Structure of Quantum State Space

Sandeep K Goyal

March 10, 2008

Sandeep K Goyal Structure of Quantum State Space

- 4 回 2 4 三 2 4 三 2 4

Introduction

Density Matrix Bloch Sphere

3-D System

General Properties 3-D Quantum System 3-Section 4-Section

< ∰ > < ≣ >

< ∃⇒

Definition

Density matrices are operators which acts on the Hilbert space of the given Quantum system. These are positive semi-definite operators with trace equals one. Density matrices represent the states of a quantum system.

$$\rho \in \mathcal{B}(\mathcal{H}) : \mathcal{H} \to \mathcal{H}$$

イロト イポト イヨト イヨト

Definition

Density matrices are operators which acts on the Hilbert space of the given Quantum system. These are positive semi definite operators with trace equals one. Density matrices represent the state of a quantum system.

 $\rho \geq \mathbf{0}$

$$\rho \in \mathcal{B}(\mathcal{H}) : \mathcal{H} \to \mathcal{H}$$

・ロン ・回と ・ヨン ・ヨン

Definition

Density matrices are operators which acts on the Hilbert space of the given Quantum system. These are positive semi definite operators with trace equals one. Density matrices represent the state of a quantum system.

$$\mathrm{Tr}\rho = 1$$

$$\rho \in \mathcal{B}(\mathcal{H}) : \mathcal{H} \to \mathcal{H}$$

イロト イポト イヨト イヨト

Definition

Density matrices are operators which acts on the Hilbert space of the given Quantum system. These are positive semi definite operators with trace equals one. Density matrices represent the state of a quantum system.

$$ho = |\psi
angle\langle\psi|$$
 For pure case and $ho = \sum p_i |\phi_i
angle\langle\phi_i|$

$$ho \in \mathcal{B}(\mathcal{H}) : \mathcal{H} \to \mathcal{H}$$

イロン イヨン イヨン ・

Representation

In this talk we will represent density matrix ρ in one particular form. In this form one part contain the whole trace part and the other part is trace less.

$$\rho = \frac{1}{d} \left[I + \Lambda \right]$$

イロン イヨン イヨン ・

Representation

In this talk we will represent density matrix ρ in one particular form. In this form one part contain the whole of the trace and the other part is trace less.

$$\operatorname{Tr} \frac{1}{d}I = 1$$

$$\rho = \frac{1}{d} \left[I + \Lambda \right]$$

<ロ> (四) (四) (三) (三) (三)

Representation

In this talk we will represent density matrix ρ in one particular form. In this form one part contain the whole trace part and the other part is trace less.

 ${\rm Tr}\Lambda=0$

$$\rho = \frac{1}{d} \left[I + \Lambda \right]$$

イロン イヨン イヨン ・

Density Matrix Bloch Sphere

2-D Quantum System

$$\rho = \frac{1}{2}(I + \Lambda)$$

Sandeep K Goyal Structure of Quantum State Space

・ロト ・回 ト ・ヨト ・ヨト

æ

Density Matrix Bloch Sphere

2-D Quantum System

$$\rho = \frac{1}{2}(I + \Lambda)$$
$$\Lambda = (r_1\sigma_1 + r_2\sigma_2 + r_3\sigma_3)$$

where r_i are real. The positivity od the density matrix put some restrictions on these real parameters which form the structure of State Space.

イロン イヨン イヨン ・

Density Matrix Bloch Sphere

2-D Quantum System

$$\rho = \frac{1}{2}(I + \Lambda)$$
$$\Lambda = (r_1\sigma_1 + r_2\sigma_2 + r_3\sigma_3)$$

where r_i are real. The positivity of the density matrix put some restrictions on these real parameters which form the structure of State Space.

$$\mathrm{Tr}\rho^2 \leq 1 \implies |r_i|^2 \leq 1$$

・ロン ・回と ・ヨン ・ヨン

Density Matrix Bloch Sphere

Bloch Sphere

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Density Matrix Bloch Sphere

General Definitions

- Opposite points
- Hilbert Schmidt Norm

A line passing through a given fixed point will intersect a convex body at two poins. These point are called Opposite Points.

イロン イヨン イヨン イヨン

Density Matrix Bloch Sphere

General Definitions

- Opposite points
- Hilbert Schmidt Norm

$$||A||_2^2 = \operatorname{Tr}(A^{\dagger}A)$$

◆□> ◆圖> ◆国> ◆国> -

Э

General Properties 3-D Quantum System 3-Section 4-Section

General Properties

Pure states are the extremal points of the state space, therefore they are the farthest point in the structure.

Sandeep K Goyal Structure of Quantum State Space

イロン イヨン イヨン イヨン

æ

General Properties 3-D Quantum System 3-Section 4-Section

General Properties

- Pure states are the extremal points of the state space, this means they are the farthest point in the structure.
- For a *d* dimensional Quantum system the largest inner sphere has the radius $\sqrt{\frac{d}{d-1}}$, and the smallest outer sphere has radius $\sqrt{d(d-1)}$.

