



# Quantum correlations with no causal order

International Workshop Relativistic Quantum Information

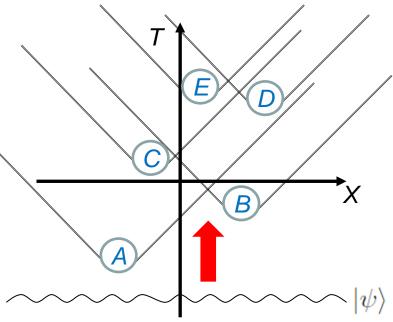
Ognyan Oreshkov, Fabio Costa, Časlav Brukner

#### arXiv:1105.4464

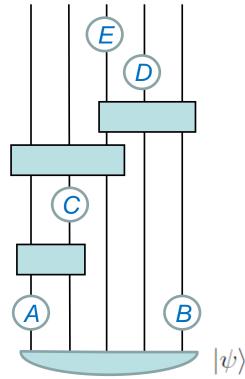




#### Measurements in space-time



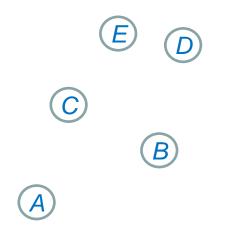
- Fix positions wrt coordinates.
- Define initial state.
- Follow Eqs of motion.
- Include causal influences.
- Find joint probabilities
  - P(A, B, C, D, E)
- Formalization as Circuit model possible



Space-time is a pre-existing entity

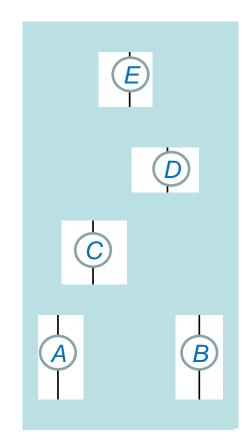
Is (quantum) physics possible without space-time?

#### Measurements in space-time



Find joint probabilities *P(A, B, C, D, E)* 

Formalization as Circuit model not possible (?)



Is (quantum) physics possible without space-time?

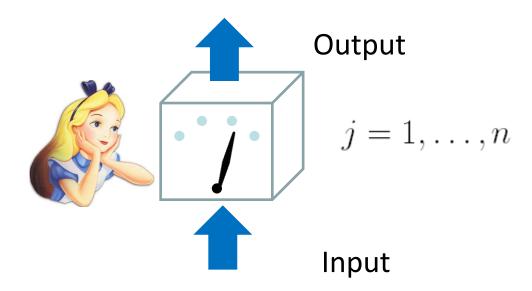
# Questions

- Is a definite causal structure a necessary pre-assumption or does it follow from more primitive concepts?
- Is it possible to define operationally well-defined theories with no time or causal structure?
- What happens if one removes time and causal structure from quantum mechanics? What new phenomenology is implied?

# Outline

- "Locality" without space-time
- Most general bipartite correlations with causal structure
- Most general bipartite correlations with no causal structure
- Causal game → "non-causal" correlations allow to score higher than in any causal scenario
- Conclusions

# "Local laboratory"



The system exits the lab

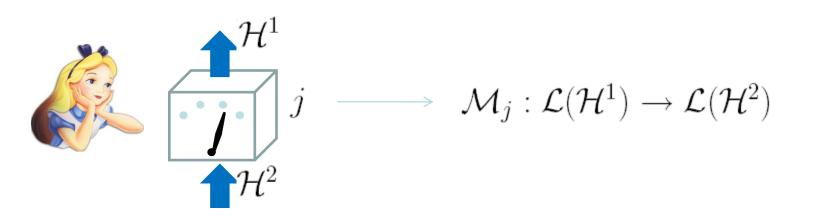
An operation is performed - one out of a set of possible events is recorded

A system enters the lab

This is the **only** way how the lab interacts with the "outside world".

