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Hilbert space formulation of Quantum Mechanics
• (i) Every quantum mechanical system S is
associated with a Hilbert space HS.
• (ii) Every state of the system S is described by a
density operator ρ : HS → HS.
• The state ρ can be a part of a joint state |Ψ〉 of
HS ⊗HT , i.e., TrT (|Ψ〉〈Ψ|) = ρ. |Ψ〉 is a ‘purification’ of ρ.
This purification is not a physical process!
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Hilbert space formulation of QM (continued)
• (iii) As a generalization of projective measurement
{Pi|PiPj = δijPj ; i, j = 1, 2, . . . , d}, every measurement on
S is associated to a POVM {Ei|i = 1, 2, . . . , N}, where
Ei : HS → HS is a positive operator and

∑N
i=1Ei = I.

The probability of ‘clicking’ Ei is Tr(Eiρ). The output
state is (E

1/2
i ρE

1/2
i )/(Tr(Eiρ)) in this case, while the

average output state is
∑N

i=1 E
1/2
i ρE

1/2
i in a particular

realization of the POVM.
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Hilbert space formulation of QM (continued)
• Each POVM {Ei|i = 1, 2, . . . , N} on S can be realized
by a projective measurement {Pi|i = 1, 2, . . . , N} on
S + S ′ where TrS(Eiρ) = TrS+S′(PiU(ρ⊗ σ0)U †), σ0 being
a fixed state of S ′ and U being a unitary evolution of
S + S ′ after which {Pi|i = 1, 2, . . . , N} is measured.
• (iv) As a generalization of the unitary Schrodinger
dynamics, the dynamics of the is described by a
completely positive (CP) map T : D(HS)→ D(HS′),
where D(HS) and D(HS′) are the convex sets of all
density operators of S and S ′ respectively.
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Hilbert space formulation of QM (continued)
• A linear, Hermitian, positive, trace-preserving map
T ′ : B(HS)→ B(HS′) from the Hilbert space B(HS) of
bounded linear operators on HS (with
(A,B) ≡ Tr(A†B)) to B(HS′) is also completely positive
if for every Hilbert space HA, the linear, Hermitian,
trace-preserving map
(T ′ ⊗ I) : B(HS ⊗HA)→ B(HS′ ⊗HA) is again positive.
Restrict B(HS) to D(HS) for our purpose.
• Unitary Schrodinger dynamics, non-selective POVM
as well as their copmositions are all CP maps.
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Kraus representation
• Every CP map T ′ : B(HS)→ B(HS′) can be
represented by T (ρ) =

∑M
i=1 AiρA

†
i where

Ai : HS → HS′ ’s are linear maps and
∑M

i=1 A
†
iAi = IS.

• Any map T : D(HS)→ D(HS′), which has a Kraus form,
is always a CP map.
• Every quantum mechanical operation (e.g.,
non-selective measurement, unitary evolution, taking
trace, taking partial trace over a sub-system of a
composite system, etc.) is a CP map.
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Realization of CP maps
• Every CP map T : D(HS)→ D(HS) can be obtained
by: T (ρ) = TrA(U(ρ⊗ σ0)U †) for every ρ in D(HS), σ0 is a
fixed state of A and U : HS ⊗HA → HS ⊗HA is unitary,
for some suitably chosen HA.
• Gorini, Kossakowski, Sudarshan, Lindblad:
Dynamics of any open quantum system in the
Lindblad form:

dρ
dt

= − i
~ [H, ρ] +

∑
j(2LjρL

†
j − {L†jLj , ρ})

corresponds to a CP map ρ(0) 7→ ρ(t) ≡ V (t)ρ(0).
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Quantum channels
• Quantum channel with input system S and output
system T ≡ CP map T ′ : D(HS)→ D(HT ).
• Bit-flip channel: ρ 7→ E0ρE