・ロト ・回ト ・ヨト ・ヨト

General Properties 3-D Quantum System 3-Section 4-Section

General Properties

- Pure states are the extremal points of the state space, this means they are the farthest point in the structure.
- For a *d* dimensional Quantum system the largest inner sphere has the radius $\sqrt{\frac{d}{d-1}}$, and the smallest outer sphere has radius $\sqrt{d(d-1)}$.
- ▶ Points lying on the outer sphere are the pure state. So the structure on the outer sphere is only 2d 2 dimensional.

・ロト ・回ト ・ヨト ・ヨト

General Properties 3-D Quantum System 3-Section 4-Section

General Properties

- Pure states are the extremal points of the state space, this means they are the farthest point in the structure.
- ► For a *d* dimensional Quantum system the largest inner sphere has the radius $\sqrt{\frac{d}{d-1}}$, and the smallest outer sphere has radius $\sqrt{d(d-1)}$.
- ▶ Points lying on the outer sphere are the pure state. So the structure on the outer sphere is only 2d 2 dimensional.
- Point opposite to the pure state will be on the inner sphere.

ヘロン 人間 とくほど くほどう

Introduction 3-D Quantum System 3-Section 4 Section

3-D Quantum System

►

 3 Dimensional density matrices form an eight dimensional structure.

$$\rho = \frac{1}{3} \left[I + \frac{1}{\sqrt{2}} \sum r_i \lambda_i \right]$$

・ロン ・回と ・ヨン・

General Properties 3-D Quantum System 3-Section 4-Section

3-D Quantum System

- 3 Dimensional density matrices form an eight dimensional structure.
- There is a 7 dimensional surface of this geometry.

$$\rho = \frac{1}{3} \left[I + \frac{1}{\sqrt{2}} \sum r_i \lambda_i \right]$$

イロン 不同と 不同と 不同と

General Properties 3-D Quantum System 3-Section 4-Section

3-D Quantum System

- 3 Dimensional density matrices form an eight dimensional structure.
- There is a 7 dimensional surface of this geometry.
- Four dimensional part of the surface is occupied by pure states.

$$\rho = \frac{1}{3} \left[I + \frac{1}{\sqrt{2}} \sum r_i \lambda_i \right]$$

イロト イポト イヨト イヨト

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section
	4-Section

λ -Matrices

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Now the problem is how to **visualize** the structure of quantum state space.

・ロン ・回と ・ヨン・

Introdu 3-D S	uction ystem	General Properties 3-D Quantum System 3-Section 4-Section

Gen Kimura and A. Kossakowski, Open Sys. Information Dyn. 12, 207 (2005)

(本間) (本語) (本語)

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section	
----------------------------	--	--

Results

- People have studied 2-dimensional standard cross-sections.
- Higher dimensional Standard cross-sections has great importance as each three dimensional cross-section has infinitely many 2-sections.

Introduction 3-D Quantum System 3-D System 3-Section 4-Section	Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section
--	----------------------------	--

Results

- People have studied 2-dimensional standard cross-sections.
- Higher dimensional Standard cross-sections has great importance as each three dimensional cross-section has infinitely many 2-sections.
- In case of three dimensional quantum system, studying 4-section will be enough as 5-sections are the complimentary to 3-sections and so on.

Introduction 3-D 3-D System 3-Se

General Properties 3-D Quantum System 3-Section 4-Section

Standard 2-section

	General Properties
Introduction	3-D Quantum System
3-D System	3-Section
	4-Section

Circle	Triangle	Parabola	Ellipse
<i>area</i> = 6.28	<i>area</i> = 7.8	<i>area</i> = 7.5	<i>area</i> = 8.6
12, 13, 23	18	34	48
14, 15, 16	28	35	58
17, 24, 25	38	36	68
26, 27, 45		37	78
46, 47, 56			
57,67			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 3-Section has its own importance as each 3-Section include infinitely many 2-Section.

・ロン ・回と ・ヨン ・ヨン

- 3-Section has its own importance as each 3-Section include infinitely many 2-Section.
- There are 56 standard 3-Sections.

・ロン ・回と ・ヨン ・ヨン

- 3-Section has its own importance as each 3-Section include infinitely many 2-Section.
- There are 56 standard 3-Sections.
- There are only 7 different standard 3-Sections.

イロン イヨン イヨン ・

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section
	4-Section

Sphere	Ellipsoid	cone	OT	RS1	RS2	Paraboloid
123, 245	458	128	146	134	148	345
124,246	468	138	157	135	158	367
125, 257	478	238	247	136	168	
126, 267	568	348	256	137	178	
127,456	578	358	346	234	248	
145,457	678	368	347	235	258	
147,467		378	356	236	268	
156, 567			357	237	278	
167						

★ロ→ ★御→ ★注→ ★注→ 「注

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section	
----------------------------	---	--

Obese Tetrahedron

$$x^2 + y^2 + z^2 - 2 - \sqrt{2}xyz = 0$$

◆□> ◆圖> ◆国> ◆国> -

æ

General Properties 3-D Quantum System 3-D System 4-Section

RS1

$$(x^2 + y^2 + z^2 - 2) - \frac{zy^2}{\sqrt{2}} = 0$$

æ

Sandeep K Goyal Structure of Quantum State Space

4-Section	Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section	
-----------	----------------------------	--	--

RS2

$$\sqrt{2}(x^2 + y^2 + z^2 - 2) - \frac{z}{\sqrt{3}}(2x^2 - y^2 - \frac{2z^2}{3}) = 0$$

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section

► There are seventy standard 4-sections.