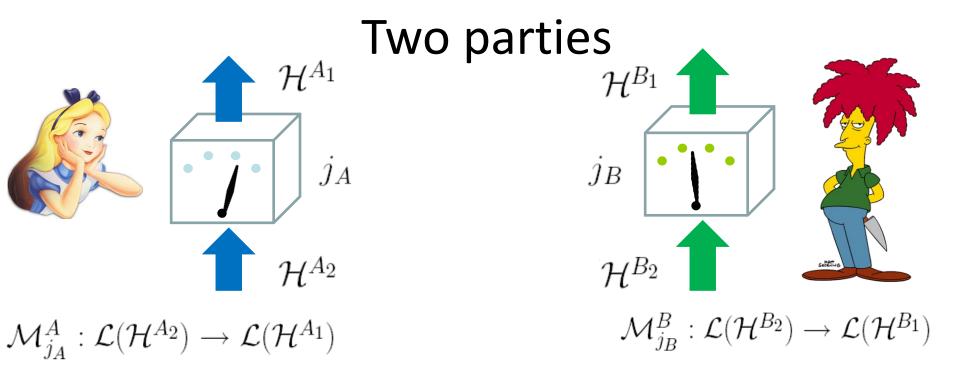
# Local quantum laboratory

Local operations are described by quantum mechanics



Selective Measurement (non-deterministic operations) = completely positive (CP) trace non increasing maps

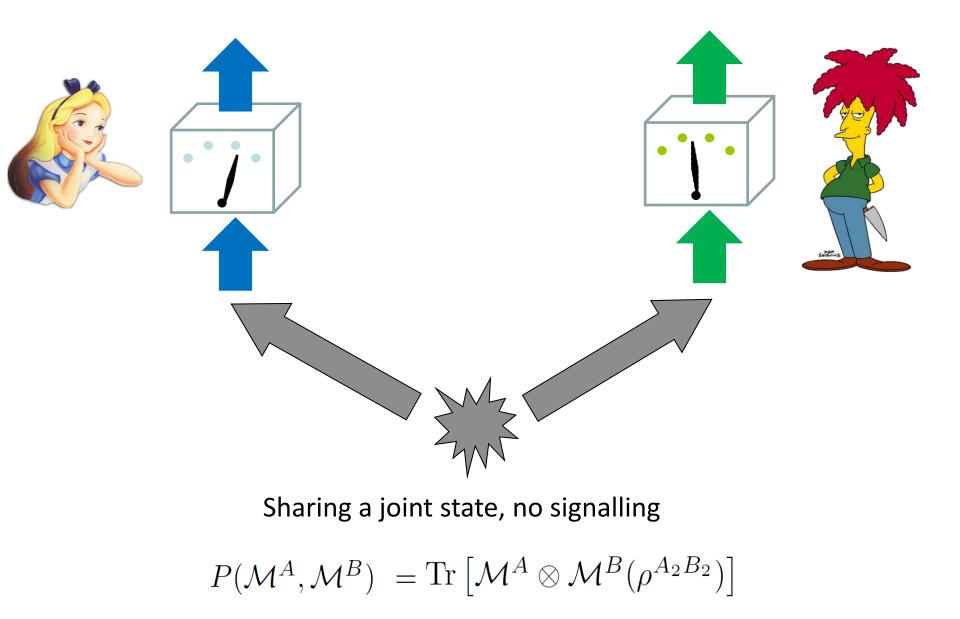
Non-selective measurement (deterministic operation) = set of CP maps  $\{\mathcal{M}_j\}_{j\in J}$  such that  $\sum_{j\in J} \mathcal{M}_j$  is CPTP (trace preserving)



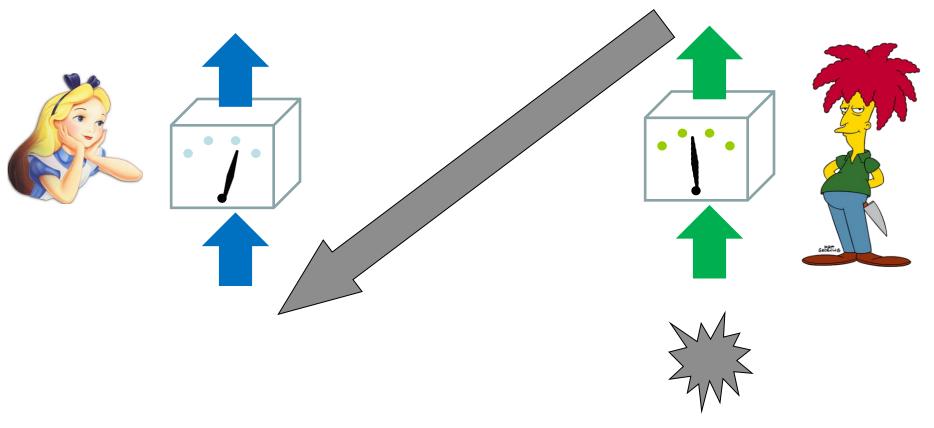
# Question: what is the most general bipartite probability distribution?