†
0 + E1ρE

†
1, with

E0 =
√
pI =

√
p

(
1 0

0 1

)
, E1 =

√
1− pσx =

√
1− p

(
0 1

1 0

)
.
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Quantum channels (continued)

• Phase-flip channel: ρ 7→ E0ρE
†
0 + E1ρE

†
1, with

E0 =
√
pI =

√
p

(
1 0

0 1

)
, E1 =

√
1− pσz =

√
1− p

(
1 0

0 −1

)
.
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Quantum channels (continued)

• bit-phase flip channel: ρ 7→ E0ρE
†
0 + E1ρE

†
1, with

E0 =
√
pI =

√
p

(
1 0

0 1

)
, E1 =

√
1− pσy =

√
1− p

(
0 −i
i 0

)
.
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Quantum channels (continued)

• Depolarizing channel: ρ 7→ p I
2

+ (1− p)ρ ≡∑3
i=0 EiρE

†
i ,

with E0 =
√

1− 3p/4I, E1 =
√
p/2σx, E2 =

√
p/2σy,

E3 =
√
p/2σz.

• Amplitude damping channel: ρ 7→ E0ρE
†
0 + E1ρE

†
1 with

E0 =

(
1 0

0 cosθ

)
, E1 =

(
0 sinθ

0 0

)
(θ ∈ [0, π/2]).
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Why CP, why not just positive?
• Transposition map: Consider an orthonomal basis
{|i〉 : i = 1, 2, . . . d = dimHS} for HS. For any A ∈ B(HS),
define its transposition AT : HS → HS as 〈i|AT |j〉 ≡ 〈j|A|i〉.
So the map T : A 7→ AT is a linear, Hermitian,
trace-preserving, positive map. But the map
(T ⊗ I) : B(HS ⊗HS)→ B(HS ⊗HS), when acts on
|Φ+〉〈Φ+|, produces a non-positive operator, where

|Φ+〉 = (1/
√
d)
∑d

i=1 |ii〉.

. – p.12/45



Positive maps for testing entanglement
• Think of the map (I ⊗ T ) as time-reversal (under
Schrodinger evolution) of one subsystem of a composite
system.
• Separable states: A state ρ of HS ⊗HT is separable iff
ρ =

∑L
i=1 wiρ

(S)
i ⊗ σ(T )

i , with ρ(S)
i ∈ D(HS), σ(T )

i ∈ D(HT ),
0 ≤ wi ≤ 1,

∑L
i=1 wi = 1. If ρ is not separable, then it is

entangled.
• A state ρ of S + T is separable iff for every positive map
A : B(HS)→ B(HS′), the operator
(A⊗ IT )(ρ) : HS ⊗HT → HS′ ⊗HT is positive.
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Recalling Shannon (source coding)
• For processing an arbitrarily large message of
letters from the values of the random variable
X = {x, p(x)}, its incompressible information content
per letter is H(X).

. – p.14/45



Recalling Shannon (channel coding)
• Given an output Y = y of a noisy channel N for
sending X, the incompressible information content for
the probability distribution {Prob(x|y) : x} being
H(X|y), the average value of this information content
is H(X|Y ) =

∑
y p(y)H(X|y). The information about X,

gained by sending X through a channel N
(characterized by the probabilities Prob(y|x), from
which Prob(x|y)’s can be obtained by using the Bayes’
rule: Prob(x|y) = (Prob(y|x)× Prob(x))/ Prob(y) where
Prob(y) ≡∑x Prob(y|x)× Prob(x)) is
I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ).
The capacity of the channel N is max{I(X;Y )|X}.
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von Neumann entropy
• Now we encode the letter x by a density matrix ρx of
S. So, the classical ensemble X = {x, p(x) : x} is now
replaced by the quantum ensemble ρ = {ρx, p(x) : x},
representing the density matrix ρ =

