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Abstract
Classical information theory provides useful methods
to process and transmit informations using classical
physics. We will try to see through this set of three

lectures how quantum theory helps us to have much
more efficient ways to do these jobs of storing,

processing and transmitting informations.
• First lecture: Classical information involving
Shannon’s source coding and noisy channel coding
theorem.
• Second lecture: Quantum information involving
Schumacher’s data compression.
• Third lecture: Quantum information involving pure
state distillation and Holevo’s bound.
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What is information?

Statement 1: The sun will rise on the east today.

Statement 2: We may have rain fall tonight at
Bhubaneswar.

• Statement 1 does not add any useful information to
our knowledge, it is a certain event.

• Statement 2 does add some useful information to
our knowledge, as rain fall at Bhubaneswar is not a
certain event.
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Information is ignorance

• Thus the amount of information about an event is
the amount of ignorance (or, uncertainty) about that
event.

• Ignorance increases with increase of the inverse of
the probability p of the event.

• Total amount of ignorance of two independent
events is sum of the ignorances.

• So the amount of ignorance I(p) of should be
additive function of p.
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Shannon entropy

• Using continuity and additivity properties of I(p),
Shannon (1948) has shown that I(p) = log2(1/p) upto
some additive and/or multiplicative constant.

• So the average information content of a set X of n
mutually exclusive but exaustive events x1, x2, , xn with
respective probabilities p1, p2, . . ., pn is the given by the
Shannon entropy H(X) =

∑n
i=1 pilog2pi.

• H(X) depends only on pi’s, not on event names xi’s.
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Certain event vs. most disordered event

• For any random variable X with value set
{x1, x2, . . . , xn} and Prob(X = xi) = pi, if xi is a certain
event then H(X) = 0; so we have no ignorance about
X!

• For equally probable events x1, x2, . . ., xn, we have
H(X) = log2n; so we have maximum ignorance about
X.

• For all other probability distributions,
0 ≤ H(X) ≤ log2n.
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String of random variables
• The height hi of a flight at time ti, while moving from
one place A to another place B, will not be far apart
from its height at time ti−1) if ti − ti−1 is small enough.
But during an entire year, the height Xi may vary
within the interval [hmini , hmaxi ] for each i with associated
probability Prob(Xi = hi) ≡ pi(hi). So the random
variables Xi, X2, . . . are not independent. We need to
know the joint probabilities
Prob(X1 = h1, X2 = h2, . . . , Xn = hn) to get the
information content about the heights of the flight.
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i.i.d. case

• Classical information ≡ Information content of some
random variable X = {X = x with Prob(X = x) = p(x)}x.

• For L i.i.d. random variables
X = {X = xi, p(xi)|i = 1, 2, . . . ,m}, H(XL) =∑m

i1,i2,...,iL=1 p(xi1)p(xi2) . . . p(xiL) log2(p(xi1)p(xi2) . . . p(xiL)).
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Letters, alphabet, messages

• X1, X2, . . ., XL be i.i.d. random variables distributed
as X. For any random variable X, each of its values x1,
x2, . . ., xn is called a letter; the set {x1, x2, . . . , xn} is
called alphabet; any string xi1xi2 . . . xiL of length L is
called a message where L can be any positive integer.
Prob(XL = xi1xi2 . . . xiL) = p(xi1)p(xi2) . . . p(xiL).

• Classical information theory deals with processing
and transmitting messages (e.g., English language).
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Redundancy plays the role

• Source coding: How much a message can be
compressed, i.e., how much redundancy is there in a
message?

