-
ation D to decorrelate the set S(Ug, ρ): (i) D decorrelates
the seed state ρ; (ii) D fulfills the covariance condition.

In general we have then decorrelation with additional
noise on the output local states, namely

D(ρ) = ρ̃1 ⊗ . . . ρ̃N , (9)

where ρ̃i is not necessary equal to ρi. As a result, sub-
systems are still perfectly decorrelated, but some infor-
mation about reduced density matrices may be lost. The
quality of decorrelation will be judged based on the min-
imal amount of noise that needs to be added in order
to allow for decorrelation, and the noise will be calcu-
lated in terms of fidelity to the input local state—as we
anticipated at the beginning of the present section.

We will focus attention on the case of qubit systems,
in which the fidelity of two states has a simple expression
in terms of their Bloch vector. It is not clear, a priori,
whether it is possible to have a decorrelating covariant
map that increases the length of Bloch vectors of local
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1.  Two qubits with different signals

is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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§ Group and permutational 
covariant maps:

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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where 

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-

PRL 99, 070501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

070501-2

§ Local states: 

is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of

1 0.5 0 0.5 1
η

1

–

–
– –

0.5

0

0.5

1

λ

0

1

FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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nontrivial decorrelation (         ) is possible only  
when the seed state has the form 

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.

PRL 99, 070501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

070501-3

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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§ All states are separable



II.  Two qubits with identical signals

7

1. Symmetric Input state

Let us first restrict to seed states supported on sym-
metric subspace, i.e. ρ00 = 0 (these kind of states, are
for example produced by 1 → 2 optimal universal cloning
machine). The relevant variables in this case are q4, q5,
q6 since q1, q3 do not enter the equations and q2 is auto-
matically determined q2 = (1 − η̃2)/4. Introducing new
variables: η = 1− 2ρ11 − ρ22 (length of the initial Bloch
vector of reduced density matrix), λ = 2ρ22 − 1, we may
write the state using Pauli matrices:

ρsym
AB =

1
4
[11⊗ 11 + η(σz ⊗ 11 + 11⊗ σz)+

(1 + λ)/2 (σx ⊗ σx + σy ⊗ σy)− λσz ⊗ σz]
(58)

We find that a non trivial solution to the decorrelation
problem exist provided η $= 0, λ $= −1/3, and read:

q4 =
1
12

[
3 + η̃

(
η̃ − 40η̃

1 + 3λ
+

12
η

)]
, (59)

q5 =
1
12

[
3 + η̃

(
η̃ +

20η̃

1 + 3λ
+

6
η

)]
, (60)

q6 =
1
12

[
3 + η̃

(
η̃ − 4η̃

1 + 3λ
− 6

η

)]
. (61)

Looking for the highest admissible η̃ that keep qi non-
negative we find:

η̃ =
−(1 + 3λ)−

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, −1 ≤ λ ≤ λ1, (62)

η̃ =
−(1 + 3λ) +

√
(1 + 3λ)[1 + 3λ− η2(7 + λ)]

|η|(7 + λ)
, λ1 ≤ λ ≤ −1

3
, (63)

η̃ =
2(1 + 3λ) +

√
(1 + 3λ)[η2(13− λ) + 4(1 + 3λ)]

|η|(13− λ)
, −1

3
≤ λ ≤ λ2, (64)

η̃ =
−(1 + 3)λ +

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, λ2 ≤ λ ≤ 1, (65)

where

λ1 =
1
3

(
2
√

4− 3η2 − 5
)

, λ2 =
1
3

(
7− 2

√
16− 3η2

)
.

(66)
See Fig. 2 for visualisation of this results. It is worth
observing that undecorrelable states corresponding to
λ = −1/3 are exactly the ones that in principle could
have been obtained via universal cloning of one qubit.
This is a manifestation of a general theorem of no-cloning
without correlations proven in Sec. IV.

2. Permutationally invariant input state

A general two-qubit state containg also a singlet frac-
tion can be written as:

ρAB = p|Ψ−〉〈Ψ−| + (1− p)ρsym
AB . (67)

Without writing and analyzing equations which is a bit
tedious we just summarize the final results. If either
p = 1, λ = −1/3 or η = 0 no non-trivial decorrelation is
possible (notice that λ and η parameters are calculated
from symmetric fraction of the state: ρsym

AB in the same
way as in the previous subsection). Otherwise two situa-
tion may occur: (i) if η̃ calculated according to Eqs. (64–
67) fulfills the condition 1 − η̃2 − 4p ≥ 0 then this is

a valid maximal achievable length of the output Bloch
vector also in the case when the state contains a singlet
fraction. (ii) otherwise η̃ should be calculated as follows.
For −1 ≤ λ ≤ λ′1 or λ′2 ≤ λ ≤ 1:

η̃ =
√

α

2|η|
√

2

√
9α + 8η2(1− p)− 3

√
α[9α + 16η2(1− p)],

(68)
for λ′1 ≤ λ ≤ − 1

3 :

η̃ =
√

α

10|η|
√

2

√
9α− 40η2(1− p) + 3

√
α[9α− 80η2(1− p)],

(69)
for − 1

3 ≤ λ ≤ λ′2:

η̃ =
√

α

10|η|
√

2

√
9α + 20η2(1− p) + 3

√
α[9α + 40η2(1− p)],

(70)
where α = 1 + 3λ and

λ′1 = −1
3

[
1 + 2η2(1− p)

]
, λ′2 = −1

3
[
1− η2(1− p)

]
.

(71)
One may summarize this, by an observation (which may
not be evident from the above equations) that adding a
singlet fraction decreases the achievable η̃, but otherwise
does not qualitatively change the decorrelability of states.
In particular the completely nondecorrelable states are

output clones 
of a universal 

cloning machine!!!