∑
x p(x)ρx. If we

take the preparation {ρx, p(x) : x} of ρ in its spectral
decomposition (i.e., ρx’s are pairwise orthogonal), then
the information content about X, is
−∑x p(x) log2p(x) = −Tr(ρ log2ρ), as ρx’s are
distinguishable.
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von Neumann entropy (continued)
• But what would be information content in ρ if its
preparation is not known? von Neumann, considering
phenomenological considerations of
Thermodynamics, provided the formula for that
information content. It is the von Neumann entropy
S(ρ) ≡ −Tr(ρ log2ρ).
• Schumacher (1995) has shown that if we consider
strings ρ⊗ ρ⊗ . . . ρ ≡ ρ⊗n of large length n, S(ρ) gives
the incompressible information content, in terms of
qubits, of ρ.
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Shannon vs. von Neumann
• S(ρ) ≥ 0, and S(ρ) = 0 iff ρ is a pure state.
• For unitary U : HS → HS, S(UρU †) = S(ρ).
• For any ρ, S(ρ) ≤ log2(dimHS). (Recall that
H(p1, p2, . . . , pn) ≤ log2n.)
• S(TrB(|ψ〉AB〈ψ|)) = S(TrA(|ψ〉AB〈ψ|)).
• S(

∑N
i=1 wiρi) ≥

∑N
i=1 wiS(ρi), where wi’s are weights.

• If {Pi|i = 1, 2, . . . , d} is a projective measurement on ρ,
then for the average output state

∑d
i=1 PiρPi ≡ ρ′,

S(ρ′) ≥ S(ρ).
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Shannon vs. von Neumann (continued)
• H(X) ≥ S(ρ =

∑
x p(x)|ψx〉〈ψx|). So the

distingushability among the signals x by encoding
them by non-orthogonal states |ψx〉. S(ρ) is here a tight
upper bound on the amount of classical information
about the signals x that one can get by performing
measurement on the state ρ (Holevo’s bound).
• Subadditivity: S(ρAB) ≤ S(TrB(ρAB)) + S(TrA(ρAB));
equality iff ρAB = TrB(ρAB)⊗ TrA(ρAB). (Compare with
the classical case: H(X,Y ) ≤ H(X) +H(Y ).)
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Shannon vs. von Neumann (continued)
• Strong subadditivity:
S(ρABC)+S(TrAC(ρABC)) ≤ S(TrC(ρABC))+S(TrA(ρABC)).
(Compare with the classical case:
H(X,Y, Z) +H(Y ) ≤ H(X,Y ) +H(Y, Z).)
• Araki-Lieb inequality:
S(ρAB) ≥ |S(TrB(ρAB))− S(TrA(ρAB))|. (Compare with
the classical case: H(X,Y ) ≥ H(X), H(Y ).) But for a
quantum state ρAB, it may happen that
S(ρAB) ≤ S(TrB(ρAB)).
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Entropy vs. thermodynamics
• S(ρ′A)+S(ρ′B)) ≥ S(ρ′AB) = S(U(ρA⊗ρB)U †) = S(ρA⊗ρB).
So the total entropy of the system A+B increases
under the interaction of A and B (Second law?).
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Schumacher compression
• Consider the density matrix ρ given by the ensemble
{px, |φx〉〈φx|}, where |φx〉’s are not necessarily
orthogonal to each other. Consider now a string
ρ⊗n = ρ⊗ ρ⊗ . . . n times of length n, for large n.)
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Schumacher compression (continued)
• Consider now the spectral decomposition of
ρ: ρ =

