Quantum Information Theory II

Sibasish Ghosh

The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. Hilbert space formulation of Quantum Mechanics

- (i) Every quantum mechanical system S is associated with a Hilbert space H_S .
- (ii) Every state of the system S is described by a density operator $\rho: H_S \to H_S$.
- The state ρ can be a part of a joint state $|\Psi\rangle$ of $H_S \otimes H_T$, i.e., $Tr_T(|\Psi\rangle\langle\Psi|) = \rho$. $|\Psi\rangle$ is a 'purification' of ρ . This purification is not a physical process!

Hilbert space formulation of QM (continued)

• (iii) As a generalization of projective measurement $\{P_i|P_iP_j = \delta_{ij}P_j; i, j = 1, 2, \dots, d\}$, every measurement on S is associated to a POVM $\{E_i|i = 1, 2, \dots, N\}$, where $E_i : H_S \to H_S$ is a positive operator and $\sum_{i=1}^N E_i = I$. The probability of 'clicking' E_i is $Tr(E_i\rho)$. The output state is $(E_i^{1/2}\rho E_i^{1/2})/(Tr(E_i\rho))$ in this case, while the average output state is $\sum_{i=1}^N E_i^{1/2}\rho E_i^{1/2}$ in a particular realization of the POVM.

Hilbert space formulation of QM (continued)

• Each POVM $\{E_i | i = 1, 2, ..., N\}$ on S can be realized by a projective measurement $\{P_i | i = 1, 2, ..., N\}$ on S + S' where $Tr_S(E_i\rho) = Tr_{S+S'}(P_iU(\rho \otimes \sigma_0)U^{\dagger})$, σ_0 being a fixed state of S' and U being a unitary evolution of S + S' after which $\{P_i | i = 1, 2, ..., N\}$ is measured.

• (iv) As a generalization of the unitary Schrodinger dynamics, the dynamics of the is described by a completely positive (CP) map $T : \mathcal{D}(H_S) \to \mathcal{D}(H_{S'})$, where $\mathcal{D}(H_S)$ and $\mathcal{D}(H_{S'})$ are the convex sets of all density operators of S and S' respectively.

Hilbert space formulation of QM (continued)

• A linear, Hermitian, positive, trace-preserving map $T': \mathcal{B}(H_S) \to \mathcal{B}(H_{S'})$ from the Hilbert space $\mathcal{B}(H_S)$ of bounded linear operators on H_S (with

 $(A, B) \equiv Tr(A^{\dagger}B)$) to $\mathcal{B}(H_{S'})$ is also completely positive if for every Hilbert space H_A , the linear, Hermitian,

trace-preserving map

 $(T' \otimes I) : \mathcal{B}(H_S \otimes H_A) \to \mathcal{B}(H_{S'} \otimes H_A)$ is again positive. Restrict $\mathcal{B}(H_S)$ to $\mathcal{D}(H_S)$ for our purpose.

• Unitary Schrodinger dynamics, non-selective POVM as well as their copmositions are all CP maps.

Kraus representation

• Every CP map $T' : \mathcal{B}(H_S) \to \mathcal{B}(H_{S'})$ can be represented by $T(\rho) = \sum_{i=1}^M A_i \rho A_i^{\dagger}$ where

 $A_i: H_S \to H_{S'}$'s are linear maps and $\sum_{i=1}^M A_i^{\dagger} A_i = I_S$.

• Any map $T : \mathcal{D}(H_S) \to \mathcal{D}(H_{S'})$, which has a Kraus form, is always a CP map.

• Every quantum mechanical operation (e.g., non-selective measurement, unitary evolution, taking trace, taking partial trace over a sub-system of a composite system, etc.) is a CP map.

Realization of CP maps

- Every CP map $T : \mathcal{D}(H_S) \to \mathcal{D}(H_S)$ can be obtained by: $T(\rho) = Tr_A(U(\rho \otimes \sigma_0)U^{\dagger})$ for every ρ in $\mathcal{D}(H_S)$, σ_0 is a fixed state of A and $U : H_S \otimes H_A \to H_S \otimes H_A$ is unitary, for some suitably chosen H_A .
- Gorini, Kossakowski, Sudarshan, Lindblad: Dynamics of any open quantum system in the Lindblad form:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar}[H,\rho] + \sum_{j} (2L_{j}\rho L_{j}^{\dagger} - \{L_{j}^{\dagger}L_{j},\rho\})$$

corresponds to a CP map $\rho(0) \mapsto \rho(t) \equiv V(t)\rho(0)$.

Quantum channels

- Quantum channel with input system S and output system $T \equiv \mathsf{CP} \mod T' : \mathcal{D}(H_S) \to \mathcal{D}(H_T).$
- Bit-flip channel: $\rho \mapsto E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$, with

$$E_0 = \sqrt{p}I = \sqrt{p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_1 = \sqrt{1-p}\sigma_x = \sqrt{1-p} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Quantum channels (continued)

• Phase-flip channel: $\rho \mapsto E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$, with

$$E_0 = \sqrt{p}I = \sqrt{p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_1 = \sqrt{1-p}\sigma_z = \sqrt{1-p} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Quantum channels (continued)

• bit-phase flip channel: $\rho \mapsto E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$, with

$$E_0 = \sqrt{p}I = \sqrt{p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ E_1 = \sqrt{1-p}\sigma_y = \sqrt{1-p} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

Quantum channels (continued)

- Depolarizing channel: $\rho \mapsto p \frac{I}{2} + (1-p)\rho \equiv \sum_{i=0}^{3} E_i \rho E_i^{\dagger}$, with $E_0 = \sqrt{1 - 3p/4I}$, $E_1 = \sqrt{p}/2\sigma_x$, $E_2 = \sqrt{p}/2\sigma_y$, $E_3 = \sqrt{p}/2\sigma_z$.
- Amplitude damping channel: $\rho \mapsto E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$ with

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \cos\theta \end{pmatrix}, \ E_1 = \begin{pmatrix} 0 & \sin\theta \\ 0 & 0 \end{pmatrix} \quad (\theta \in [0, \pi/2]).$$

Why CP, why not just positive?