3

optimal decorrelation map will maximize the length η̃ of
the Bloch vector, namely it will produce the highest pu-
rity of decorrelated states. It can be shown [7] that the
general form of a two-qubit channel D covariant under
U(α)⊗U(β) and invariant under permutations of the two
qubits can be parameterized with three positive param-
eters only (effectively two due to normalization)

D(ρAB) = aρAB + bD1(ρAB) + cD2(ρAB), (9)

where D1 and D2 are given by

D1(ρAB) = 1
3 (ρA ⊗ 11 + 11⊗ ρB − ρAB) , (10)

D2(ρAB) = 1
9 (411⊗ 11− 2ρA ⊗ 11− 211⊗ ρB + ρAB) ,

(11)

and the trace preserving condition gives a + b + c = 1.
This is a very restricted set of operations, due to the
fact that the covariance condition is very strong. As a
consequence the condition for decorrelating the seed state

D(ρAB) = ρ̃⊗2 = [1/2(11 + η̃σz)]⊗2 (12)

cannot be satisfied for a generic seed state ρAB (apart
from the trivial decorrelation to a maximally mixed
state).
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FIG. 1: Length η̃ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable η̃ in gray scale versus
the parameters η and λ of the input state.

The seed states for which nontrivial decorrelation is pos-
sible [which means that we can find such a, b, c and η̃ > 0
satisfying Eq. (12)] have the form [7]

ρAB = 1
4 [11⊗ 11 + η(σz ⊗ 11 + 11⊗ σz) + λσz ⊗ σz] .

(13)
We emphasize that for a generic seed state ρAB one can
reduce correlations, but only sets arising from the seed

state of the form (13) can be decorrelated completely in
a nontrivial way (apart from the cases when η = 0 or
λ = 0). The noise of the decorrelated states depends on
parameters η and λ as depicted in Figure 1.

In order to study the decorrelability of the output
states of cloning machines, we consider now the case
where the same unitary is encoded on the two qubits
(identical signals). Differently from the case of inde-
pendent signals, D has to be covariant with respect to
U(α)⊗2, which is a weaker condition than covariance with
respect to U(α)⊗U(β). Using the methods from [3] one
can parameterize these class of operations with six pa-
rameters sj,l,J satisfying two constraints, so effectively
one enjoys a four parameter freedom on covariant oper-
ations. Thanks to this larger freedom it can be shown
by straightforward calculation [7] that the decorrelation
condition D(ρAB) = ρ̃⊗2 is non trivially satisfied (i.e. for
η̃ > 0) for a generic state ρAB which is diagonal in the
singlet triplet basis. Such a state can be written in the
form:

ρAB = p|Ψ−〉〈Ψ−| + (1− p)ρsym, (14)

where ρsym is a state supported on the triplet (symmet-
ric) subspace, and |Ψ−〉 is the singlet state. Analogously
to Eq. (13), ρsym can be written with the help of Pauli
matrices:

ρsym =
1
4
[11⊗ 11 + η(σz ⊗ 11 + 11⊗ σz)+

(1 + λ)/2 (σx ⊗ σx + σy ⊗ σy)− λσz ⊗ σz]
(15)
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FIG. 2: Length η̃ of the Bloch vectors of the decorrelated
states of two qubits starting from a seed state supported on
the symmetric subspace parameterized as in Eq. 15. The plot
depicts the maximal achievable η̃ versus the parameters η and
λ of the input state.

§  Correlation cannot be erased for                

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=
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p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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maximally entangled

7

1. Symmetric Input state

Let us first restrict to seed states supported on sym-
metric subspace, i.e. ρ00 = 0 (these kind of states, are
for example produced by 1 → 2 optimal universal cloning
machine). The relevant variables in this case are q4, q5,
q6 since q1, q3 do not enter the equations and q2 is auto-
matically determined q2 = (1 − η̃2)/4. Introducing new
variables: η = 1− 2ρ11 − ρ22 (length of the initial Bloch
vector of reduced density matrix), λ = 2ρ22 − 1, we may
write the state using Pauli matrices:

ρsym
AB =

1
4
[11⊗ 11 + η(σz ⊗ 11 + 11⊗ σz)+

(1 + λ)/2 (σx ⊗ σx + σy ⊗ σy)− λσz ⊗ σz]
(58)

We find that a non trivial solution to the decorrelation
problem exist provided η $= 0, λ $= −1/3, and read:

q4 =
1
12

[
3 + η̃

(
η̃ − 40η̃

1 + 3λ
+

12
η

)]
, (59)

q5 =
1
12

[
3 + η̃

(
η̃ +

20η̃

1 + 3λ
+

6
η

)]
, (60)

q6 =
1
12

[
3 + η̃

(
η̃ − 4η̃

1 + 3λ
− 6

η

)]
. (61)

Looking for the highest admissible η̃ that keep qi non-
negative we find:

η̃ =
−(1 + 3λ)−

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, −1 ≤ λ ≤ λ1, (62)

η̃ =
−(1 + 3λ) +

√
(1 + 3λ)[1 + 3λ− η2(7 + λ)]

|η|(7 + λ)
, λ1 ≤ λ ≤ −1

3
, (63)

η̃ =
2(1 + 3λ) +

√
(1 + 3λ)[η2(13− λ) + 4(1 + 3λ)]

|η|(13− λ)
, −1

3
≤ λ ≤ λ2, (64)

η̃ =
−(1 + 3)λ +

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, λ2 ≤ λ ≤ 1, (65)

where

λ1 =
1
3

(
2
√

4− 3η2 − 5
)

, λ2 =
1
3

(
7− 2

√
16− 3η2

)
.