$$P(\mathcal{M}_{j_A}^A, \mathcal{N}_{j_B}^B)$$

## **Bipartite state**



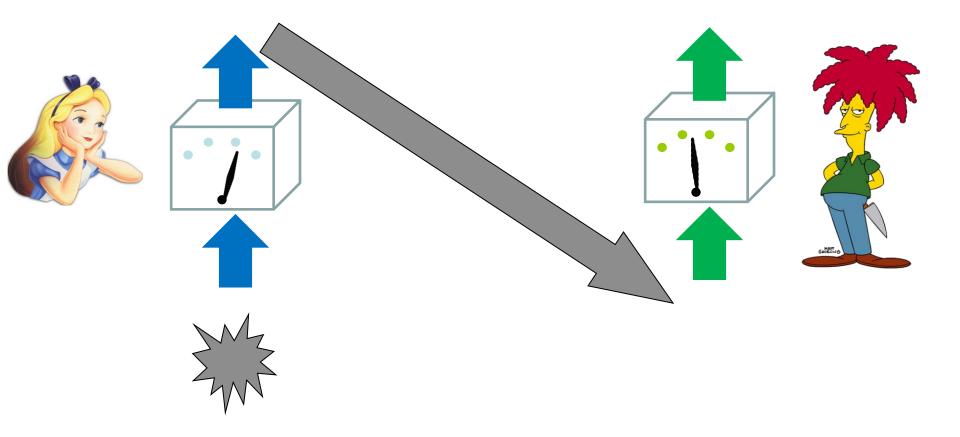
## Channel $B \rightarrow A$



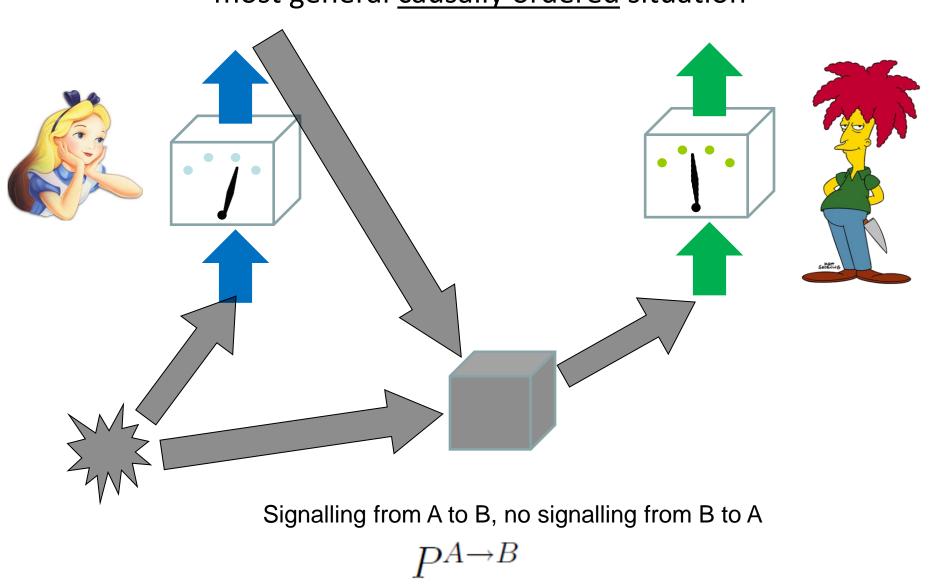
Sending a state from B to A, possibility of signalling

$$P(\mathcal{M}^A, \mathcal{M}^B) = \operatorname{Tr}\left[\mathcal{M}^A \circ \mathcal{E} \circ \mathcal{M}^B\left(\rho_0^{B_2}\right)\right]$$

# Channel A $\rightarrow$ B



#### Channel with memory – most general <u>causally ordered</u> situation



# More generally: allow classical ignorance of the causal order



$$qP^{A \to B} + (1 - q)P^{B \to A}$$
$$0 \le q \le 1$$



# Classical mixture of channels with memory

If no causal order is assumed, are more general situations possible?