• Transposition map: Consider an orthonomal basis $\{|i\rangle : i = 1, 2, ..., d = \dim H_S\}$ for H_S . For any $A \in \mathcal{B}(H_S)$, define its transposition $A^T : H_S \to H_S$ as $\langle i|A^T|j\rangle \equiv \langle j|A|i\rangle$. So the map $\mathcal{T} : A \mapsto A^T$ is a linear, Hermitian, trace-preserving, positive map. But the map $(\mathcal{T} \otimes I) : \mathcal{B}(H_S \otimes H_S) \to \mathcal{B}(H_S \otimes H_S)$, when acts on $|\Phi^+\rangle\langle\Phi^+|$, produces a non-positive operator, where $|\Phi^+\rangle = (1/\sqrt{d}) \sum_{i=1}^d |ii\rangle$.

Positive maps for testing entanglement

- Think of the map $(I \otimes T)$ as time-reversal (under Schrodinger evolution) of one subsystem of a composite system.
- Separable states: A state ρ of $H_S \otimes H_T$ is separable iff $\rho = \sum_{i=1}^{L} w_i \rho_i^{(S)} \otimes \sigma_i^{(T)}$, with $\rho_i^{(S)} \in \mathcal{D}(H_S)$, $\sigma_i^{(T)} \in \mathcal{D}(H_T)$, $0 \le w_i \le 1$, $\sum_{i=1}^{L} w_i = 1$. If ρ is not separable, then it is entangled.
- A state ρ of S + T is separable iff for <u>every</u> positive map $\mathcal{A} : \mathcal{B}(H_S) \to \mathcal{B}(H_{S'})$, the operator $(\mathcal{A} \otimes I_T)(\rho) : H_S \otimes H_T \to H_{S'} \otimes H_T$ is positive.

Recalling Shannon (source coding)

• For processing an arbitrarily large message of letters from the values of the random variable $X = \{x, p(x)\}$, its incompressible information content per letter is H(X).

Recalling Shannon (channel coding)

• Given an output Y = y of a noisy channel \mathcal{N} for sending X, the incompressible information content for the probability distribution $\{Prob(x|y) : x\}$ being H(X|y), the average value of this information content is $H(X|Y) = \sum_{y} p(y)H(X|y)$. The information about X, gained by sending X through a channel \mathcal{N} (characterized by the probabilities Prob(y|x), from which Prob(x|y)'s can be obtained by using the Bayes' rule: $\operatorname{Prob}(x|y) = (\operatorname{Prob}(y|x) \times \operatorname{Prob}(x)) / \operatorname{Prob}(y)$ where $\operatorname{Prob}(y) \equiv \sum_{x} \operatorname{Prob}(y|x) \times \operatorname{Prob}(x)$) is I(X;Y) = H(X) - H(X|Y) = H(X) + H(Y) - H(X,Y).The capacity of the channel \mathcal{N} is $\max\{I(X;Y)|X\}$.

von Neumann entropy

• Now we encode the letter x by a density matrix ρ_x of S. So, the classical ensemble $X = \{x, p(x) : x\}$ is now replaced by the quantum ensemble $\rho = \{\rho_x, p(x) : x\}$, representing the density matrix $\rho = \sum_x p(x)\rho_x$. If we take the preparation $\{\rho_x, p(x) : x\}$ of ρ in its spectral decomposition (i.e., ρ_x 's are pairwise orthogonal), then the information content about X, is

 $-\sum_{x} p(x) \log_2 p(x) = -Tr(\rho \log_2 \rho)$, as ρ_x 's are distinguishable.

von Neumann entropy (continued)

• But what would be information content in ρ if its preparation is not known? von Neumann, considering phenomenological considerations of Thermodynamics, provided the formula for that information content. It is the von Neumann entropy $S(\rho) \equiv -Tr(\rho \log_2 \rho).$

• Schumacher (1995) has shown that if we consider strings $\rho \otimes \rho \otimes \ldots \rho \equiv \rho^{\otimes n}$ of large length n, $S(\rho)$ gives the incompressible information content, in terms of qubits, of ρ .