∑d
i=1 wi|ψi〉〈ψi|. We have basically now a

classical probability distribution:
X = {i, wi : i = 1, 2, . . . , d}. Consider now the typical
sequences i1i2 . . . in will have probability wi1wi2 . . . win,
which satisfies (for given δ, ε > 0)
2−n(H(X)−δ) ≥ wi1wi2 . . . win ≥ 2−n(H(X)+δ) and the sum of
these probabilities exceeds 1− ε.
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Schumacher compression (continued)
• Thus we see that the subspace Stypical ≡ Λ of H⊗S ,
spanned by the pairwise orthogonal states
|ψi1〉 ⊗ |ψi2〉 ⊗ . . . |ψin〉, corresponding to the typical
sequence i1i2 . . . in, has dimension equal to the total
number N(ε, δ;n) of such typical sequences, and for
the projector P on this subspace Λ, Tr(ρ⊗nP ) = the
total prob. of typical sequences > 1− ε.
• So we have: 2n(H(X)+δ) ≥ N(ε, δ;n) ≥ (1− ε)2n(H(X)−δ),
where H(X) = S(ρ).
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Schumacher compression (continued)
• We now use some encoding unitary operation:
U |Ψtypical〉 = |Ψcomp〉 ⊗ |0〉useless, where |Ψtypical〉 is any
state the typical subspace, |Ψcomp〉 is a n(S(ρ) + δ)-qubit
state and |0〉 is a fixed state of Λ⊥. Once we have
Ψcomp〉, we can now get back |Ψtypical〉 by applying U−1

by appending |0〉useless.
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Schumacher compression (continued)
• Consider now the states
|Φi1i2...in〉 = |φi1〉 ⊗ |φi2〉 ⊗ . . . |φin〉 from the ensemble
ρ⊗n = {wi1wi2 . . . win; |Φi1i2...in〉}. We now perform
measurement of {P, I − P}. Under this measurement,
|Φi1i2...in〉〈Φi1i2...in| 7→ P |Φi1i2...in〉〈Φi1i2...in|P +

ρjunki1i2...in
〈Φi1i2...in|(I − P )|Φi1i2...in〉 ≡ ρ′i1i2...in (after applying

above coding-decoding scheme).
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Schumacher compression (continued)

• So the fidelity of this scheme:
F =

∑
i1i2...in

pxi1pxi2 . . . pxin 〈Φi1i2...in|ρ′i1i2...in|Φi1i2...in〉 =∑
i1i2...in

pxi1pxi2 . . . pxin ||P |Φi1i2...in〉||4 +∑
i1i2...in

pxi1pxi2 . . . pxin 〈Φi1i2...in|ρjunki1i2...in
|Φi1i2...in〉×

〈Φi1i2...in|(I − P )|Φi1i2...in〉 ≥∑
i1i2...in

pxi1pxi2 . . . pxin ||P |Φi1i2...in〉||4 ≥∑
i1i2...in

pxi1pxi2 . . . pxin (2||P |Φi1i2...in〉||2 − 1) =

2Tr(ρ⊗nP )− 1 > 1− 2ε.
• It can be shown to be optimal!

. – p.27/45



Appendix: Completely positive maps
• Any dynamical operation N on states of a quantum
system S must have the following properties:
(a) N must be linear; in other words, it should respect
superposition principle.
(b) It should be Hermiticity preserving; in other words,
observable should be transformed into a bonafide
observable (think of the Heisenberg picture).
(c) It should be positivity as well as trace-preserving;
in other words, each density matrix should be
transformed into a bonafide density matrix.
• Sudarshan, Mathews and Rau [Phys. Rev. (1961)] has
taken the above-mentioned three conditions (a), (b)
and (c) as the defining conditions for the most general
quantum dynamical operation.
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Appendix: Completely positive maps (continued)
• In that direction, let us consider a linear map
N : B(HS)→ B(HS′) from the Hilbert space B(HS) of
bounded linear operators on HS to a Hilbert space HS′

of bounded linear operators on HS′. Let dim HS = d
and dim HS′ = d′. Let us fix an orthonormal basis
(ONB) {|ei〉 : i = 1, 2, . . . , d} for HS and an ONB
{|fk〉 : k = 1, 2, . . . , d′} for HS′ .
• For any density matrix ρ of S, let us write
ρij = 〈ei|ρ|ej〉. Also, with respect to the ONB
{|fkfl〉〈eiej| : i, j = 1, 2, . . . , d; k, l = 1, 2, . . . , d′}, let us
write 〈eiej|N |fkfl〉 = Nkl,ij.
• So, for the mapping ρ 7→ N (ρ) ≡ ρ′, we have the
following matrix equations: ρ′kl =