• Channel coding: How much redundancy one has to
add to send any message through a noisy channel so
that the receiver can decode the message reliably?
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Variable vs. fixed length coding
• Eight ‘letters’ 1, 2, 3, ..., 8 are produced by a source
with respective probabilities 1/2, 1/4, 1/8, 1/16, 1/64,
1/64, 1/64, 1/64.
Fixed lenght coding: C(1) = 000, C(2) = 001,
C(3) = 010, C(4) = 011, C(5) = 100, C(6) = 101,
C(7) = 110, C(8) = 111. Average no. of bits per letter is
3.
Variable lenght coding: C(1) = 0, C(2) = 10, C(3) = 110,
C(4) = 1110, C(5) = 111100, C(6) = 111101, C(7) = 111110,
C(8) = 111111. Average no. of bits per letter is
2 = H(X).
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Classical data compression
• For a binary source
X : Prob(X = 0) = p, Prob(X = 1) = 1− p. Any message
is some n-bit string x1x2 . . . xn with xi ∈ {0, 1}.
• For large n, in a typical message, there will be np no.
of 0’s. Total no. of such messages: nCnp.
• Stirling approximation: log2

nCnp ≈ nH(p, 1− p). So
total no. of typical messages: 2nH(p,1−p).
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Block coding
• Each typical message (a block of n letters) can be
encoded as a bit string of length nH(p, 1− p).
• For large n, each typical message of length n occurs
with probability pnp(1− p)n(1−p). So the total probability
of occurrance of any one of the 2nH(p,1−p) typical
messages ≈ 1.
• We do not need to encode any atypical message,
encoding the typical messages is enough!
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Block coding
• Each typical message (a block of n letters) can be
encoded as a bit string of length nH(p, 1− p).
• For large n, each typical message of length n occurs
with probability pnp(1− p)n(1−p). So the total probability
of occurrance of any one of the 2nH(p,1−p) typical
messages ≈ 1.
• We do not need to encode any atypical message,
encoding the typical messages is enough!
• H(p, 1− p): no. of bits per letter required to express
an arbitrarily large message, on an average.
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Asymptotic equipartition property
• X1, X2, . . ., Xn are i.i.d. random variables according
to X ≡ {Prob(X = xi) = p(xi)|i = 1, 2, . . . , N} with
E(X) <∞ and E(X2) <∞.
• The random variable Yj with values − log2p(xj) will
satisfy (by weak law of large numbers): (1/n)

∑n
j=1 Yj

converges in probability to H(X).
• Thus E((1/n)

∑n
j=1 Yj) = −(1/n) log2 Prob(X = x1, X =

x2, . . . , X = xn)→ H(X) as n→∞.
• x1x2 . . . xn is a typical message (or sequence).
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Typical sequences
• Given ε, δ, for sufficiently large n, x1x2 . . . xn is a
typical sequence if (i) Prob(x1x2 . . . xn) satisfies
H(X)− δ < −(1/n) log2 Prob(x1x2 . . . xn) < H(X) + δ and
(ii) the total probability of typical sequences exceeds
1− ε.
• The random variable Yj with values − log2p(xj) will
satisfy (by weak law of large numbers): (1/n)

∑n
j=1 Yj

converges in probability to H(X).
• Thus E((1/n)