Shannon vs. von Neumann

- $S(\rho) \ge 0$, and $S(\rho) = 0$ iff ρ is a pure state.
- For unitary $U: H_S \to H_S$, $S(U\rho U^{\dagger}) = S(\rho)$.
- For any ρ , $S(\rho) \leq \log_2(\dim H_S)$. (Recall that
- $H(p_1, p_2, \ldots, p_n) \leq \log_2 n$.)
- $S(Tr_B(|\psi\rangle_{AB}\langle\psi|)) = S(Tr_A(|\psi\rangle_{AB}\langle\psi|)).$
- $S(\sum_{i=1}^{N} w_i \rho_i) \ge \sum_{i=1}^{N} w_i S(\rho_i)$, where w_i 's are weights.
- If $\{P_i | i = 1, 2, ..., d\}$ is a projective measurement on ρ , then for the average output state $\sum_{i=1}^{d} P_i \rho P_i \equiv \rho'$, $S(\rho') \geq S(\rho)$.

Shannon vs. von Neumann (continued)

• $H(X) \ge S(\rho = \sum_{x} p(x) |\psi_x\rangle \langle \psi_x|)$. So the distingushability among the signals x by encoding them by non-orthogonal states $|\psi_x\rangle$. $S(\rho)$ is here a tight upper bound on the amount of classical information about the signals x that one can get by performing measurement on the state ρ (Holevo's bound).

• Subadditivity: $S(\rho_{AB}) \leq S(Tr_B(\rho_{AB})) + S(Tr_A(\rho_{AB}));$ equality iff $\rho_{AB} = Tr_B(\rho_{AB}) \otimes Tr_A(\rho_{AB})$. (Compare with the classical case: $H(X, Y) \leq H(X) + H(Y)$.)

Shannon vs. von Neumann (continued)

• Strong subadditivity:

 $S(\rho_{ABC}) + S(Tr_{AC}(\rho_{ABC})) \le S(Tr_{C}(\rho_{ABC})) + S(Tr_{A}(\rho_{ABC})).$ (Compare with the classical case: $H(X, Y, Z) + H(Y) \le H(X, Y) + H(Y, Z).)$

• Araki-Lieb inequality:

 $S(\rho_{AB}) \ge |S(Tr_B(\rho_{AB})) - S(Tr_A(\rho_{AB}))|$. (Compare with the classical case: $H(X, Y) \ge H(X), H(Y)$.) But for a quantum state ρ_{AB} , it may happen that $S(\rho_{AB}) \le S(Tr_B(\rho_{AB}))$.

Entropy vs. thermodynamics

• $S(\rho'_A)+S(\rho'_B)) \ge S(\rho'_{AB}) = S(U(\rho_A \otimes \rho_B)U^{\dagger}) = S(\rho_A \otimes \rho_B)$. So the total entropy of the system A + B increases under the interaction of A and B (Second law?).

Schumacher compression

• Consider the density matrix ρ given by the ensemble $\{p_x, |\phi_x\rangle\langle\phi_x|\}$, where $|\phi_x\rangle$'s are not necessarily orthogonal to each other. Consider now a string $\rho^{\otimes n} = \rho \otimes \rho \otimes \dots n$ times of length *n*, for large *n*.)

• Consider now the spectral decomposition of ρ : $\rho = \sum_{i=1}^{d} w_i |\psi_i\rangle \langle \psi_i |$. We have basically now a

classical probability distribution:

 $X = \{i, w_i : i = 1, 2, ..., d\}$. Consider now the typical sequences $i_1 i_2 ... i_n$ will have probability $w_{i_1} w_{i_2} ... w_{i_n}$, which satisfies (for given $\delta, \epsilon > 0$) $2^{-n(H(X)-\delta)} \ge w_{i_1} w_{i_2} ... w_{i_n} \ge 2^{-n(H(X)+\delta)}$ and the sum of

these probabilities exceeds $1 - \epsilon$.

- Thus we see that the subspace $S_{typical} \equiv \Lambda$ of H_S^{\otimes} , spanned by the pairwise orthogonal states $|\psi_{i_1}\rangle \otimes |\psi_{i_2}\rangle \otimes \ldots |\psi_{i_n}\rangle$, corresponding to the typical sequence $i_1i_2 \ldots i_n$, has dimension equal to the total number $N(\epsilon, \delta; n)$ of such typical sequences, and for the projector P on this subspace Λ , $Tr(\rho^{\otimes n}P) =$ the total prob. of typical sequences $> 1 - \epsilon$.
- So we have: $2^{n(H(X)+\delta)} \ge N(\epsilon, \delta; n) \ge (1-\epsilon)2^{n(H(X)-\delta)}$, where $H(X) = S(\rho)$.

• We now use some encoding unitary operation: $U|\Psi_{typical}\rangle = |\Psi_{comp}\rangle \otimes |0\rangle_{useless}$, where $|\Psi_{typical}\rangle$ is any state the typical subspace, $|\Psi_{comp}\rangle$ is a $n(S(\rho) + \delta)$ -qubit state and $|0\rangle$ is a fixed state of Λ^{\perp} . Once we have $\Psi_{comp}\rangle$, we can now get back $|\Psi_{typical}\rangle$ by applying U^{-1} by appending $|0\rangle_{useless}$.