∑d
i,j=1Nkl,ijρij .
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Appendix: Completely positive maps (continued)
• Condition (a) is automatically satisfied here via the
above-mentioned matrix equations.
• Condition (b) implies that (ρ′lk)

∗ = ρ′kl if (ρji)
∗ = ρij . So

we have
∑d

i,j=1(Nlk,ij)∗ρji =
∑d

i,j=1Nkl,jiρji. Thus:

Nkl,ij = (Nlk,ji)∗, i, j = 1, 2, . . . , d; k, l = 1, 2, . . . , d′.(1)

• Trace-preservation in condition (c) implies that∑d′

k=1

∑d
i,j=1Nkk,ijρij =

∑d
i,j=1 ρijδij. Thus:

d′∑

k=1

Nkk,ij = δij, i, j = 1, 2, . . . , d.(2)
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Appendix: Completely positive maps (continued)
• The positivity demand in (c) implies that for all
(y1, y2, . . . , yd′) ∈ CId

′
and for all (x1, x2, . . . , xd) ∈ CId:∑d′

k,l=1

∑d
i,j=1 y

∗
kNkl,ijρijyl ≥ 0 whenever

∑d
i,j=1 x

∗
i ρijxj.

• At this point, Sudarshan et al. considered a
(d′d)× (d′d) matrix T ≡ (Tki,lj), defined as: Tki,lj ≡ Nkl,ij.
• Then, in terms of the linear operator T , equation (1)
says that T is Hermitian:

Tki,lj = (Tlj,ki)∗.(3)
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Appendix: Completely positive maps (continued)

• Equation (2) becomes:

d′∑

k=1

Tki,kj ≡ (TrS′(T ))ij = δij, i, j = 1, 2, . . . , d.(4)

• Now by equation (3), we have the spectral
decomposition of T :

T =

d′∑

k=1

d∑

i=1

λki|Ψki〉〈Ψki|,(5)
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Appendix: Completely positive maps (continued)

• where λki ∈ IR, |Ψki〉 ≡
∑d′

l=1

∑d
j=1 a

(ki)
lj |ejfl〉, and

∑d′

l=1

∑d
j=1(a

(ki)
lj )∗a(k′i′)

lj = δkk′δii′ .
• Thus we see that: Nkl,ij = Tki,lj = 〈eifk|T |ejfl〉 =∑d′

k′=1

∑d
i′=1 λk′i′a

(k′i′)
ki (a

(k′i′)
lj )∗.

• We then have
∑d′

k,l=1

∑d
i,j=1 y

∗
kNkl,ijρijyl =

∑d′

k,l=1

∑d
i,j=1

∑d′

k′=1

∑d
i′=1 λk′i′y

∗
ka

(k′i′)
ki ρijyl(a

(k′i′)
lj )∗ =

∑d′

k′=1

∑d
i′=1 λk′i′{

∑d
i,j=1(

∑d′

k=1 a
(k′i′)
ki y∗k)ρij(

∑d′

l=1 a
(k′i′)
lj y∗l )

∗} ≡
∑d′

k′=1

∑d
i′=1 λk′i′{

∑d
i,j=1(x

(k′i′)
i )∗ρij(x

(k′i′)
j )}, where

x
(k′i′)
i = (

∑d′

k=1 a
(k′i′)
ki y∗k)

∗ for i = 1, 2, . . . , d.
• As ρ is a state, therefore,

∑d′

k,l=1

∑d
i,j=1 y

∗
kNkl,ijρijyl ≥ 0

if all λk′i′ ’s are non-negative, i.e., if T ≥ 0.
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Appendix: Completely positive maps (continued)
• Assumption (1): T is a positive operator.
• Thus we see that all the three conditions (a), (b) and
(c) will be simultaneously satisfied if the linear
operator T : CId