(66)
See Fig. 2 for visualisation of this results. It is worth
observing that undecorrelable states corresponding to
λ = −1/3 are exactly the ones that in principle could
have been obtained via universal cloning of one qubit.
This is a manifestation of a general theorem of no-cloning
without correlations proven in Sec. IV.

2. Permutationally invariant input state

A general two-qubit state containg also a singlet frac-
tion can be written as:

ρAB = p|Ψ−〉〈Ψ−| + (1− p)ρsym
AB . (67)

Without writing and analyzing equations which is a bit
tedious we just summarize the final results. If either
p = 1, λ = −1/3 or η = 0 no non-trivial decorrelation is
possible (notice that λ and η parameters are calculated
from symmetric fraction of the state: ρsym

AB in the same
way as in the previous subsection). Otherwise two situa-
tion may occur: (i) if η̃ calculated according to Eqs. (64–
67) fulfills the condition 1 − η̃2 − 4p ≥ 0 then this is

a valid maximal achievable length of the output Bloch
vector also in the case when the state contains a singlet
fraction. (ii) otherwise η̃ should be calculated as follows.
For −1 ≤ λ ≤ λ′1 or λ′2 ≤ λ ≤ 1:

η̃ =
√

α

2|η|
√

2

√
9α + 8η2(1− p)− 3

√
α[9α + 16η2(1− p)],

(68)
for λ′1 ≤ λ ≤ − 1

3 :

η̃ =
√

α

10|η|
√

2

√
9α− 40η2(1− p) + 3

√
α[9α− 80η2(1− p)],

(69)
for − 1

3 ≤ λ ≤ λ′2:

η̃ =
√

α

10|η|
√

2

√
9α + 20η2(1− p) + 3

√
α[9α + 40η2(1− p)],

(70)
where α = 1 + 3λ and

λ′1 = −1
3

[
1 + 2η2(1− p)

]
, λ′2 = −1

3
[
1− η2(1− p)

]
.

(71)
One may summarize this, by an observation (which may
not be evident from the above equations) that adding a
singlet fraction decreases the achievable η̃, but otherwise
does not qualitatively change the decorrelability of states.
In particular the completely nondecorrelable states are

diagonal on Bell basis 

§ The decorrelation condition                is nontrivially 
satisfied for       diagonal in the singlet-triplet basis    

is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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FIG. 1. Length ~$ of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~$ in gray scale versus
the parameters $ and & of the input state.
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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§   w.l.o.g.  M=N+1 and pure states 
                   (use partial trace and depolarizing channels)

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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§  Universal covariance implies 

§  Consider

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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=>    r.h.s.  poly(       ) with degree N+1  and 
                            l.h.s poly(       ) with degree at most N (for linearity)

qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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qubit channel D covariant under U!!" #U!"" and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D !#AB" $ a#AB % bD1!#AB" % cD2!#AB"; (9)

where D1 and D2 are given by

 D 1!#AB" $ 1
3!#A # 1% 1 # #B & #AB"; (10)

 D 2!#AB" $ 1
9!41 # 1& 2#A # 1& 21 # #B % #AB";

(11)

and the trace preserving condition gives a% b% c $ 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D !#AB" $ ~##2 $ '12!1% ~$%z"(#2 (12)

cannot be satisfied for a generic seed state #AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~$> 0 satisfying Eq. (12)] have the form [8]

 #AB $ 1
4'1 # 1% $!%z # 1% 1 # %z" & &%z # %z(:

(13)

We emphasize that for a generic seed state #AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when $ $ 0 or & $
0). The noise of the decorrelated states depends on parame-
ters $ and & as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U!!"#2, which is a
weaker condition than covariance with respect to U!!" #
U!"". Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D!#AB" $ ~##2 is non trivially satisfied (i.e. for
~$> 0) for a generic state #AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 #AB $ pj!&ih!&j% !1& p"#sym; (14)

where #sym is a state supported on the triplet (symmetric)
subspace, and j!&i is the singlet state. Analogously to
Eq. (13), #sym can be written with the help of Pauli matri-
ces

 

#sym $ 1
4'1 # 1% $!%z # 1% 1 # %z"
% !1% &"=2!%x # %x % %y # %y" & &%z # %z(:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p $ 1 or $ $ 0 or & $ &1=3. For p $ 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~$ is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at & $ &1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M $ N % 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j'i of a qudit the desired transformation has the form

 "'!j'ih'j"#N( $
!
$j'ih'j% 1& $

2
1
"#N%1

(16)

The transformation (16) is only possible for $ $ 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j'i $ !j0i% ei'j1i"=

###
2

p
, where j0i, j1i are

some arbitrary orthogonal states. If $ ! 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N % 1 of e)i' (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of (, the entries on left-hand side are polynomials of
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1. Symmetric Input state

Let us first restrict to seed states supported on sym-
metric subspace, i.e. ρ00 = 0 (these kind of states, are
for example produced by 1 → 2 optimal universal cloning
machine). The relevant variables in this case are q4, q5,
q6 since q1, q3 do not enter the equations and q2 is auto-
matically determined q2 = (1 − η̃2)/4. Introducing new
variables: η = 1− 2ρ11 − ρ22 (length of the initial Bloch
vector of reduced density matrix), λ = 2ρ22 − 1, we may
write the state using Pauli matrices:

ρsym
AB =

1
4
[11⊗ 11 + η(σz ⊗ 11 + 11⊗ σz)+

(1 + λ)/2 (σx ⊗ σx + σy ⊗ σy)− λσz ⊗ σz]
(58)

We find that a non trivial solution to the decorrelation
problem exist provided η $= 0, λ $= −1/3, and read:

q4 =
1
12

[
3 + η̃

(
η̃ − 40η̃

1 + 3λ
+

12
η

)]
, (59)

q5 =
1
12

[
3 + η̃

(
η̃ +

20η̃

1 + 3λ
+

6
η

)]
, (60)

q6 =
1
12

[
3 + η̃

(
η̃ − 4η̃

1 + 3λ
− 6

η

)]
. (61)