Consider now the states

$$\begin{split} |\Phi_{i_{1}i_{2}...i_{n}}\rangle &= |\phi_{i_{1}}\rangle \otimes |\phi_{i_{2}}\rangle \otimes \ldots |\phi_{i_{n}}\rangle \text{ from the ensemble} \\ \rho^{\otimes n} &= \{w_{i_{1}}w_{i_{2}}\ldots w_{i_{n}}; |\Phi_{i_{1}i_{2}...i_{n}}\rangle\}. \text{ We now perform} \\ \text{measurement of } \{P, I - P\}. \text{ Under this measurement,} \\ |\Phi_{i_{1}i_{2}...i_{n}}\rangle\langle\Phi_{i_{1}i_{2}...i_{n}}| \mapsto P|\Phi_{i_{1}i_{2}...i_{n}}\rangle\langle\Phi_{i_{1}i_{2}...i_{n}}|P + \\ \rho^{junk}_{i_{1}i_{2}...i_{n}}\langle\Phi_{i_{1}i_{2}...i_{n}}|(I - P)|\Phi_{i_{1}i_{2}...i_{n}}\rangle \equiv \rho'_{i_{1}i_{2}...i_{n}} \text{ (after applying above coding-decoding scheme).} \end{split}$$

• So the fidelity of this scheme:

$$\begin{split} F &= \sum_{i_{1}i_{2}...i_{n}} p_{x_{i_{1}}} p_{x_{i_{2}}} \dots p_{x_{i_{n}}} \langle \Phi_{i_{1}i_{2}...i_{n}} | \rho'_{i_{1}i_{2}...i_{n}} | \Phi_{i_{1}i_{2}...i_{n}} \rangle = \\ &\sum_{i_{1}i_{2}...i_{n}} p_{x_{i_{1}}} p_{x_{i_{2}}} \dots p_{x_{i_{n}}} ||P| \Phi_{i_{1}i_{2}...i_{n}} \rangle ||^{4} + \\ &\sum_{i_{1}i_{2}...i_{n}} p_{x_{i_{1}}} p_{x_{i_{2}}} \dots p_{x_{i_{n}}} \langle \Phi_{i_{1}i_{2}...i_{n}} | \rho^{junk}_{i_{1}i_{2}...i_{n}} | \Phi_{i_{1}i_{2}...i_{n}} \rangle \times \\ &\langle \Phi_{i_{1}i_{2}...i_{n}} |(I-P)| \Phi_{i_{1}i_{2}...i_{n}} \rangle \geq \\ &\sum_{i_{1}i_{2}...i_{n}} p_{x_{i_{1}}} p_{x_{i_{2}}} \dots p_{x_{i_{n}}} ||P| \Phi_{i_{1}i_{2}...i_{n}} \rangle ||^{4} \geq \\ &\sum_{i_{1}i_{2}...i_{n}} p_{x_{i_{1}}} p_{x_{i_{2}}} \dots p_{x_{i_{n}}} (2||P| \Phi_{i_{1}i_{2}...i_{n}} \rangle ||^{2} - 1) = \\ &2Tr(\rho^{\otimes n}P) - 1 > 1 - 2\epsilon. \end{split}$$

• It can be shown to be optimal!

Appendix: Completely positive maps

- Any dynamical operation \mathcal{N} on states of a quantum system S must have the following properties:
- (a) \mathcal{N} must be linear; in other words, it should respect superposition principle.
- (b) It should be Hermiticity preserving; in other words, observable should be transformed into a bonafide observable (think of the Heisenberg picture).
- (c) It should be positivity as well as trace-preserving; in other words, each density matrix should be transformed into a bonafide density matrix.
- Sudarshan, Mathews and Rau [*Phys. Rev.* (1961)] has taken the above-mentioned three conditions (a), (b) and (c) as the defining conditions for the most general quantum dynamical operation.

• In that direction, let us consider a linear map $\mathcal{N}: \mathcal{B}(H_S) \to \mathcal{B}(H_{S'})$ from the Hilbert space $\mathcal{B}(H_S)$ of bounded linear operators on H_S to a Hilbert space $H_{S'}$ of bounded linear operators on H_S . Let dim $H_S = d$ and dim $H_{S'} = d'$. Let us fix an orthonormal basis (ONB) $\{|e_i\rangle: i = 1, 2, ..., d\}$ for H_S and an ONB $\{|f_k\rangle: k = 1, 2, ..., d'\}$ for $H_{S'}$.

• For any density matrix ρ of S, let us write $\rho_{ij} = \langle e_i | \rho | e_j \rangle$. Also, with respect to the ONB $\{ |f_k f_l \rangle \langle e_i e_j | : i, j = 1, 2, \dots, d; k, l = 1, 2, \dots, d' \}$, let us write $\langle e_i e_j | \mathcal{N} | f_k f_l \rangle = \mathcal{N}_{kl,ij}$.

• So, for the mapping $\rho \mapsto \mathcal{N}(\rho) \equiv \rho'$, we have the following matrix equations: $\rho'_{kl} = \sum_{i,j=1}^{d} \mathcal{N}_{kl,ij}\rho_{ij}$.