′d → CId
′d is Hermitian, TrS′(T ) = Id×d and

all the eigen values of T are non-negative, where
dim(HS′) = d′.
• We will now see that the Assumption (1) is stronger
than what is needed to satisfy all the three conditions
(a), (b) and (c).
• Consider an arbitrary quantum system T where
dim(HT ) = D can be any positive integer. Consider
now the linear map (N ⊗ I) : B(HS ⊗HT )→ B(HS′ ⊗HT ),
where I : B(HT )→ B(HT ) is the identity map.
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Appendix: Completely positive maps (continued)
• Any density matrix σ of the combined system S + T

can be written as: σ =
∑M

α=1 wαρ
(S)
α ⊗ τ (T )

α , where
ρ

(S)
α ∈ D(HS), τ (T )

α ∈ D(HT ), and wα’s are real numbers
such that

∑M
α=1 wα = 1.

• So (N ⊗ I)(σ) =
∑M

α=1 wα(N (ρ
(S)
α )⊗ τ (T )

α ).
• Then {(N ⊗ I)(σ)}† =

∑M
α=1 wα({N (ρ

(S)
α )}† ⊗ {τ (T )

α )}† =∑M
α=1 wα(N (ρ

(S)
α )⊗ τ (T )

α ), as N is a
Hermiticity-preserving operator. So (N ⊗ I) is a
Hermiticy-preserving operator.
• Tr[(N ⊗ I)(σ)] =

∑M
α=1 wα(Tr[N (ρ

(S)
α )]× Tr[τ (T )

α ]) =∑M
α=1 wα = 1, as N is a trace-preserving map. So

(N ⊗ I) is trace-preserving.
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Appendix: Completely positive maps (continued)

• Finally, for any
|η〉 =

∑d′

k=1

∑D
m=1 bkm|fkgm〉 ∈ (HS′ ⊗HT ) (where

{|gm〉 : m = 1, 2, . . . , D} is an ONB for HT ), we have
〈η|(N ⊗ I)(σ)|η〉 =

∑M
α=1 wα〈η|(N (ρ

(S)
α )⊗ τ (T )

α )|η〉 =∑M
α=1

∑d
k,l=1

′∑D
m,n=1 wαb

∗
kmbln〈fk|N (ρ

(S)
α )|fl〉〈gm|τ (T )

α |gn〉 =
∑M

α=1

∑d
i,j=1

∑d′

k,l=1

∑D
m,n=1 wαb

∗
kmblnTki,lj〈ei|ρ(S)

α |ej〉〈gm|τ (T )
α |gn〉

=
∑M

α=1

∑d
i,i′,j=1

∑d′

k,k′,l=1

∑D
m,n=1 wαb

∗
kmblnλk′i′a

(k′i′)
ki (a

(k′i′)
lj )∗×

〈ei|ρ(S)
α |ej〉〈gm|τ (T )

α |gn〉 =∑d
i,i′,j=1

∑d′

k,k′,l=1

∑D
m,n=1 b

∗
kmblnλk′i′a

(k′i′)
ki (a

(k′i′)
lj )∗ ×

〈eigm|(
∑M

α=1 wαρ
(S)
α ⊗ τ (T )

α )|ejgn〉 =∑d′

k′=1

∑d
i′=1 λk′i′〈Φ(k′i′)|σ|Φ(k′i′)〉,
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Appendix: Completely positive maps (continued)

• where |Φ(k′i′)〉 =
∑d

i=1

∑D
m=1(

∑d′

k=1 bkm(a
(k′i′)
ki )∗)|eigm〉.