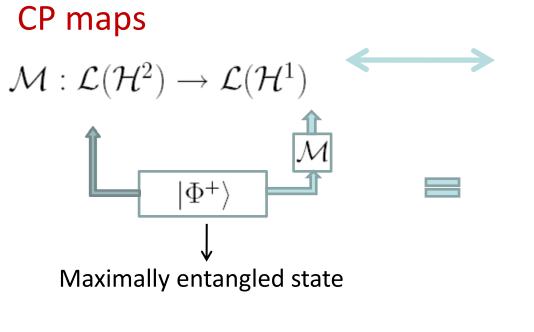
# Assumption

#### Probabilities are **bilinear** functions of the CP maps

$$P(\mathcal{M}^A, \mathcal{M}^B) = \omega(\mathcal{M}^A, \mathcal{M}^B)$$

Necessary if algebra of quantum operations holds in each laboratory

#### Choi-Jamiołkowski isomorphism



Bipartite positive operators  $\rho^{12}_{\mathcal{M}} \in \mathcal{L}(\mathcal{H}^1) \otimes \mathcal{L}(\mathcal{H}^2)$ 



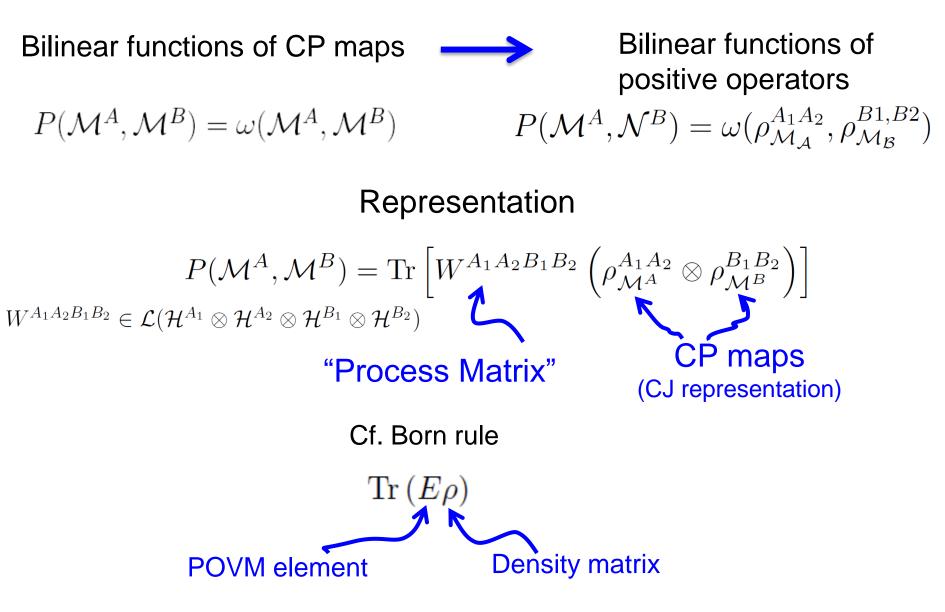
$$\begin{aligned} \rho_{\mathcal{M}}^{12} &= \mathcal{M} \otimes \mathcal{I}(|\Phi^+\rangle \langle \Phi^+|) \\ |\Phi^+\rangle &= \sum_i |i\rangle |i\rangle \\ |i\rangle &\in \mathcal{H}^1 \end{aligned}$$

#### Examples

Projection on a pure state  $|\psi\rangle$  $ho^{12} = |\psi\rangle\langle\psi|^1\otimes|\psi\rangle\langle\psi|^2$  Preparation of a new state  $\sigma$ 

$$\rho^{12}=\sigma^1\otimes 1\!\!1^2$$

# **Bipartite probabilities**



# **Bipartite probabilities**

$$P(\mathcal{M}^{A}, \mathcal{M}^{B}) = \operatorname{Tr} \left[ W^{A_{1}A_{2}B_{1}B_{2}} \left( \rho_{\mathcal{M}^{A}}^{A_{1}A_{2}} \otimes \rho_{\mathcal{M}^{B}}^{B_{1}B_{2}} \right) \right]$$
$$W^{A_{1}A_{2}B_{1}B_{2}} \in \mathcal{L}(\mathcal{H}^{A_{1}} \otimes \mathcal{H}^{A_{2}} \otimes \mathcal{H}^{B_{1}} \otimes \mathcal{H}^{B_{2}})$$