- Condition (a) is automatically satisfied here via the above-mentioned matrix equations.
- Condition (b) implies that $(\rho'_{lk})^* = \rho'_{kl}$ if $(\rho_{ji})^* = \rho_{ij}$. So we have $\sum_{i,j=1}^d (\mathcal{N}_{lk,ij})^* \rho_{ji} = \sum_{i,j=1}^d \mathcal{N}_{kl,ji} \rho_{ji}$. Thus:

(1)
$$\mathcal{N}_{kl,ij} = (\mathcal{N}_{lk,ji})^*, i, j = 1, 2, \dots, d; k, l = 1, 2, \dots, d'.$$

• Trace-preservation in condition (c) implies that $\sum_{k=1}^{d'} \sum_{i,j=1}^{d} \mathcal{N}_{kk,ij} \rho_{ij} = \sum_{i,j=1}^{d} \rho_{ij} \delta_{ij}$. Thus:

(2)
$$\sum_{k=1}^{d'} \mathcal{N}_{kk,ij} = \delta_{ij}, \quad i, j = 1, 2, \dots, d.$$

• The positivity demand in (c) implies that for all $(y_1, y_2, \ldots, y_{d'}) \in \mathcal{C}^{d'}$ and for all $(x_1, x_2, \ldots, x_d) \in \mathcal{C}^d$:

 $\sum_{k,l=1}^{d'} \sum_{i,j=1}^{d} y_k^* \mathcal{N}_{kl,ij} \rho_{ij} y_l \ge 0 \text{ whenever } \sum_{i,j=1}^{d} x_i^* \rho_{ij} x_j.$

- At this point, Sudarshan et al. considered a $(d'd) \times (d'd)$ matrix $\mathcal{T} \equiv (\mathcal{T}_{ki,lj})$, defined as: $\mathcal{T}_{ki,lj} \equiv \mathcal{N}_{kl,ij}$.
- Then, in terms of the linear operator T, equation (1)
 says that T is Hermitian:

(3)
$$\mathcal{T}_{ki,lj} = (\mathcal{T}_{lj,ki})^*.$$

• Equation (2) becomes:

(5)

(4)
$$\sum_{k=1}^{d'} \mathcal{T}_{ki,kj} \equiv (Tr_{S'}(\mathcal{T}))_{ij} = \delta_{ij}, \quad i, j = 1, 2, \dots, d.$$

• Now by equation (3), we have the spectral decomposition of \mathcal{T} :

$$\mathcal{T} = \sum_{k=1}^{d'} \sum_{i=1}^{d} \lambda_{ki} |\Psi_{ki}\rangle \langle \Psi_{ki}|,$$

• where $\lambda_{ki} \in \mathbb{R}$, $|\Psi_{ki}\rangle \equiv \sum_{l=1}^{d'} \sum_{i=1}^{d} a_{li}^{(ki)} |e_i f_l\rangle$, and $\sum_{l=1}^{d'} \sum_{i=1}^{d} (a_{li}^{(ki)})^* a_{li}^{(k'i')} = \delta_{kk'} \delta_{ii'}$ • Thus we see that: $\mathcal{N}_{kl,ij} = \mathcal{T}_{ki,lj} = \langle e_i f_k | \mathcal{T} | e_j f_l \rangle =$ $\sum_{k'=1}^{d'} \sum_{i'=1}^{d} \lambda_{k'i'} a_{ki}^{(k'i')} (a_{li}^{(k'i')})^*$ • We then have $\sum_{k,l=1}^{d'} \sum_{i,j=1}^{d} y_k^* \mathcal{N}_{kl,ij} \rho_{ij} y_l =$ $\sum_{k,l=1}^{d'} \sum_{i,j=1}^{d} \sum_{k'=1}^{d'} \sum_{i'=1}^{d} \lambda_{k'i'} y_k^* a_{ki}^{(k'i')} \rho_{ij} y_l (a_{lj}^{(k'i')})^* =$ $\sum_{k'=1}^{d'} \sum_{i'=1}^{d} \lambda_{k'i'} \{ \sum_{i=1}^{d} (\sum_{k=1}^{d'} a_{ki}^{(k'i')} y_k^*) \rho_{ij} (\sum_{l=1}^{d'} a_{li}^{(k'i')} y_l^*)^* \} \equiv$ $\sum_{k'=1}^{d'} \sum_{i'=1}^{d} \lambda_{k'i'} \{ \sum_{i,j=1}^{d} (x_i^{(k'i')})^* \rho_{ij}(x_j^{(k'i')}) \}$, where $x_i^{(k'i')} = (\sum_{k=1}^{d'} a_{ki}^{(k'i')} y_k^*)^*$ for $i = 1, 2, \dots, d$.

• As ρ is a state, therefore, $\sum_{k,l=1}^{d'} \sum_{i,j=1}^{d} y_k^* \mathcal{N}_{kl,ij} \rho_{ij} y_l \ge 0$ if all $\lambda_{k'i'}$'s are non-negative, i.e., if $\mathcal{T} \ge 0$.

- Assumption (1): T is a positive operator.
- Thus we see that all the three conditions (a), (b) and (c) will be simultaneously satisfied if the linear

operator $\mathcal{T} : \mathcal{C}^{d'd} \to \mathcal{C}^{d'd}$ is Hermitian, $Tr_{S'}(\mathcal{T}) = I_{d \times d}$ and all the eigen values of \mathcal{T} are non-negative, where $\dim(H_{S'}) = d'$.

• We will now see that the Assumption (1) is stronger than what is needed to satisfy all the three conditions (a), (b) and (c).

• Consider an arbitrary quantum system T where $\dim(H_T) = D$ can be any positive integer. Consider now the linear map $(\mathcal{N} \otimes I) : \mathcal{B}(H_S \otimes H_T) \to \mathcal{B}(H_{S'} \otimes H_T)$, where $I : \mathcal{B}(H_T) \to \mathcal{B}(H_T)$ is the identity map.