Looking for the highest admissible η̃ that keep qi non-
negative we find:

η̃ =
−(1 + 3λ)−

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, −1 ≤ λ ≤ λ1, (62)

η̃ =
−(1 + 3λ) +

√
(1 + 3λ)[1 + 3λ− η2(7 + λ)]

|η|(7 + λ)
, λ1 ≤ λ ≤ −1

3
, (63)

η̃ =
2(1 + 3λ) +

√
(1 + 3λ)[η2(13− λ) + 4(1 + 3λ)]

|η|(13− λ)
, −1

3
≤ λ ≤ λ2, (64)

η̃ =
−(1 + 3)λ +

√
(1 + 3λ)2 + η2[1 + (2− 3λ)λ]

|η|(1− λ)
, λ2 ≤ λ ≤ 1, (65)

where

λ1 =
1
3

(
2
√

4− 3η2 − 5
)

, λ2 =
1
3

(
7− 2

√
16− 3η2

)
.

(66)
See Fig. 2 for visualisation of this results. It is worth
observing that undecorrelable states corresponding to
λ = −1/3 are exactly the ones that in principle could
have been obtained via universal cloning of one qubit.
This is a manifestation of a general theorem of no-cloning
without correlations proven in Sec. IV.

2. Permutationally invariant input state

A general two-qubit state containg also a singlet frac-
tion can be written as:

ρAB = p|Ψ−〉〈Ψ−| + (1− p)ρsym
AB . (67)

Without writing and analyzing equations which is a bit
tedious we just summarize the final results. If either
p = 1, λ = −1/3 or η = 0 no non-trivial decorrelation is
possible (notice that λ and η parameters are calculated
from symmetric fraction of the state: ρsym

AB in the same
way as in the previous subsection). Otherwise two situa-
tion may occur: (i) if η̃ calculated according to Eqs. (64–
67) fulfills the condition 1 − η̃2 − 4p ≥ 0 then this is

a valid maximal achievable length of the output Bloch
vector also in the case when the state contains a singlet
fraction. (ii) otherwise η̃ should be calculated as follows.
For −1 ≤ λ ≤ λ′1 or λ′2 ≤ λ ≤ 1:

η̃ =
√

α

2|η|
√

2

√
9α + 8η2(1− p)− 3

√
α[9α + 16η2(1− p)],

(68)
for λ′1 ≤ λ ≤ − 1

3 :

η̃ =
√

α

10|η|
√

2

√
9α− 40η2(1− p) + 3

√
α[9α− 80η2(1− p)],

(69)
for − 1

3 ≤ λ ≤ λ′2:

η̃ =
√

α

10|η|
√

2

√
9α + 20η2(1− p) + 3

√
α[9α + 40η2(1− p)],

(70)
where α = 1 + 3λ and

λ′1 = −1
3

[
1 + 2η2(1− p)

]
, λ′2 = −1

3
[
1− η2(1− p)

]
.

(71)
One may summarize this, by an observation (which may
not be evident from the above equations) that adding a
singlet fraction decreases the achievable η̃, but otherwise
does not qualitatively change the decorrelability of states.
In particular the completely nondecorrelable states are

§ Should hold for any       =>  necessarily        
degree at most N of e!i!. Since equality (16) should be
satisfied for all phases ! we arrive at a contradiction, since
no polynomial of degree N can be equal to a polynomial of
degree N " 1 in an infinite number of points. The above
reasoning holds true also for asymmetric cloning with
different " for each output, where one can prove that at
least one coefficient " must be null [10].

We consider now the case of decorrelation for qumodes.
For a couple of qumodes in a joint seed state #AB the
information ($, %) (with $ and % complex) is encoded
as follows

 D#$$ %D#%$#ABD#$$y %D#%$y; (17)

D#z$ & exp#zay ' z(a$ for z 2 C denoting a single-mode
displacement operator, a and ay being the annihilation and
creation operators of the mode. Here we show that it is
always possible to decorrelate any joint state of the form
(17), with #AB representing a two-mode Gaussian state,
namely,

 #AB & 1

&4

Z
d4qe'#1=2$qTMqD#q$; (18)

where q & #q1; q2; q3; q4$, D#q$ & D#q1 " iq2$ %D#q3 "
iq4$, and M is the 4) 4 (real, symmetric, and positive)
correlation matrix of the state, that satisfies the Heisenberg
uncertainty relation [11] M" i

4! * 0, with ! & +2
k&1!

and

 ! & 0 1
'1 0

! "
:

A Gaussian decorrelation channel covariant under
D#$$ %D#%$ is given by

 D ##$ &
##########
detG

p

#2&$2
Z

d4xe'#1=2$xTGxD#x$#Dy#x$; (19)

with suitable positive matrix G [8], and the resulting state
D##AB$ is still Gaussian, with a new block-diagonal co-
variance matrix ~M, thus corresponding to a decorrelated
state.

A special example of Gaussian state of two qumodes is
the so-called twin beam, which can be generated in a
quantum optical lab by parametric down-conversion of
vacuum. In this case M is given by

 M & 1" '2

1' '2 1' 2'
1' '2

0 (z
(z 0

! "
; (20)

with 0 , '< 1. The map (19) with

 G & 2'
1' '2

$
1" " (z

(z "

! "%
; (21)

and arbitrary " > 0, provides two decorrelated states with
~M & #1"'

1'' " "$1, which correspond to two thermal states
with mean photon number !n & '

1'' " "
2 each. Since the

channel in Eq. (19) is covariant also for D#$$%2, the above
derivation then holds for the case of encryption with the
same unitary on both qumodes as well.