Conditions on process matrices

**1. Probability positive:**  $W^{A_1A_2B_1B_2} \ge 0$ 

Assume that parties can share ancillary entangled states

2. Probability 1 on all CPTP maps:  

$$\operatorname{Tr} \left[ W^{A_1 A_2 B_1 B_2} \left( \rho_{\mathcal{E}^A}^{A_1 A_2} \rho_{\mathcal{E}^B}^{B_1 B_2} \right) \right] = 1$$

$$\forall \rho^{A_1 A_2}, \rho^{B_1 B_2} > 0, \ \operatorname{Tr}_1 \rho^{A_1 A_2} = \mathbb{1}^{A_2}, \ \operatorname{Tr}_1 \rho^{B_1 B_2} = \mathbb{1}^{B_2}$$

G. Chiribella, G. M. D'Ariano, and P. Perinotti, Phys. Rev. A 81, 062348 (2010).

Additional constraints imply causal order.

#### Formalism contains all causally ordered situations

$$P(\mathcal{M}^A, \mathcal{M}^B) = \operatorname{Tr}\left[W^{A_1 A_2 B_1 B_2}\left(\rho_{\mathcal{M}^A}^{A_1 A_2} \otimes \rho_{\mathcal{M}^B}^{B_1 B_2}\right)\right]$$

| Bipartite state     | $W^{A_1 A_2 B_1 B_2} = \mathbb{1}^{A_1 B_1} \otimes \left(\rho^{A_2 B_2}\right)^T$                      |
|---------------------|---------------------------------------------------------------------------------------------------------|
| Channel             | $W^{A_1A_2B_1B_2} = \mathbb{1}^{A_1} \otimes \left(\rho_{\mathcal{E}}^{A_2B_1}\right)^T \rho_0^{B_2^T}$ |
| Channel with memory | $W^{A_1A_2B_1B_2} = \mathbb{1}^{A_1} \otimes W^{A_2B_1B_2}$                                             |

# Most general causally separable situation: probabilistic mixture of ordered ones.

Probabilistic mixture of channels with memory in different orders

$$W^{A_1A_2B_1B_2} = qW^{A \to B} + (1-q)W^{B \to A}$$
  
Signalling only  
from A to B Signalling only  
from B to A

Are all possible processes always causality separable?

# A causal game



Each part **first** estimates the bit given to the other and **then** receives a bit that the other has to read

Depending on the value of an additional bit b', Bob tries either to **read a** or to **send b** 

(best estimate of b)

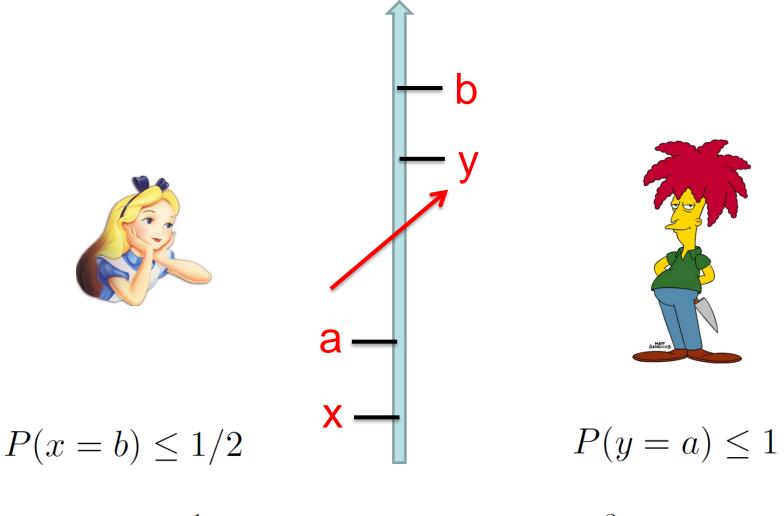
Х

(best estimate of a)