- Any density matrix σ of the combined system S + Tcan be written as: $\sigma = \sum_{\alpha=1}^{M} w_{\alpha} \rho_{\alpha}^{(S)} \otimes \tau_{\alpha}^{(T)}$, where $\rho_{\alpha}^{(S)} \in \mathcal{D}(H_S)$, $\tau_{\alpha}^{(T)} \in \mathcal{D}(H_T)$, and w_{α} 's are real numbers such that $\sum_{\alpha=1}^{M} w_{\alpha} = 1$.
- So $(\mathcal{N} \otimes I)(\sigma) = \sum_{\alpha=1}^{M} w_{\alpha}(\mathcal{N}(\rho_{\alpha}^{(S)}) \otimes \tau_{\alpha}^{(T)}).$
- Then $\{(\mathcal{N} \otimes I)(\sigma)\}^{\dagger} = \sum_{\alpha=1}^{M} w_{\alpha}(\{\mathcal{N}(\rho_{\alpha}^{(S)})\}^{\dagger} \otimes \{\tau_{\alpha}^{(T)})\}^{\dagger} = \sum_{\alpha=1}^{M} w_{\alpha}(\mathcal{N}(\rho_{\alpha}^{(S)}) \otimes \tau_{\alpha}^{(T)})$, as \mathcal{N} is a Hermiticity-preserving operator. So $(\mathcal{N} \otimes I)$ is a Hermiticy-preserving operator.
- $Tr[(\mathcal{N} \otimes I)(\sigma)] = \sum_{\alpha=1}^{M} w_{\alpha}(Tr[\mathcal{N}(\rho_{\alpha}^{(S)})] \times Tr[\tau_{\alpha}^{(T)}]) = \sum_{\alpha=1}^{M} w_{\alpha} = 1$, as \mathcal{N} is a trace-preserving map. So $(\mathcal{N} \otimes I)$ is trace-preserving.

• Finally, for any

 $|\eta\rangle = \sum_{k=1}^{d'} \sum_{m=1}^{D} b_{km} |f_k g_m\rangle \in (H_{S'} \otimes H_T)$ (where $\{|g_m\rangle: m = 1, 2, \dots, D\}$ is an ONB for H_T), we have $\langle \eta | (\mathcal{N} \otimes I)(\sigma) | \eta \rangle = \sum_{\alpha=1}^{M} w_{\alpha} \langle \eta | (\mathcal{N}(\rho_{\alpha}^{(S)}) \otimes \tau_{\alpha}^{(T)}) | \eta \rangle =$ $\sum_{\alpha=1}^{M} \sum_{k=1}^{d} \sum_{k=1}^{J} \sum_{m=1}^{D} w_{\alpha} b_{km}^* b_{ln} \langle f_k | \mathcal{N}(\rho_{\alpha}^{(S)}) | f_l \rangle \langle g_m | \tau_{\alpha}^{(T)} | g_n \rangle =$ $\sum_{\alpha=1}^{M} \sum_{i,j=1}^{d} \sum_{k,l=1}^{d'} \sum_{m,n=1}^{D} w_{\alpha} b_{km}^* b_{ln} \mathcal{T}_{ki,lj} \langle e_i | \rho_{\alpha}^{(S)} | e_j \rangle \langle g_m | \tau_{\alpha}^{(T)} | g_n \rangle$ $= \sum_{\alpha=1}^{M} \sum_{i,i',i=1}^{d} \sum_{k,k',l=1}^{d'} \sum_{m,n=1}^{D} w_{\alpha} b_{km}^{*} b_{ln} \lambda_{k'i'} a_{ki}^{(k'i')} (a_{li}^{(k'i')})^{*} \times$ $\langle e_i | \rho_{\alpha}^{(S)} | e_i \rangle \langle q_m | \tau_{\alpha}^{(T)} | q_n \rangle =$ $\sum_{i,i',i=1}^{d} \sum_{k,k',l=1}^{d'} \sum_{m,n=1}^{D} b_{km}^* b_{ln} \lambda_{k'i'} a_{ki}^{(k'i')} (a_{li}^{(k'i')})^* \times$ $\langle e_i q_m | (\sum_{\alpha=1}^M w_\alpha \rho_\alpha^{(S)} \otimes \tau_\alpha^{(T)}) | e_i q_n \rangle =$ $\sum_{k'=1}^{d'}\sum_{i'=1}^{d}\lambda_{k'i'}\langle\Phi^{(k'i')}|\sigma|\Phi^{(k'i')}\rangle,$

- where $|\Phi^{(k'i')}\rangle = \sum_{i=1}^{d} \sum_{m=1}^{D} (\sum_{k=1}^{d'} b_{km} (a_{ki}^{(k'i')})^*) |e_i g_m\rangle$.
- Thus, under Assumption (1), it follows that $(\mathcal{N} \otimes I)$ is a positivity-preserving map, irrespective of the dimension D of H_T .
- So, \mathcal{N} is CP map. What about the Kraus representation of \mathcal{N} ?

