Quantum Computing with Para-hydrogen

Muhammad Sabieh Anwar

LUMS School of Science & Engineering

International Conference on Quantum Information, Institute of Physics, Bhubaneswar, March 12, 2008

Joint work with: J.A. Jones (Oxford) and S.B. Duckett (York)

Contents

Entanglement in two qubit mixed states

Quantum computing with mixed states? The problem of initialization

Pure and entangled states with para-hydrogen

Purity sharing

Entanglement in two qubit mixed states

Entanglement: Pure States

Separable
$$|\psi\rangle_{AB} = |\phi\rangle_{A} \otimes |\chi\rangle_{B}$$

$$|0\rangle \otimes |0\rangle = |00\rangle$$

$$|0\rangle \otimes (|0\rangle + |1\rangle) / \sqrt{2} = (|00\rangle + |01\rangle) / \sqrt{2}$$

$$(|0\rangle + |1\rangle) / \sqrt{2} \otimes (|0\rangle + i|1\rangle) / \sqrt{2} = (|00\rangle + i|01\rangle + |10\rangle + i|11\rangle) / 2$$

Entangled

$$\left|\psi\right\rangle_{AB}\neq\left|\phi\right\rangle_{A}\otimes\left|\chi\right\rangle_{B}$$

$$|\varphi^{+}\rangle = (|00\rangle + |11\rangle) / \sqrt{2}$$
$$|\varphi^{-}\rangle = (|00\rangle - |11\rangle) / \sqrt{2}$$
$$|\psi^{+}\rangle = (|01\rangle + |10\rangle) / \sqrt{2}$$
$$|\psi^{-}\rangle = (|01\rangle - |10\rangle) / \sqrt{2}$$

Bell or EPR States

Entanglement and Density Matrices 1

Density matrix ho

$$\rho_{AB} = \sum_{k} \lambda_{k} |\psi\rangle_{AB} \langle\psi|_{AB}$$

Pure and mixed states

Density matrices of the Bell States

$$(|00\rangle + |11\rangle)/\sqrt{2} \longrightarrow \rho = \begin{pmatrix} 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{pmatrix}$$

$$(|01\rangle - |10\rangle)/\sqrt{2} \longrightarrow \rho = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Entanglement and Density Matrices 2

Maximally mixed state

$$\rho = \begin{pmatrix}
1/4 & 0 & 0 & 0 \\
0 & 1/4 & 0 & 0 \\
0 & 0 & 1/4 & 0 \\
0 & 0 & 0 & 1/4
\end{pmatrix}$$

$$= (|00\rangle\langle00|+|01\rangle\langle01|+|10\rangle\langle10|+|11\rangle\langle11|)/4$$
$$= (|0\rangle\langle0|\otimes|0\rangle\langle0|+|0\rangle\langle0|\otimes|1\rangle\langle1|$$
$$+|1\rangle\langle1|\otimes|0\rangle\langle0|+|1\rangle\langle1|\otimes|1\rangle\langle1|)/4$$

Another mixed state

Entanglement and Density Matrices 3

Separable density matrix

$$\rho_{AB} = \sum_{k} \eta_{k} (\rho_{A} \otimes \rho_{B})_{k}$$

Convex sum of direct product states

Entangled density matrix

$$\rho_{AB} \neq \sum_{k} \eta_{k} (\rho_{A} \otimes \rho_{B})_{k}$$

Detecting and Quantifying Entanglement 1

Can we find a separable decomposition of ρ ?

$$\rho = \frac{1}{18} \begin{pmatrix} 5 & 0 & 0 & 1 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 1 & 0 & 0 & 5 \end{pmatrix}$$

Ensemble fallacy
$$\rho = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/4 & 0 \\ 0 & 0 & 0 & 1/4 \end{pmatrix} = (|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| + |11\rangle\langle 11|)/4$$
$$= (|\varphi^+\rangle\langle\varphi^+| + |\varphi^-\rangle\langle\varphi^-| + |\psi^+\rangle\langle\psi^+| + |\psi^-\rangle\langle\psi^-|)/4$$

D. T. Pegg, J. Jeffers J. Mod. Opt. 52, 1835 (2005)

$$\rho = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = (|01\rangle\langle 01| + |10\rangle\langle 10|)/2 \\
= (|\psi^+\rangle\langle\psi^+| + |\psi^-\rangle\langle\psi^-|)/2$$

Test for Separability

PPT Test
$$|\psi^+\rangle = 1/\sqrt{2}(|00\rangle + |11\rangle)$$

 $\rho = |\psi^+\rangle\langle\psi^+| = \begin{pmatrix} 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{pmatrix}$
 $\rho^T = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix}$

Eigenvalues of ρ^T are {1/2,1/2,1/2,-1/2}. ρ is non-separable or entangled.