• Thus, under Assumption (1), it follows that (N ⊗ I) is
a positivity-preserving map, irrespective of the
dimension D of HT .
• So, N is CP map. What about the Kraus
representation of N?
• Here 〈fk|N (ρ)|fl〉 ≡

∑d
i,j=1Nkl,ijρij =

∑d
i,j=1 Tki,ljρij =

∑d
i,j=1

∑d′

k′=1

∑d
i′=1 λk′i′a

(k′i′)
ki (a

(k′i′)
lj )∗〈ei|ρ|ej〉 ≡∑d

i,j=1

∑d′

k′=1

∑d
i′=1 〈fk|A(k′i′)|ei〉〈ei|ρ|ej〉〈ej|(A(k′i′))†|fl〉 =

〈fk|{
∑d′

k′=1

∑d
i′=1 A

(k′i′)ρ(A(k′i′))†}|fl〉, where
A(k′i′) =

∑d′

k=1

∑d
i=1

√
λk′i′a

(k′i′)
ki |fk〉〈ei|.
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Appendix: Completely positive maps (continued)

• Note that
∑d′

k′=1

∑d
i′=1(A(k′i′))†A(k′i′) =∑d

i,j=1{
∑d′

k=1(
∑d′

k′=1

∑d
i′=1 λk′i′a

(k′i′)
ki (a

(k′i′)
kj )∗)}∗|ei〉〈ej| =∑d

i,j=1{
∑d′

k′=1 Tki,kj}∗|ei〉〈ej| =
∑d

i,j=1 δij|ei〉〈ej| = Id×d.
• Thus a Kraus representation for the CP map
ρ 7→ N (ρ) is given by: N (ρ) =

∑d′

k′=1

∑d
i′=1 A

(k′i′)ρ(A(k′i′))†.

• Thus we see that Assumption (1) regarding the map
T , given by equation (5), not only makes the
Hermiticity-preserving linear map N positive, it also
makes it a CP map!
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Appendix: Completely positive maps (continued)

• In the case when d = d′, Sudarshan et al. have
initially taken the positivity condition for the map N as:

d∑

i,j,k,l=1

x∗ky
∗
lNkl,ijxiyj ≥ 0 for all xi, yj , xk, yl ∈ CI.(6)

• But after introducing the map T , Sudarshan et al.
have considered a stronger positivity condition, given
as:

d∑

i,j,k,l=1

z∗kiTki,ljzlj ≥ 0 for all zki, zlj ∈ CI,(7)
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Appendix: Completely positive maps (continued)
• instead of considering just the condition (6), i.e. the
condition that∑d

i,j,k,l=1 x
∗
kxiTki,ljy∗l yj ≥ 0 for all xi, yj , xk, yl ∈ CI.

• Note that condition (7) is nothing but Assumption
(1)!
• Try to construct a linear operator
U : (HS ⊗HT )→ (HS′ ⊗HT ) and a fixed state |0〉T ∈ HT ,
where dimHT = d′d, such that U †U = I(d′(d′d))×(d′(d′d)) and
T 〈ei′fk′ |U |0〉T ≡ A(k′i′) for all k′ = 1, 2, . . . , d′ and for all
i′ = 1, 2, . . . , d. This will give us:
N (ρ) =

∑d′

k′=1

∑d
i′=1 T 〈ei′fk′|U(ρ⊗ |0〉T 〈0|)U †|ei′fk′〉T for all

states ρ of S.
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Appendix: Unitary realization of the bit-flip channel

• Show that the unitary operator
U : HS ⊗HT → HS ⊗HT (where dimHS = dimHT = 2),
given by
U |00〉ST =

√
p|00〉ST +

√
1− p|11〉ST ,

U |10〉ST =
√
p|10〉ST +

√
1− p|01〉ST ,

U |01〉ST = −√p|11〉ST +
√

1− p|00〉ST ,
U |11〉ST = −√p|01〉ST +

√
1− p|10〉ST ,

‘realizes’ the bit-flip channel, i.e., for any single-qubit
density matrix ρS, we have TrT [U(ρS ⊗ |0〉T 〈0|)U †] =