∑n
j=1 Yj) = −(1/n) log2 Prob(X = x1, X =

x2, . . . , X = xn)→ H(X) as n→∞.
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Typical sequences (continued)
• Total no. N(ε, δ;n) of all such typical sequences
satisfy 2n(H(X)+δ) ≥ N(ε, δ;n) ≥ (1− ε)2n(H(X)−δ).
• Sum of the probabilities of all such typical
sequences will lie between 1− ε and 1.
• So, by using a block of length n(H(X) + δ) bits, we
can encode all the typical sequences each of length n.
• No matter how atypical sequences are encoded,
their total probability will be less than ε.
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Transmission through noisy channel
• To communicate messages over a noisy channel, we
can improve reliability of transmission through
redundancy (e.g., each bit may be sent many times so
that the receiver can decode the message via majority
vote.
• Given a channel, is it always possible to find a code
which would ensure arbitrary reliability as the length
of the message→∞)? What can be the rate (i.e., no.
of bits required to encode each letter of the message)
of such a code?
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Shannon’s noisy channel coding theorem
• Shannon showed that any channel can be used for
arbitrarily reliable communication at a non-zero rate
provided there is some non-zero correlation between
the input and the output.
• Shannon has also found a useful expression for the
optimal rate that can be attained. This optimal rate is
called the channel capacity.
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Binary symmetric channel
• X = 0 and 1 with equal probability (taken for
simplicity).
Prob(Y = 0|X = 0) = Prob(Y = 1|X = 1) = 1− p and
Prob(Y = 0|X = 1) = Prob(Y = 1|X = 0) = p.
• Here Prob(Y = 0) = Prob(Y = 0|X = 0) Prob(X =
0) + Prob(Y = 0|X = 1) Prob(X = 1) = 1/2,
Prob(Y = 1) = Prob(Y = 1|X = 0) Prob(X =
0) + Prob(Y = 1|X = 1) Prob(X = 1) = 1/2. Using
Bayes’ rule: Prob(X = 0|Y = 0) = (Prob(Y = 0|X =
0) Prob(X = 0))/ Prob(Y = 0) = 1− p, Prob(X = 0|Y =
1) = (Prob(Y = 1|X = 0) Prob(X = 0))/ Prob(Y = 1) = p,
Prob(X = 1|Y = 0) = (Prob(Y = 0|X = 1) Prob(X =
1))/ Prob(Y = 0) = p, Prob(X = 1|Y = 1) = (Prob(Y =
1|X = 1) Prob(X = 1))/ Prob(Y = 1) = 1− p.
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Binary symmetric channel (continued)
• This gives H(X|Y ) ≡ Prob(Y = 0)H(X|Y =
0) + Prob(Y = 1)H(X|Y = 1) = H(p, 1− p). Also we have
H(X) = 1. So
I(X;Y ) ≡ H(X)−H(X|Y ) = 1−H(p, 1− p).
• We want to construct a family of codes of increasing
block size n such that the probability of decoding error
goes to zero as n→∞.
• Assume that in this block coding, a k-bit string
message is encoded as an n-bit string code word. So
the total no. of code words = 2k and the rate R = k/n.
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Binary symmetric channel (continued)
• The block coding must be such that the code words
(after channel action) must be ‘far apart’.
• For any n-bit code word to the channel, typically np
of these bits will get corrupted (for large n), and their
total no. is nCnp ≈ 2nH(p,1−p).
• For reliable decoding with rate R, 2nH(p,1−p).2nR ≤ 2n.
So R ≤ I(X;Y ) = 1−H(p, 1− p).
• The maximum rate R by which messages of large
length can be sent throgh a noisy channel N , with
vanishing error of decoding, is the capacity C(N ) of
the channel. For the binary symmetric channel N , one
can show that C(N ) = 1−H(p, 1− p).

. – p.22/??



Channel capacity for a general channel

• For encoding of blocks of large size n, formed by
letters x1, x2, . . ., xn of an alphabet A (where the
corresponding random variable is
X = {X = x, Prob(X = x) = px|x ∈ A}), and thereby
sending these blocks through a noisy channel N
(assuming, as in the case of binary symmetric
channel, that the channel acts independently on
individual letters – N is a ‘memoryless’ channel), one
can show that the rate
R ≤ max{I(X;Y )|X is input variable} ≡ C(N ), where Y
is the output of the channel N .
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Channel capacity for a general channel (continued)
• Among the |A|n no. of messages, each of large size
n, the total no. of typical messages will be 2nH(X).
Thus, once the receiver gets a message in Y n (after the
method of encoding the message from Xn → sending
the encoded message through the channel N ), the
total no. of typical messages that could have been
sent is about 2nH(X|Y ) in no. Now each of such 2nH(X|Y )

typical input messages, can be sent (via N ) into an
error sphere containing 2nR no. of messages from Y n,
R being the rate of encoding. So, for error-free
decoding, we must have 2nR × 2nH(X|Y ) ≤ 2nH(X), i.e.,
R ≤ I(X;Y ). Thus R ≤ max{I(X;Y )|X} ≡ C(N ).
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Channel capacity for a general channel (continued)

• Using random encoding, Shannon has shown that
for large block size n, one can achieve the rate
R = C(N ) for all noisy channels N with vanishing
probability of decoding error provided there is some
non-zero correlation among the inputs and outputs of
the channel.
• Note that the capacity C(N ) is understood to be the
maximum amount of information that the receiver
would obtain about the input by knowing the output of
the channel N , and so, C(N ) has to be equal to
max{I(X;Y )|x}.
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