• Here $\langle f_k | \mathcal{N}(\rho) | f_l \rangle \equiv \sum_{i,j=1}^d \mathcal{N}_{kl,ij} \rho_{ij} = \sum_{i,j=1}^d \mathcal{T}_{ki,lj} \rho_{ij} =$ $\sum_{i,j=1}^d \sum_{k'=1}^{d'} \sum_{i'=1}^d \lambda_{k'i'} a_{ki}^{(k'i')} (a_{lj}^{(k'i')})^* \langle e_i | \rho | e_j \rangle \equiv$ $\sum_{i,j=1}^d \sum_{k'=1}^{d'} \sum_{i'=1}^d \langle f_k | A^{(k'i')} | e_i \rangle \langle e_i | \rho | e_j \rangle \langle e_j | (A^{(k'i')})^\dagger | f_l \rangle =$ $\langle f_k | \{ \sum_{k'=1}^d \sum_{i'=1}^d A^{(k'i')} \rho (A^{(k'i')})^\dagger \} | f_l \rangle$, where $A^{(k'i')} = \sum_{k=1}^d \sum_{i=1}^d \sqrt{\lambda_{k'i'}} a_{ki}^{(k'i')} | f_k \rangle \langle e_i |$.

- Note that $\sum_{k'=1}^{d'} \sum_{i'=1}^{d} (A^{(k'i')})^{\dagger} A^{(k'i')} =$ $\sum_{i,j=1}^{d} \{\sum_{k=1}^{d'} (\sum_{k'=1}^{d'} \sum_{i'=1}^{d} \lambda_{k'i'} a_{ki}^{(k'i')} (a_{kj}^{(k'i')})^{*})\}^{*} |e_{i}\rangle\langle e_{j}| =$ $\sum_{i,j=1}^{d} \{\sum_{k'=1}^{d'} T_{ki,kj}\}^{*} |e_{i}\rangle\langle e_{j}| = \sum_{i,j=1}^{d} \delta_{ij} |e_{i}\rangle\langle e_{j}| = I_{d\times d}.$
- Thus a Kraus representation for the CP map $\rho \mapsto \mathcal{N}(\rho)$ is given by: $\mathcal{N}(\rho) = \sum_{k'=1}^{d'} \sum_{i'=1}^{d} A^{(k'i')} \rho(A^{(k'i')})^{\dagger}$.

• Thus we see that Assumption (1) regarding the map T, given by equation (5), not only makes the Hermiticity-preserving linear map \mathcal{N} positive, it also makes it a CP map!

• In the case when d = d', Sudarshan et al. have initially taken the positivity condition for the map N as:

(6)
$$\sum_{i,j,k,l=1}^{d} x_k^* y_l^* \mathcal{N}_{kl,ij} x_i y_j \ge 0 \text{ for all } x_i, y_j, x_k, y_l \in \mathcal{C}.$$

• But after introducing the map \mathcal{T} , Sudarshan et al. have considered a stronger positivity condition, given as:

$$\sum_{i,j,k,l=1}^{a} z_{ki}^* \mathcal{T}_{ki,lj} z_{lj} \ge 0 \text{ for all } z_{ki}, z_{lj} \in \mathcal{C},$$

(7)

- instead of considering just the condition (6), i.e. the condition that
- $\sum_{i,j,k,l=1}^{d} x_k^* x_i \mathcal{T}_{ki,lj} y_l^* y_j \ge 0 \text{ for all } x_i, y_j, x_k, y_l \in \mathcal{C}.$
- Note that condition (7) is nothing but Assumption
 (1)!
- Try to construct a linear operator

 $U: (H_S \otimes H_T) \rightarrow (H_{S'} \otimes H_T)$ and a fixed state $|0\rangle_T \in H_T$, where dim $H_T = d'd$, such that $U^{\dagger}U = I_{(d'(d'd)) \times (d'(d'd))}$ and $_T \langle e_{i'} f_{k'} | U | 0 \rangle_T \equiv A^{(k'i')}$ for all k' = 1, 2, ..., d' and for all i' = 1, 2, ..., d. This will give us:

 $\mathcal{N}(\rho) = \sum_{k'=1}^{d'} \sum_{i'=1}^{d} {}_{T} \langle e_{i'} f_{k'} | U(\rho \otimes |0\rangle_{T} \langle 0|) U^{\dagger} | e_{i'} f_{k'} \rangle_{T} \text{ for all states } \rho \text{ of } S.$

Appendix: Unitary realization of the bit-flip channel

Show that the unitary operator

 $U: H_S \otimes H_T \rightarrow H_S \otimes H_T$ (where dim $H_S = \text{dim}H_T = 2$), given by

$$\begin{split} U|00\rangle_{ST} &= \sqrt{p}|00\rangle_{ST} + \sqrt{1-p}|11\rangle_{ST},\\ U|10\rangle_{ST} &= \sqrt{p}|10\rangle_{ST} + \sqrt{1-p}|01\rangle_{ST},\\ U|01\rangle_{ST} &= -\sqrt{p}|11\rangle_{ST} + \sqrt{1-p}|00\rangle_{ST},\\ U|11\rangle_{ST} &= -\sqrt{p}|01\rangle_{ST} + \sqrt{1-p}|10\rangle_{ST},\\ \text{`realizes' the bit-flip channel, i.e., for any single-qubit density matrix } \rho_S, we have <math>Tr_T[U(\rho_S \otimes |0\rangle_T \langle 0|)U^{\dagger}] = (\sqrt{p}I)\rho_S(\sqrt{p}I) + (\sqrt{1-p}\sigma_x)\rho_S(\sqrt{1-p}\sigma_x). \end{split}$$