They try to maximize the quantity  

$$p_{succ} := \frac{1}{2} \left[ P(x = b | b' = 0) + P(y = a | b' = 1) \right]$$

## Causally ordered situation

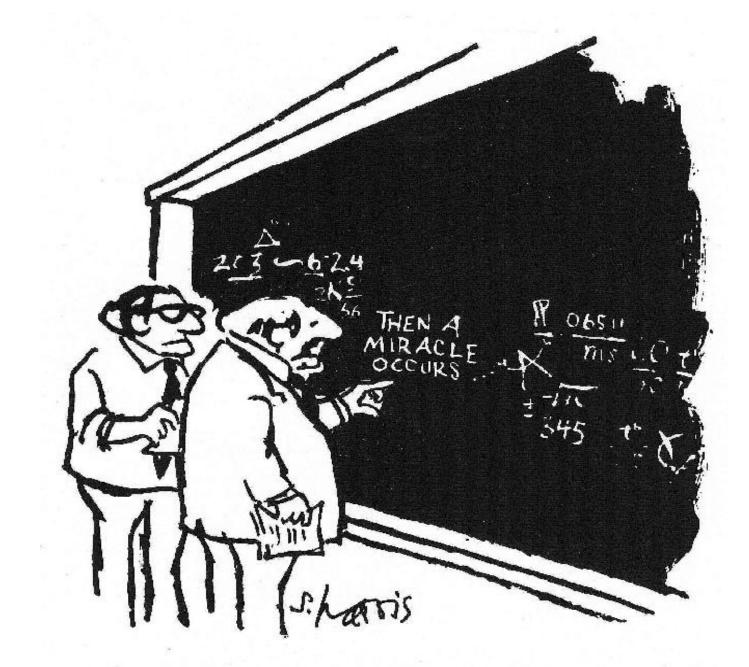


 $\frac{1}{2} \left[ P(x=b) + P(y=a) \right] \le \frac{3}{4}$ 

#### A causally non-separable example

$$W^{A_1 A_2 B_1 B_2} = \frac{1}{4} \left[ \mathbbm{1} + \frac{1}{\sqrt{2}} \left( \sigma_z^{A_1} \sigma_z^{B_2} + \sigma_z^{A_2} \sigma_z^{B_1} \sigma_x^{B_2} \right) \right]$$

#### Is a valid process matrix

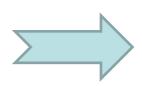


"I think you should be more explicit here in step two."

# A causally non-separable example

$$W^{A_1A_2B_1B_2} = \frac{1}{4} \left[ \mathbb{1} + \frac{1}{\sqrt{2}} \left( \sigma_z^{A_1} \sigma_z^{B_2} + \sigma_z^{A_2} \sigma_z^{B_1} \sigma_x^{B_2} \right) \right]$$

### The probability of success is $\frac{1}{2} [P(y = a | b' = 1) + P(x = b | b' = 0)] = \frac{2 + \sqrt{2}}{4} > \frac{3}{4}$



This example cannot be realized as a probabilistic mixture of causally ordered situations!

# Sketch of the strategy

Alice always encodes **a** Bob always receives  $\frac{1}{2} \left[ 1 + (-1)^a \frac{1}{\sqrt{2}} \sigma_z \right]$ in the z basis

If Bob wants to read (b'=1) he measures in the z basis

If Bob wants to send (b'=0)

He measures in the x basis, encodes **b** in the z basis

Alice receives  $\frac{1}{2} \left[ \mathbb{1} + (-1)^b \frac{1}{\sqrt{2}} \sigma_z \right]$ 

By measuring in the z basis, Alice can make a good guess of b

# Conclusions

- [Not shown]: Classical correlations are always causally separable
- Unified framework for both signalling ("time-like") and nonsignalling ("space-like") quantum correlations with no prior assumption of time or causal structure
- Situations where a causal ordering between laboratory operations is not definite → Suggests that causal ordering might not be a necessary element of quantum theory
- What one needs to do in the lab to realize the "processes"? New resource for quantum information processing?