イロト イポト イヨト イヨト

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section

- ► There are seventy standard 4-sections.
- ▶ There are twelve family of unitarily inequivalent 4-sections.

A (10) > (10)

3

< ∃ >

Introduction 3-D System	General Properties 3-D Quantum System 3-Section	
3-D System	3-Section	
	4-Section	

sphere	cone	ellipsoid	ОТ	<i>RS</i> 11	<i>RS</i> 12	<i>RS</i> 21	<i>RS</i> 22	D1
1245	1238	4568	3456	3126	3167	8125	8245	3146
1267	4538	4678	3457	3124	3145	8127	8267	3157
4567	6738	5678	3467	3125	3245	8126	8167	3256
		4578	3567	3127	3267	8124	8145	3247

UN1	UN1	UN1	UN1	UN2	UN2	UN2	UN2	D2
1246	1456	1456	3257	8146	3814	3824	3846	8257
1247	1457	1567	3246	8157	3815	3825	3856	8246
1256	2456	2467	3147	8256	3816	3826	3847	8147
1257	2457	2567	3156	8247	3817	3827	3857	8156

General Properties Introduction 3-D Quantum System 3-D System 3-Section 4-Section
--

$$\begin{aligned} \mathbf{Cone} : \qquad \left(\frac{r_8}{\sqrt{3}} + \sqrt{2}\right)^2 - r_3^2 - r_1^2 - r_2^2 &= 0 \\ \\ \mathbf{Ellipsoid} : \qquad \frac{2}{3} \left(r_8 + \frac{\sqrt{3}}{2\sqrt{2}}\right)^2 + r_4^2 + r_5^2 + r_6^2 &= \frac{9}{4} \\ \\ \mathbf{OT} : \qquad \sqrt{2}[2 - r_3^2 - r_7^2 - (r_4^2 + r_5^2)] - r_3[r_7^2 - (r_4^2 + r_5^2)] &= 0 \\ \\ \mathbf{RS11} : \qquad \sqrt{2}[2 - r_3^2 - r_1^2 - r_2^2 - r_4^2] + r_3r_4^2 &= 0 \\ \\ \mathbf{RS12} : \qquad \sqrt{2}[2 - r_1^2 - r_3^2 - r_4^4 - r_5^2] + r_3[r_4^2 + r_5^2] &= 0 \\ \\ \\ \mathbf{RS21} : \qquad \sqrt{2}[2 - r_8^2 - (r_1^2 + r_2^2) - r_4^2] - \frac{2r_8}{\sqrt{3}} \left[\frac{r_8^2}{3} - (r_1^2 + r_2^2) - \frac{r_4^2}{2}\right] &= 0 \\ \\ \\ \\ \\ \mathbf{RS22} : \qquad \sqrt{2}[2 - r_8^2 - (r_4^2 + r_5^2) - r_1^2] - \frac{2r_8}{\sqrt{3}} \left[\frac{r_8^2}{3} - r_1^2 - \frac{r_4^2 + r_5^2}{2}\right] &= 0 \end{aligned}$$

★ロ→ ★御→ ★注→ ★注→ 「注

Introduction 3-D System	General Properties 3-D Quantum System 3-Section 4-Section
----------------------------	--

UN1:
$$\sqrt{2}[2 - r_1^2 - r_2^2 - r_4^2 - r_6^2] + 2r_1r_4r_6 = 0$$

UN2: $\sqrt{2}[2 - r_3^2 - r_1^2 - r_4^2 - r_8^2] - \frac{2r_8}{\sqrt{3}} \left[\frac{r_8^2}{3} - r_1^2 - r_3^2 - \frac{r_4^2}{2} \right] = 0$
D1: $\sqrt{2}[2 - r_3^2 - r_6^2 - r_1^2 - r_4^2] - r_3[r_6^2 - r_4^2] + 2r_1r_4r_6 = 0$
D2: $\sqrt{2}[2 - r_8^2 - r_2^2 - r_5^2 - r_7^2] - \frac{2r_8}{\sqrt{3}} \left[\frac{r_8^2}{3} - \frac{(r_7^2 + r_5^2)}{2} - r_2^2 \right] = 0$

★ロ→ ★御→ ★注→ ★注→ 「注

General Properties 3-D Quantum System 3-D System 4-Section

Your proposal is innovative. Unfortunately, we won't be able to use it because we've never tried something like that before.

イロト イポト イヨト イヨト

"Your proposal is innovative. Unfortunately, we won't be able to use it because we've never tried something like that before."