The striking difference between the qubit and the qu-
mode cases is that for qubits only few states can be
decorrelated, whereas for qumodes any joint Gaussian state
can be decorrelated. This is due to the fact that the covari-
ance group for qubits comprises all local unitary trans-
formations, whereas for qumodes it includes only local
displacements, which is a very small subset of all possible
local unitary transformations in infinite dimension. In par-
ticular it can be checked that unlike qudits, states obtained
via Gaussian cloning of coherent states can be decorrelated
and the no-go proof valid for finite dimensional cases does
not apply here.
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more generally...
cloning with factorized clones is impossible for any set of 

pure states which contains a finite arch of states of the form                                                
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FIG. 2: Length η̃ of the Bloch vectors of the decorrelates
states of two qubits starting from a seed state supported on
the symmetric subspace parameterized as in Eq. (60). The
plot depicts the maximal achievable η̃ versus the parameters
η and λ of the input state.

still the ones (except pure singlet state p = 1) that have
λ = −1/3 or η = 0 in their symmetric fraction.

IV. NO APPROXIMATE CLONING WITHOUT
CORRELATIONS FOR QUDIT CONTINUOUS

SETS OF STATES

In Sec. III B it was observed that two-qubit states ob-
tained via universal 1 → 2 cloning of a single qubit can-
not be decorrelated. Moreover the same statement holds
for clones obtained via phase-covariant 1 → 2 cloning.
Actually, we will shown in full generality that there
does not exist an approximate N -to-M cloning operation
of d−dimensional systems (qudits) such that obtained
clones are decorrelated if the cloning operation is to work
at least for a phase-set of states [Maybe one can for-
malize it to an arbitrary continuous set, but I
am not sure how to do it. We should somehow
preserve properties of eIφ but allow some more
general function f(φ)]. By a phase-set we mean a
set containing at least states of the form

|φ〉 :=
√

p|0〉+
√

1− peiφ|1〉, (72)

for some finite (possibly very small) continuous range of
phases φ, where |0〉, |1〉 are some orthogonal vectors and
p is a real number 0 < p < 1. This of course in particular
implies that clones obtained from any cloning machines

working for a phase-set of states (such as e.g. universal,
phase covariant, etc.) cannot be decorrelated.

In order to assure the full generality of the proof, we
allow cloning to be both asymmetric, and not necessarily
covariant. Consider an operation Λ, which acting on N
copies of a qudit state produces M (M > N) approxi-
mate, possibly different clones which are required to be
uncorrelated :

Λ(|φ〉〈φ|⊗N ) =
M⊗

k=1

ρφ
k . (73)

We will show that such a transformation is impossible,
if one requires that every clone ρφ

k carries some (possibly
infinitesimally small) information on the identity of the
input state |φ〉 and additionally that the operation works
at least for all states from some phase-set.

Before presenting the proof let us note the obvious fact,
that may disturb the reader, namely that one can easily
write down a transformation producing a fixed uncorre-
lated state of M qudits irrespectively of the input state
given, and claim that this is the approximate cloning
machine that produces uncorrelated copies. Notice, how-
ever, that this machine produces clones which carry no
information on the identity of the input states, and hence
does not deserve the name of an approximate cloning ma-
chine.

Since the operation should work for states form a
phase-set, let us consider its action on states: |φ〉 =
(√p|0〉 +

√
1− peiφ|1〉). Notice that the input product

state |φ〉〈φ|⊗N depends on the phase φ via linear func-
tions of einφ, where n ∈ {−N, . . . , N}. Thanks to linear-
ity of Λ the dependence of the output state Λ(|φ〉〈φ|⊗N )
on φ has the same character.

Consider now a map Λk which is obtained from the
map Λ [Eq. (75)] by tracing out all output qudits except
the qudit number k. Its action clearly reads:

Λk(|φ〉〈φ|⊗N ) = ρφ
k . (74)

Since Λk is again a linear operation it follows that ρφ
k

may depend on φ only via linear functions of einφ, where
again n ∈ {−N, . . . , N}. Notice that since cloning is to
preserve some information on the input state, the out-
put state of each clone ρφ

k has to depend on φ. Since
the matrix of each clone ρφ

k include at least terms e±iφj

(or possibly higher powers of these), then it follows that⊗M
k=1 ρφ

k contains entries that depend on φ via terms
e±iM̄φ where M̄ ≥ M > N .

This leads to a contradiction since for decorrelation to
be successful we would need the equality of polynomial in
einφ where −N < n < N with a polynomial containing
higher powers (at least M) of e±iφ which is impossible
to hold for a continuous range of parameters φ. Hence,
approximate cloning with decorrelated clones is impossi-
ble for any set of pure states which contains a finite arch
of states of the form (74). This no go-theorem clearly

What about discrete set of states ?
Conjecture:  linearly dependent set of states 

cannot be cloned without correlations 

Linear independent states can be probabilistically 
perfectly cloned via unambiguous state discrimination
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where       is a two-mode Gaussian state

§ It is always possible to decorrelate any state in the set
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can be extended to any set of mixed states containing an
arch of the form

ρφ := UφρU†
φ. (75)

In fact, an arch of mixed states ρφ can be obtained as
ρφ = N (|φ〉〈φ|) with N amplitude-damping channel
N (ρ) = αρ + βσzρσz. Therefore, if a map D is able to
clone an arch of ρφ without correlations, then the map
D◦N would do the same for an arch of pure states, which
contradicts our previous result. We have then proved
that in finite dimension any set of mixed states contain-
ing an arch of states of the form (77) cannot be cloned
without correlations in any approximate and asymmetric
way. This is clearly true, as a special case, for covariant
universal cloning, or any other covariant cloning of sym-
metric sets of input states, for groups containing U(1) as
a subgroup. Notice that in our derivation we have used
only linearity of the transformation and we have not used
the trace preserving condition. This implies that cloning
without correlations is impossible also probabilistically.