Appendix: Unitary realization of the phase-flip channel

Show that the unitary operator

 $U: H_S \otimes H_T \rightarrow H_S \otimes H_T$ (where dim $H_S = \text{dim}H_T = 2$), given by

$$\begin{split} U|+0\rangle_{ST} &= \sqrt{p}|+0\rangle_{ST} + \sqrt{1-p}|-1\rangle_{ST},\\ U|-0\rangle_{ST} &= \sqrt{p}|-0\rangle_{ST} + \sqrt{1-p}|+1\rangle_{ST},\\ U|+1\rangle_{ST} &= -\sqrt{p}|-1\rangle_{ST} + \sqrt{1-p}|+0\rangle_{ST},\\ U|-1\rangle_{ST} &= -\sqrt{p}|+1\rangle_{ST} + \sqrt{1-p}|-0\rangle_{ST},\\ \text{`realizes' the phase-flip channel, i.e., for any}\\ \text{single-qubit density matrix }\rho_S, \text{ we have}\\ Tr_T[U(\rho_S \otimes |0\rangle_T \langle 0|)U^{\dagger}] &= (\sqrt{1-p}\sigma_z)\rho_S(\sqrt{1-p}\sigma_z) + (\sqrt{p}I)\rho_S(\sqrt{p}I), \text{ where } |\pm\rangle = (1/\sqrt{2})(|0\rangle \pm |1\rangle). \end{split}$$

Appendix: Unitary realization of the bit-phase flip channel

Show that the unitary operator

 $U: H_S \otimes H_T \rightarrow H_S \otimes H_T$ (where dim $H_S = \text{dim}H_T = 2$), given by

$$\begin{split} U|+y0\rangle_{ST} &= \sqrt{p}|+y0\rangle_{ST} + \sqrt{1-p}|-y1\rangle_{ST},\\ U|-y0\rangle_{ST} &= \sqrt{p}|-y0\rangle_{ST} + \sqrt{1-p}|+y1\rangle_{ST},\\ U|+y1\rangle_{ST} &= -\sqrt{p}|-y1\rangle_{ST} + \sqrt{1-p}|+y0\rangle_{ST},\\ U|-y1\rangle_{ST} &= -\sqrt{p}|+y1\rangle_{ST} + \sqrt{1-p}|-y0\rangle_{ST},\\ \text{`realizes' the phase-flip channel, i.e., for any}\\ \text{single-qubit density matrix } \rho_S, \text{ we have}\\ Tr_T[U(\rho_S \otimes |0\rangle_T \langle 0|)U^{\dagger}] &= (\sqrt{1-p}\sigma_y)\rho_S(\sqrt{1-p}\sigma_y) + (\sqrt{p}I)\rho_S(\sqrt{p}I), \text{ where } |\pm y\rangle = (1/\sqrt{2})(|0\rangle \pm i|1\rangle). \end{split}$$

Appendix: Unitary realization of the amplitude damping channel

Show that the unitary operator

 $U: H_S \otimes H_T \rightarrow H_S \otimes H_T$ (where dim $H_S = \text{dim}H_T = 2$), given by

 $U|00\rangle_{ST} = |00\rangle_{ST},$ $U|10\rangle_{ST} = \cos\theta|10\rangle_{ST} + \sin\theta|01\rangle_{ST},$ $U|01\rangle_{ST} = |11\rangle_{ST},$ $U|11\rangle_{ST} = \sin\theta|10\rangle_{ST} - \cos\theta|01\rangle_{ST},$ 'realizes' the amplitude damping channel, i.e., for any single-qubit density matrix ρ_S , we have $Tr_T[U(\rho_S \otimes |0\rangle_T \langle 0|)U^{\dagger}] = E_0\rho_S E_0^{\dagger} + E_1\rho_S E_1^{\dagger}, \text{ where}$ $0 \le \theta \le \pi/2 \text{ and } E_0 = |0\rangle \langle 0| + \cos\theta|1\rangle \langle 1|, E_1 = \sin\theta|0\rangle \langle 1|.$

Appendix: Unitary realization of the depolarizing channel

Show that the unitary operator

 $U: H_S \otimes H_T \rightarrow H_S \otimes H_T$ (where dim $H_S = 2$ and dim $H_T = 4$), given by $U|00\rangle_{ST} = \sqrt{1 - 3p/4}|00\rangle_{ST} +$ $(\sqrt{p}/2)|01\rangle_{ST} + i(\sqrt{p}/2)|12\rangle_{ST} + (\sqrt{p}/2)|13\rangle_{ST}$, $U|10\rangle_{ST} =$ $\sqrt{1-3p/4}|10\rangle_{ST} - (\sqrt{p}/2)|11\rangle_{ST} - i(\sqrt{p}/2)|02\rangle_{ST} +$ $(\sqrt{p}/2)|03\rangle_{ST}$ (actions of U on other basis elements defined suitably), 'realizes' the depolarizing channel, i.e., for any single-qubit density matrix ρ_S , we have $Tr_T[U(\rho_S \otimes |0\rangle_T \langle 0|)U^{\dagger}] =$ $(\sqrt{1-3p/4}I)\rho_S(\sqrt{1-3p/4}I) + ((\sqrt{p}/2)\sigma_x)\rho_S((\sqrt{p}/2)\sigma_x) +$ $((\sqrt{p}/2)\sigma_u)\rho_S((\sqrt{p}/2)\sigma_u) + ((\sqrt{p}/2)\sigma_z)\rho_S((\sqrt{p}/2)\sigma_z)$