(
√
pI)ρS(

√
pI) + (

√
1− pσx)ρS(

√
1− pσx).
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Appendix: Unitary realization of the phase-flip
channel

• Show that the unitary operator
U : HS ⊗HT → HS ⊗HT (where dimHS = dimHT = 2),
given by
U |+ 0〉ST =

√
p|+ 0〉ST +

√
1− p| − 1〉ST ,

U | − 0〉ST =
√
p| − 0〉ST +

√
1− p|+ 1〉ST ,

U |+ 1〉ST = −√p| − 1〉ST +
√

1− p|+ 0〉ST ,
U | − 1〉ST = −√p|+ 1〉ST +

√
1− p| − 0〉ST ,

‘realizes’ the phase-flip channel, i.e., for any
single-qubit density matrix ρS, we have
TrT [U(ρS ⊗ |0〉T 〈0|)U †] = (

√
1− pσz)ρS(

√
1− pσz)+

(
√
pI)ρS(

√
pI), where | ± 〉 = (1/

√
2)(|0〉 ± |1〉).
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Appendix: Unitary realization of the bit-phase flip
channel

• Show that the unitary operator
U : HS ⊗HT → HS ⊗HT (where dimHS = dimHT = 2),
given by
U |+ y0〉ST =

√
p|+ y0〉ST +

√
1− p| − y1〉ST ,

U | − y0〉ST =
√
p| − y0〉ST +

√
1− p|+ y1〉ST ,

U |+ y1〉ST = −√p| − y1〉ST +
√

1− p|+ y0〉ST ,
U | − y1〉ST = −√p|+ y1〉ST +

√
1− p| − y0〉ST ,

‘realizes’ the phase-flip channel, i.e., for any
single-qubit density matrix ρS, we have
TrT [U(ρS ⊗ |0〉T 〈0|)U †] = (

√
1− pσy)ρS(

√
1− pσy)+

(
√
pI)ρS(

√
pI), where |±y〉 = (1/

√
2)(|0〉 ± i|1〉).
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Appendix: Unitary realization of the amplitude
damping channel

• Show that the unitary operator
U : HS ⊗HT → HS ⊗HT (where dimHS = dimHT = 2),
given by
U |00〉ST = |00〉ST ,
U |10〉ST = cosθ|10〉ST + sinθ|01〉ST ,
U |01〉ST = |11〉ST ,
U |11〉ST = sinθ|10〉ST − cosθ|01〉ST ,
‘realizes’ the amplitude damping channel, i.e., for any
single-qubit density matrix ρS, we have
TrT [U(ρS ⊗ |0〉T 〈0|)U †] = E0ρSE

†
0 + E1ρSE

†
1, where

0 ≤ θ ≤ π/2 and E0 = |0〉〈0|+ cosθ|1〉〈1|, E1 = sinθ|0〉〈1|.
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Appendix: Unitary realization of the depolarizing
channel

• Show that the unitary operator
U : HS ⊗HT → HS ⊗HT (where dimHS = 2 and
dimHT = 4), given by U |00〉ST =

√
1− 3p/4|00〉ST +

(
√
p/2)|01〉ST + i(

√
p/2)|12〉ST + (

√
p/2)|13〉ST , U |10〉ST =√

1− 3p/4|10〉ST − (
√
p/2)|11〉ST − i(√p/2)|02〉ST +

(
√
p/2)|03〉ST (actions of U on other basis elements

defined suitably), ‘realizes’ the depolarizing channel,
i.e., for any single-qubit density matrix ρS, we have
TrT [U(ρS ⊗ |0〉T 〈0|)U †] =

(
√

1− 3p/4I)ρS(
√

1− 3p/4I) + ((
√
p/2)σx)ρS((

√
p/2)σx) +

((
√
p/2)σy)ρS((

√
p/2)σy) + ((

√
p/2)σz)ρS((

√
p/2)σz).
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