The present no-cloning-without-correlation result is al-
ready quite general, however, it is likely to be of even
larger validity. We conjecture that it holds more gener-
ally for linearly dependent sets of states. Such conjecture
is supported by the fact that linearly independent states
can be probabilistically perfectly cloned [10], so if we con-
sider eg. N copies of an unknown qubit state, nothing
forbids cloning without correlations for N + 1 different
qubit states since |φ〉〈φ|⊗N will be linear independent
states.

V. DECORRELATION FOR CONTINUOUS
VARIABLES

We consider now the case of decorrelation for qumodes.
For a couple of qumodes in a joint seed state ρAB the
information (α, β) (with α and β complex) is encoded as
follows

D(α)⊗D(β)ρABD(α)† ⊗D(β)†, (76)

D(z) = exp(za† − z∗a) for z ∈ C denoting a single-mode
displacement operator, a and a† being the annihilation
and creation operators of the mode. Here we show that
it is always possible to decorrelate any joint state of the
form (78), with ρAB representing a two-mode Gaussian
state, namely

ρAB =
1
π2

∫
d4q e−

1
2 qT MqD(q) , (77)

where q = (q1, q2, q3, q4), D(q) = D(q1+iq2)⊗D(q3+iq4),
and M is the 4 × 4 (real, symmetric, and positive) cor-
relation matrix of the state, that satisfies the Heisenberg
uncertainty relation [11] M + i

4Ω ≥ 0, with Ω = ⊕2
k=1ω

and ω =
(

0 1
−1 0

)
.

A Gaussian decorrelation channel covariant under
D(α)⊗D(β) is given by

D(ρ) =
√

detG
(2π)2

∫
d4x e−

1
2 xT GxD(x)ρD†(x), (78)

with positive matrix G. For suitable G, the resulting
state D(ρAB) is still Gaussian, with a new block-diagonal
covariance matrix M̃ , thus corresponding to a decorre-
lated state.

In fact, it is easily seen that the map D is covariant.
Using the relation

D(x)D(q)D(x) = e2i(q1x2−q2x1+q3x4−q4x3) D(q) , (79)

explicitely one has

D(ρAB) =
√

detG
(2π)2π2

∫
d4q e−

1
2 qT Mq D(q)

×
∫

d4x e−
1
2 (q⊕x)T G′(q⊕x) , (80)

where G′ is the 8× 8 block matrix

G′ =
(

0 ΣT

Σ G

)
, (81)

with

Σ =
(

σy 0
0 −σy

)
, (82)

and σy denoting the usual Pauli matrix σy =
(

0 −i
i 0

)
.

Notice also that ΣT = −Σ.
The integral on x in Eq. (82) can be performed, and

one obtains

D(ρAB) =
1
π2

∫
d4q e−

1
2 qT (M+U)q D(q) , (83)

where U = ΣG−1Σ. Then, by writing the correlation
matrix M of the input seed state in block-form, namely

M =
(

A C
CT B

)
, (84)

and writing G−1 as

G−1 =
(

W V
V T Z

)
(85)

a decorrelation map is obtained just by taking

V = σyCσy . (86)

Since for physical maps one must have G−1 > 0, then
W and Z are subject to constraints. Typically, one will
take W and Z such that G−1 > 0 and the added noise
is minimal. Since the channel in Eq. (80) is covariant
also for D(α)⊗2, notice that the above derivation holds
for the case of encryption with the same unitary on both
qumodes as well.

In the following we will give two relevant examples of
decorrelation maps for Gaussian states.
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can be extended to any set of mixed states containing an
arch of the form

ρφ := UφρU†
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universal cloning, or any other covariant cloning of sym-
metric sets of input states, for groups containing U(1) as
a subgroup. Notice that in our derivation we have used
only linearity of the transformation and we have not used
the trace preserving condition. This implies that cloning
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The present no-cloning-without-correlation result is al-
ready quite general, however, it is likely to be of even
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states.

V. DECORRELATION FOR CONTINUOUS
VARIABLES

We consider now the case of decorrelation for qumodes.
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follows

D(α)⊗D(β)ρABD(α)† ⊗D(β)†, (76)

D(z) = exp(za† − z∗a) for z ∈ C denoting a single-mode
displacement operator, a and a† being the annihilation
and creation operators of the mode. Here we show that
it is always possible to decorrelate any joint state of the
form (78), with ρAB representing a two-mode Gaussian
state, namely
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with positive matrix G. For suitable G, the resulting
state D(ρAB) is still Gaussian, with a new block-diagonal
covariance matrix M̃ , thus corresponding to a decorre-
lated state.

In fact, it is easily seen that the map D is covariant.
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D(x)D(q)D(x) = e2i(q1x2−q2x1+q3x4−q4x3) D(q) , (79)
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and writing G−1 as

G−1 =
(

W V
V T Z
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a decorrelation map is obtained just by taking

V = σyCσy . (86)

Since for physical maps one must have G−1 > 0, then
W and Z are subject to constraints. Typically, one will
take W and Z such that G−1 > 0 and the added noise
is minimal. Since the channel in Eq. (80) is covariant
also for D(α)⊗2, notice that the above derivation holds
for the case of encryption with the same unitary on both
qumodes as well.