# Thank you for your attention!

# **Questions?**



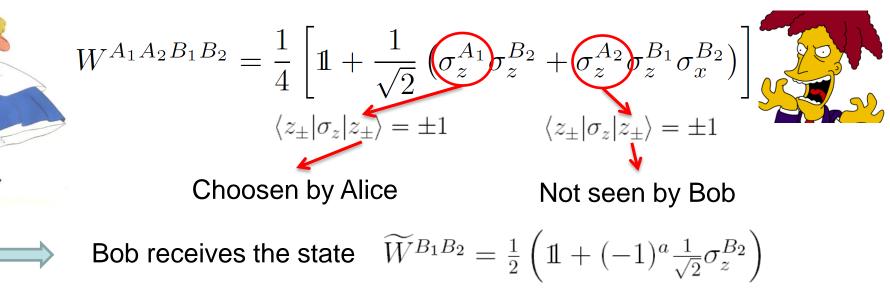
OUNDATIONAL QUESTIONS INSTITUTE

# A causally non-separable example

Note: when Alice detects in the basis  $\{|\psi_j\rangle\}$  and reprepares  $|\psi'\rangle$  Bob effectively "sees"

$$\widetilde{W}^{B_1B_2} = \sum_j \operatorname{Tr}_{A_1A_2} \left[ W^{A_1A_2B_1B_2} \left( |\psi'\rangle \langle \psi'|^{A_1} \otimes |\psi_j\rangle \langle \psi_j|^{A_2} \right) \right]$$

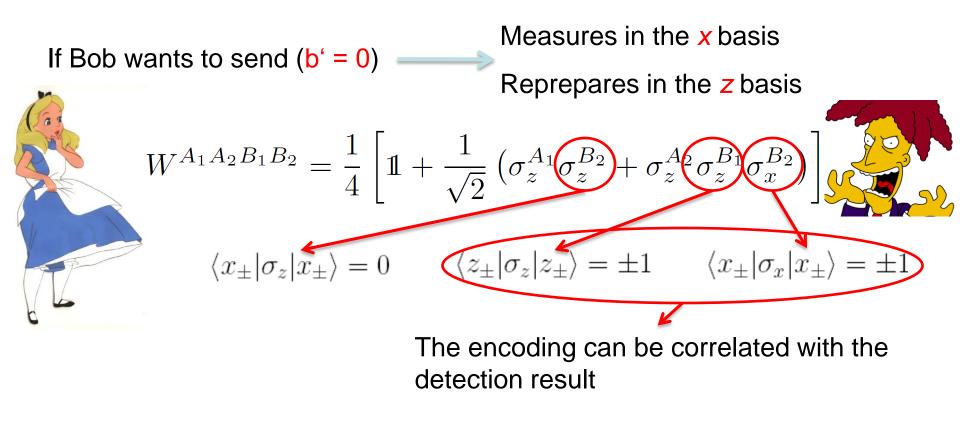
Alice always measures in the *z* basis and reprepares in the *z* basis



If Bob wants to read (b' = 1) he measures in the *z* basis and achieves

$$P(y = a|b' = 1) = \frac{2+\sqrt{2}}{4}$$

# A causally non-separable example



Alice receives the state 
$$\widetilde{W}^{A_1A_2} = \frac{1}{2} \left( \mathbb{1} + (-1)^b \frac{1}{\sqrt{2}} \sigma_z^{A_2} \right)$$

She can read Bob's sent bit with probability

$$P(x = b|b' = 0) = \frac{2+\sqrt{2}}{4}$$

# Terms appearing in process matrix

$$W^{A_1A_2B_1B_2} = \sum_{\mu_1,\dots,\mu_4} a_{\mu_1\dots\mu_4} \sigma_{\mu_1}^{A_1} \otimes \dots \otimes \sigma_{\mu_4}^{B_2}$$
  
$$\sigma_i^{A_1} \otimes \mathbb{1}^{rest} \qquad \text{type } A_1$$
  
$$\sigma_i^{A_1} \otimes \sigma_j^{A_2} \otimes \mathbb{1}^{rest} \qquad \text{type } A_1A_2$$

1. Probability positive & 2. Probability 1on all CPTP maps



|        | A <sub>2</sub> , B <sub>2</sub> , A <sub>2</sub> B <sub>2</sub> | $A_1B_2$ | $A_1 A_2 B_2$ |
|--------|-----------------------------------------------------------------|----------|---------------|
|        |                                                                 | $A_2B_1$ | $A_2B_1B_2$   |
| Causal | States                                                          | Channels | Channels with |
| order  | 514165                                                          | channels | memory        |
|        |                                                                 |          | $A_1$         |