Separability of the Werner State

ρ

Werner or *pseudo*pure state

$$= (1-\varepsilon)1/4 + \varepsilon |\psi \rangle \langle \psi \rangle$$

$$= \begin{pmatrix} \frac{1-\varepsilon}{4} & 0 & 0 & 0 \\ 0 & \frac{1+\varepsilon}{4} & -\frac{\varepsilon}{2} & 0 \\ 0 & -\frac{\varepsilon}{2} & \frac{1+\varepsilon}{4} & 0 \\ 0 & 0 & 0 & \frac{1-\varepsilon}{4} \end{pmatrix}$$

$$\rho^{T} = \begin{pmatrix} \frac{1-\varepsilon}{4} & 0 & 0 & -\frac{\varepsilon}{2} \\ 0 & \frac{1+\varepsilon}{4} & 0 & 0 \\ 0 & 0 & \frac{1+\varepsilon}{4} & 0 \\ -\frac{\varepsilon}{2} & 0 & 0 & \frac{1-\varepsilon}{4} \end{pmatrix}$$

•Eigenvalues of PPT of ρ are {1/4(1-3 ϵ),1/4(1+ ϵ), 1/4(1+ ϵ), 1/4(1+ ϵ), 1/4(1+ ϵ), 1/4(1+ ϵ)}. ρ is non-separable or entangled only if $\epsilon > 1/3$.

The problem of initialization

Requirements for Practical QC

- Existence of Qubits
- Initialization
- Universal Quantum Networks
- Read-out or Measure
- Decoherence

D.P. DiVincenzo quant-ph/0002077 (2000)

Initialization 1

Initialization 2

Thermal equilibrium state

={ { $\frac{1}{4}+B, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}-B$ }=1/4+B/4(I_z+S_z) where B = $\hbar\omega$ / kT.

Initialization 3

Pseudopure state $\rho_{ps} = (1-\varepsilon)\mathbf{1/4} + \varepsilon |\psi \rangle \langle \psi| \varepsilon$ is polarization.

Spin Temperature

Problems with Pseudopure States

Scalability

Is NMR quantum mechanical at all?

S.L. Braunstein et al. Phys. Rev. Lett. **83**, (1999) *J.A. Jones*, Fortsch. der Physik **48**, 909 (2002).

Climbing Mount Scalable

Scalability

Maximum pure state that can be extracted from thermal state

$$\rho_{\rm ps} = (1-\epsilon) \mathbf{1} / 2^n + \epsilon |\psi \rangle \langle \psi|$$

Warren proposed a theoretical maximum on ε : $\varepsilon \sim n\mathbf{B} / (2^n)$ where n is the number of qubits.

W.S. Warren Science 277, 1688 (1997).

•We may never enter E with thermal states!

Methods for Increasing Polarization

High fields and low temperature $B = \hbar \omega / kT$

Algorithmic concentration of polarization

Polarization transfer from nuclear spins

Polarization transfer from electron spins

Chemically induced dynamical nuclear polarization (CIDNP)

Is an NMR Device a Quantum Computer?

No entanglement

What makes a quantum computer quantum?

States or Dynamics?

Scaling of the Hilbert space dimensionality?

Superposition?

Other <u>models</u> of better than classical computing.

The para-hydrogen approach

Para-hydrogen Induced Polarization 1

Need for "non-thermal" distributions

Symmetrization postulate

$$\begin{split} |\psi\rangle_{t} &= |\psi\rangle_{tr} |\psi\rangle_{vib} |\psi\rangle_{e} |\psi\rangle_{ns} |\psi\rangle_{r} \\ |T_{1}\rangle &= |00\rangle \\ |T_{0}\rangle &= 1/2^{1/2} (|01\rangle + |10\rangle) \\ |S_{0}\rangle &= 1/2^{1/2} (|01\rangle - |10\rangle) \\ |T_{-1}\rangle &= |1\rangle \\ |\psi\rangle_{r} \quad j = 0, 2, 4, ... \quad \text{even} \\ j = 1, 3, 5, ... \quad \text{odd} \quad (Y_{j}^{i}(\pi - \theta, \pi + \phi) = (-1)^{j} Y_{j}^{i}(\theta, \phi)) \end{split}$$

Para-hydrogen Induced Polarization 2

j	$ \psi_{rot}>$	lψ _{ns} >	o/p
0	s symmetrical	a asymmetrical	р
1	a	S	0
2	S	a	р
3	a	S	0

Making Parahydrogen

Para-hydrogen Quantum Computer

Example PASADENA spectrum

Experimental Setup

Schematic setup for the PASADENA Experiment

Some photographs depicting various units in the experiement

Flash Photolysis

D. Blazina et al. Magn. Reson. Chem. 43, 200 (2005)

PHIP Spectra

The NMR Experiment

M.S. Anwar et al. Phys. Rev. Lett. **93**, 040501 (2004)

M.S. Anwar et al. Phys. Rev. A **71**, 032327 (2005)

Classical Deutsch's Algorithm: *f*(1)

Quantum Deutsch's Algorithm

M.S. Anwar et al. Phys. Rev. A 70, 032324 (2004)

Quantum Deutsch's Algorithm

M.S. Anwar et al. Phys. Rev. A 70, 032324 (2004)

Purity dilution

Purity Sharing 1

M.S. Anwar et al. Phys. Rev. A 73, 022322 (2006)

Purity Sharing 2

Purity Sharing 3