In the following we will give two relevant examples of
decorrelation maps for Gaussian states.

is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of !g are related to the reduced density matrices of ! by
Ugi!iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D !Ug1 " . . . "UgN!U
y
g1 " . . . "Uy

gN #
$ Ug1 " . . . "UgND!!#Uy

g1 "Uy
gN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D !!# $ ~!1 " . . . ~!N; (5)

where ~!i ! !i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU!2#, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices !A $ !B $ 1

2 !1% "#z# of the seed state !AB are
diagonal in the #z basis. The information ($, %) is encoded
via the action of U!$# "U!%#:

 !AB!$;%# $ U!$# "U!%#!ABU!$#y "U!%#y; (6)

where $ and % are elements of SU!2#. In other words it is
encoded on the direction of the Bloch vectors nA!$# and
nB!%# of the marginal states

 !A!$# $ TrB&!AB!$;%#' $ 1
2&1% "nA!$# ( !';

!B!%# $ TrA&!AB!$;%#' $ 1
2&1% "nB!%# ( !';

(7)

where ! $ !#x;#y;#z# is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA!$# and nB!%# should be
preserved in the output states, i.e.,
 

~!A!$# $ 1
2&1% ~"nA!$# ( !';

~!B!%# $ 1
2&1% ~"nB!%# ( !';

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed " ! ~". The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~"< ". The directions of the Bloch vectors nA!$#
and nB!$# are completely arbitrary. The optimal decorre-
lation map will maximize the length ~" of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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can be extended to any set of mixed states containing an
arch of the form

ρφ := UφρU†
φ. (75)

In fact, an arch of mixed states ρφ can be obtained as
ρφ = N (|φ〉〈φ|) with N amplitude-damping channel
N (ρ) = αρ + βσzρσz. Therefore, if a map D is able to
clone an arch of ρφ without correlations, then the map
D◦N would do the same for an arch of pure states, which
contradicts our previous result. We have then proved
that in finite dimension any set of mixed states contain-
ing an arch of states of the form (77) cannot be cloned
without correlations in any approximate and asymmetric
way. This is clearly true, as a special case, for covariant
universal cloning, or any other covariant cloning of sym-
metric sets of input states, for groups containing U(1) as
a subgroup. Notice that in our derivation we have used
only linearity of the transformation and we have not used
the trace preserving condition. This implies that cloning
without correlations is impossible also probabilistically.

The present no-cloning-without-correlation result is al-
ready quite general, however, it is likely to be of even
larger validity. We conjecture that it holds more gener-
ally for linearly dependent sets of states. Such conjecture
is supported by the fact that linearly independent states
can be probabilistically perfectly cloned [10], so if we con-
sider eg. N copies of an unknown qubit state, nothing
forbids cloning without correlations for N + 1 different
qubit states since |φ〉〈φ|⊗N will be linear independent
states.

V. DECORRELATION FOR CONTINUOUS
VARIABLES

We consider now the case of decorrelation for qumodes.
For a couple of qumodes in a joint seed state ρAB the
information (α, β) (with α and β complex) is encoded as
follows

D(α)⊗D(β)ρABD(α)† ⊗D(β)†, (76)

D(z) = exp(za† − z∗a) for z ∈ C denoting a single-mode
displacement operator, a and a† being the annihilation
and creation operators of the mode. Here we show that
it is always possible to decorrelate any joint state of the
form (78), with ρAB representing a two-mode Gaussian
state, namely

ρAB =
1
π2

∫
d4q e−

1
2 qT MqD(q) , (77)

where q = (q1, q2, q3, q4), D(q) = D(q1+iq2)⊗D(q3+iq4),
and M is the 4 × 4 (real, symmetric, and positive) cor-
relation matrix of the state, that satisfies the Heisenberg
uncertainty relation [11] M + i

4Ω ≥ 0, with Ω = ⊕2
k=1ω

and ω =
(

0 1
−1 0

)
.

A Gaussian decorrelation channel covariant under
D(α)⊗D(β) is given by

D(ρ) =
√

detG
(2π)2

∫
d4x e−

1
2 xT GxD(x)ρD†(x), (78)

with positive matrix G. For suitable G, the resulting
state D(ρAB) is still Gaussian, with a new block-diagonal
covariance matrix M̃ , thus corresponding to a decorre-
lated state.

In fact, it is easily seen that the map D is covariant.
Using the relation

D(x)D(q)D(x) = e2i(q1x2−q2x1+q3x4−q4x3) D(q) , (79)

explicitely one has

D(ρAB) =
√

detG
(2π)2π2

∫
d4q e−

1
2 qT Mq D(q)

×
∫

d4x e−
1
2 (q⊕x)T G′(q⊕x) , (80)

where G′ is the 8× 8 block matrix

G′ =
(

0 ΣT

Σ G

)
, (81)

with

Σ =
(

σy 0
0 −σy

)
, (82)

and σy denoting the usual Pauli matrix σy =
(

0 −i
i 0

)
.

Notice also that ΣT = −Σ.
The integral on x in Eq. (82) can be performed, and

one obtains

D(ρAB) =
1
π2

∫
d4q e−

1
2 qT (M+U)q D(q) , (83)

where U = ΣG−1Σ. Then, by writing the correlation
matrix M of the input seed state in block-form, namely

M =
(

A C
CT B

)
, (84)

and writing G−1 as

G−1 =
(

W V
V T Z

)
(85)

a decorrelation map is obtained just by taking

V = σyCσy . (86)

Since for physical maps one must have G−1 > 0, then
W and Z are subject to constraints. Typically, one will
take W and Z such that G−1 > 0 and the added noise
is minimal. Since the channel in Eq. (80) is covariant
also for D(α)⊗2, notice that the above derivation holds
for the case of encryption with the same unitary on both
qumodes as well.

In the following we will give two relevant examples of
decorrelation maps for Gaussian states.

with suitable positive matrix       
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§ The channel is covariant => decorrelation for any 

degree at most N of e!i!. Since equality (16) should be
satisfied for all phases ! we arrive at a contradiction, since
no polynomial of degree N can be equal to a polynomial of
degree N " 1 in an infinite number of points. The above
reasoning holds true also for asymmetric cloning with
different " for each output, where one can prove that at
least one coefficient " must be null [10].

