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There are at least two Benford laws!

One states that … 

…

Passion is inversely proportional to the 

amount of real information available.

We will discuss here the other one!
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1881

• Observed that the 

earlier pages of log 

tables are more worn 

out.out.

• Proposed that in any 

list of data from any 

source, the first digit 

will be more often 1. 

Simon Newcomb



Newcomb’s conjecture

The logarithms of numbers are equally The logarithms of numbers are equally 

distributed, instead of the numbers 

themselves.
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Newcomb’s conjecture

A number x starts with digit 1 if 1 <= x < 2

with digit 2 if 2 <= x < 3  

log1 <= logx < log2

log2 <= logx < log3If logs are equally distributed, it is more likely for a log to fall herewith digit 2 if 2 <= x < 3  

…

with digit 9 if 9 <= x < 10.

log2 <= logx < log3

log9 <= logx < log10

0.301

0.046

If logs are equally distributed, it is more likely for a log to fall here

than here!
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If logs are equally distributed,                 

prob that x has D as 1st significant digit is

log(1+1/D) 

c) Have shown the law holds if logs are equally distributed.

But only for single-digit numbers.

Can be shown for higher-digit numbers also.



Newcomb’s conjecture

If logs are equally distributed,                 

prob that x has D as 1st significant digit is

log(1+1/D) 

d) total distance = log10 – log1 = 1 = total probability.

So, normalization is not needed.
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Newcomb’s conjecture

If logs are equally distributed,                 

prob that x has D as 1st significant digit is

P(D)=log(1+1/D) 

Moral:

Next time you spill tea on a library book, 

don’t feel guilty –

your act may just inspire 

scientists of future generations. 



That was in 1881.



There was apparent silence on this front

for the next half a century …
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conjecture had gone 
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global monthly-averaged temp anomalies

from 1880 to 2008
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• Frank Benford

• Checked it for a wide 

variety of data sets.

• The law is known after 

him, as Newcomb’s 

conjecture had gone 

unnoticed.

and what not …
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Total # of pages of the books on 

the highest shelf of our flat
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prediction

1 .3704 .3010

2 .1852 .1761

3 .1852 .12493 .1852 .1249

4 .0370 .0969

5 .0185 .0792

6 .0370 .0669

7 .0370 .0580

8 0 .0512

9 .1296 .0458

Violation parameter = 5.7883

Sample size = 54



1995-1998

• Some mathematical insights into the law 

have been obtained due to T.P. Hill.
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Earthquake detection method

• Characteristic of seismograph pointer.

• Collect data for a certain time window.• Collect data for a certain time window.

• Calculate Benford violation parameter.
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• Characteristic of seismograph pointer.

• Collect data for a certain time window.

• Calculate Benford violation parameter.

Benford violation

• Calculate Benford violation parameter.

• Shift time window by a small value.

• Calculate violation parameter again.

• Plot violation vs. midpoint of window.

Time
Earthquake!
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S J [(1 + g) S S + (1 - g) S S  ]– a S
x yyx z

i i ii+1 i+1

S are half of Pauli matrices.
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Quantum XY spin model

S J [(1 + g) S S + (1 - g) S S  ]– a S
x yyx z

i i ii+1 i+1

Quantum phase transition at h=1.

For g = 1: Transverse Ising Model.



There r many ways to see the QPT …
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We now try to see whether this transition can be 

detected by using the Benford law.
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Violations and trivial violations

CESU promises to supply 220V.



Violations and trivial violations

Of course, there are some fluctuations.



Violations and trivial violations

The fluctuation is + or – 10V.        



Violations and trivial violations
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Violations and trivial violations

An obvious but trivial violation!      



Violations and trivial violations

A way out is to shift and scale the data

to the range (0,1).



Violations and trivial violations

For any random variable X,

we find min and max.



Violations and trivial violations

Shift and scale X to obtain Y.

Y = (X – min)/(max-min).

Ignore the 0 and 1 obtained.



Violations and trivial violations

Thereafter, check status of Benford law

for the random variable Y.



Violations and trivial violations

We call Y as “Benford X”.
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Benford law detects QPT in TIM
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shifting field window.
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Benford law detects QPT in TIM

We replace the shifting time window by a 

shifting field window.

Benford transverse magnetization
Violation parameter for

as system tries to change

equilibriated value

of violation parameter.
Transverse movement 

a/J

of violation parameter.
Transverse movement 

between equilibriated plateaus of different heights

of violation parameter of a system characteristic

would indicate a transition.



Frequency distribution of 1st digits

Violation parameter is a characteristic of the 

frequency distribution of the 1st digits.frequency distribution of the 1st digits.

The distribution itself hides further info.



Frequency distribution of 1st digits

a/J œ (0.82,0.9) a/J œ (1.1,1.18)

N = 1998



Benford law detects QPT in TIM

• Have also checked by using 

a. nearest-neighbor classical correlationsa. nearest-neighbor classical correlations

b. single-site von Neumann entropy

c. nearest-neighbor entanglement



Finite systems

Violation parameter for

Benford transverse 

magnetization

vs. a/J
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Finite systems

25 100

10

N = 1498, 1998, 2998



In summary …

• Benford law is interesting.

• Benford law can detect QPT.• Benford law can detect QPT.

• The method of detection is similar to that of 

detecting earthquakes.
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