We consider now the case of decorrelation for qumodes.
For a couple of qumodes in a joint seed state #AB the
information ($, %) (with $ and % complex) is encoded
as follows

 D#$$ %D#%$#ABD#$$y %D#%$y; (17)

D#z$ & exp#zay ' z(a$ for z 2 C denoting a single-mode
displacement operator, a and ay being the annihilation and
creation operators of the mode. Here we show that it is
always possible to decorrelate any joint state of the form
(17), with #AB representing a two-mode Gaussian state,
namely,

 #AB & 1

&4

Z
d4qe'#1=2$qTMqD#q$; (18)

where q & #q1; q2; q3; q4$, D#q$ & D#q1 " iq2$ %D#q3 "
iq4$, and M is the 4) 4 (real, symmetric, and positive)
correlation matrix of the state, that satisfies the Heisenberg
uncertainty relation [11] M" i

4! * 0, with ! & +2
k&1!

and

 ! & 0 1
'1 0

! "
:

A Gaussian decorrelation channel covariant under
D#$$ %D#%$ is given by

 D ##$ &
##########
detG

p

#2&$2
Z

d4xe'#1=2$xTGxD#x$#Dy#x$; (19)

with suitable positive matrix G [8], and the resulting state
D##AB$ is still Gaussian, with a new block-diagonal co-
variance matrix ~M, thus corresponding to a decorrelated
state.

A special example of Gaussian state of two qumodes is
the so-called twin beam, which can be generated in a
quantum optical lab by parametric down-conversion of
vacuum. In this case M is given by

 M & 1" '2

1' '2 1' 2'
1' '2

0 (z
(z 0

! "
; (20)

with 0 , '< 1. The map (19) with

 G & 2'
1' '2

$
1" " (z

(z "

! "%
; (21)

and arbitrary " > 0, provides two decorrelated states with
~M & #1"'

1'' " "$1, which correspond to two thermal states
with mean photon number !n & '

1'' " "
2 each. Since the

channel in Eq. (19) is covariant also for D#$$%2, the above
derivation then holds for the case of encryption with the
same unitary on both qumodes as well.

The striking difference between the qubit and the qu-
mode cases is that for qubits only few states can be
decorrelated, whereas for qumodes any joint Gaussian state
can be decorrelated. This is due to the fact that the covari-
ance group for qubits comprises all local unitary trans-
formations, whereas for qumodes it includes only local
displacements, which is a very small subset of all possible
local unitary transformations in infinite dimension. In par-
ticular it can be checked that unlike qudits, states obtained
via Gaussian cloning of coherent states can be decorrelated
and the no-go proof valid for finite dimensional cases does
not apply here.
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3.  Distribute the amplified mode 
by a M-splitter with (M-1) 

vacuum modes

1.  Use N-splitter to concentrate 
the signal in one mode 

2.  Amplify the signal by a PIA 
with power gain M/N
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Fig. 1 – Experimental scheme for optimal superbroadcasting from 2 to 3 copies. The schemes makes
use of a beam splitter, a phase-insensitive amplifier and a tritter (i.e. two suitably balanced beam
splitters). The output copies carry the same signal as the input, and are locally less noisy, the noise
being confined into the correlations between them.

modes are considered. Hence, in principle, these bounds might be violated when considering
a restricted set of states and allowing for more exotic and nonlinear transformations.

In the following we give a rigorous proof that these bounds indeed cannot be overcome
by any quantum transformation. Let us consider a generic state Ξα of N uncorrelated modes
with noise γi, and 〈ai〉 = α for all modes. Then, Ξα can be written as D(α)⊗NΞ0D†(α)⊗N ,
where D(α) = exp[αa† − α∗a] denotes the displacement operator and Ξ0 = ⊗N−1

i=0 ξi is the
tensor product of N states, each with zero amplitude (i.e., for a single-mode radiation field,
zero average value of the field) and noise γi. We look for a broadcasting map B that preserves
the unknown amplitude on each copy

Tr[bi B(D(α)⊗NΞ0D
†(α)⊗N ] = α , (12)

for all i ∈ [0,M − 1] and complex α, such that each copy has minimal noise Γ, where, using
eq. (4),

Γ =
1
2

+ Tr[b†i bi B(D(α)⊗NΞ0D
†(α)⊗N )] − |α|2 . (13)

The optimal broadcasting map can be searched among covariant maps B that satisfy for all
σ and α(1)

B(D(α)⊗NσD†(α)⊗N ) = D(α)⊗MB(σ)D†(α)⊗M .

It is useful to consider the Choi-Jamio#lkowski bijective correspondence of completely positive
(CP) maps B from Hin to Hout and positive operators RB acting on Hout ⊗ Hin, which is

(1)In fact, for any map B, one can construct a covariant one B̃ by averaging over the group, and still satisfying
eqs. (12) and (13). Actually, being the group noncompact, a limit procedure has to be taken, e.g.

B̃(σ) = lim
∆→∞

∫

d2α

π∆2
e
− |α|2

∆2 D†(α)⊗MB[D(α)⊗NσD†(α)⊗N ]D(α)⊗M .

thermal states with
suitable photon number 

 



• Only few states can be decorrelated if the covariance group   
is “large” 

• Any joint Gaussian state can be decorrelated

• Covariant cloning without correlations:                               
NO for qudits,     YES for CV   

• ?  Experimental set-up for covariant decorrelation for qudits 

• ?  Optimal decorrelators for CV

• ?  Restriction to bilocal or LOCC operations         

• ?  No-cloning without correlations for discrete set of states

Conclusions & open problems 
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