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They are not allowed
to communicate
after the game starts.

{ Answers can be 1 or —1}




Winning condition

There answers have to satisfy
V(a)) V(bl) = +1
V@) Vib, =+1
V@, Vib) =+1
V@, vib, =-1

%

Obviously if they can win this game
without communication, they can win it
even if separated by space like distance.




Alice and Bob can not win this game by any strategy which decides the
answers for both locally.

Question Alices’s answers Question Bob’s answers
" T : - - . :
a 1 \ Alice ( a 1.) bl ":Boh ( bl )
4 .-'r - . T i \
a, Vatiee (25) bl Via (b 2)

Now the answers have to satisfy all the winning conditions as pair

of question in each turn are random.

i "y

Viiee () Vi (b)) = +1
Viie (2) Via(b,) = +1
Viiee (23) Via(by)
Viiee (2,) Via (b)) -1

I
_l_
[—
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Existence of deterministic non-local correlation helping win this
game would imply signaling (violation of special relativity).

Possible correlation 1

rr(ﬂl) r(hl)w

+1 +1

r(al) r(bz)

+1 +1
r(a,) r(bl)
+1 +1

r(a,) r(bz)

| +1 -1

Hl/“z

bl/bl

-,

Possible correlation ?2

-~

r(a,) r(b 1)1

-1 -1

r(al) r(bz)

-1 -1
r(a,) r(b,)
+1 -1




correlation 1 l1(}]1) r(bz)
+1 +1
+1 -1
ﬂllﬂl
G
India vs Pakisthan \L
Cricket match
Inputin Box 1
India won a
India lost 4

can be used for sending
real information.

Output in Box 2

+1




Possible correlation which does not imply signalling

r(a,) r'(b;) Probability r(a) l'(bz) Probability
1 1
1
-1 -1 5
2 1 1 3
r(a,) r(b,) Probability r(a,) t(by) Probability
1
+ +1 % -1 +1 3
_ I 5
1 -1 2 +1 -1 2

There is no physical theory which
provides this kind of correlation.




A three party game

a, or a, b,or b,
The are not allowed to
communicate after the b
game starts. Bob
V(ai)(= +1) V(bj) (==+1)
CLorc,

Ve (=£1)
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Pattern of questions

Alice Bob Charlie

a, b, ¢,
a, b, c,
a, b, c,
a b, ¢,

Winning condition
Product of the answers = +1
Product of the answers = +1

Product of the answers = +1

Product of the answer = -1

Is it possible to win this game in the classcal world?
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Let there is a classical strategy:

VAIice( 31) VBob( b 1) VCharI( C] )

Vaice! a,) Veon(h,) Venan€)

VAIice(al) VBob(hz) VCharI(CZ) = +1

Vaiice(23) Vaou(b 2 Venan(€5)
v

Alice(az) VBob(hz) VCharI(C]) = +1

+1

VAIice( al) Veon(b 1) VCharl(cl)

Il
i
(S

Impossible!

12/31/11




— Strategy to win the three party game —

Alice @ AP, Bob
L w‘\“®

12/31/11

Charl
Question Measurement Outcome Answer
lacl 6,{ +1 (up) +1
) -1 (down) -1
5, €, 61_ _(P)'_ +1
-1 ((lﬂ“‘ ll) -1



Kochen-Specker Game

The local but contextual model can not reproduce quantum correlation.

LZ/J1/ 11

Rename the 18 vectors

S; = {901.0203,0) = (5,i=1,234)
5, = {91, 905,96 90;3 = {ngi =1,2,3,4}
S; = {98018.0:.9s) = (55i=123,4)
Se = {98 @10.07.9011) = S4i=12,3,4)
S5 = {92,905 912,913} = (s5.1=1,2,3,4)

S6 = (P18 P10, P13, P14} {Se1=1,2,3,4)

(si,t=1,23,4}

n

S7 = {@P1s, P16 Pa Po}

Sg = (P15, 017. 06 P11} [Sf;,i =1,2,3,4}

So = {P16: P17, P12, P14} = {Sg.i: 1,2,3,4}




Consider a game;

They are not allowed
to communicate
after the game starts.

g %
Sy ©)] &
©) r
W [T
s 1 52 3\ P —
\Spde ) (5% 5% s st
N5 ¥
Alice has to assign 1 to one of the vector Bob has to assign 1 or 0 to his single
and 0 to other three vectors. vector.

winning condition:

Vzllice(si) == Vﬂob(si)

in each turn.
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Values assigned to the 18 vectors can satisfy those 9 equations
when value assignment is contextual at least for one vector.

But when this particular vector is given to Bob, he does not know
what value to be assigned to win this game as he does not know

which set it belongs to.

So without classical communication, they can not win this game.
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@ >4 = % l@1>4l101>8 + |@2=4 @255 + 19354 |93>p + |@4>, ey

1
lo* == \/_EZ”:’A |i >p

Us® Uglo* >= |t >

For real vectors: Uy =y,

1 . .
@ >4 = 2 ZlS; >, @ |S; >
i
1 i i
l@ >4p= 3 lek >4 ® IS, > k=1,2,3,4,56,7,89

Bob is given the vector ST .
He measures in a basis having a vector |$1">.

If he collapses on |S}" >, he assigns;

let S, be the set given to Alice.
Alice measures in the basis {|S% >}.
Let the state collapses to ]Sf, >

v(si) = L, fori=] v(s7) =1
=0,fori #j = 0 ,otherwise.

Due to correlation of the state;

Valice (S;n ) = Vgob (S:P )
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Magic square game

A 3 x 3 matrix

a;qp a2 aq3
az; a,, a,,| With a;=0o0r1
a3y 4z Qs
- For column:

For row:
a;y + g2 + a3 = even Such matrix a;; + ay + az; = odd
does not
a1 + Q2 4+ a3 = even A a;; + az; + az; = odd
exist
a31 + az; + az3; = even a3 4+ Qzz 4+ azz = odd
- The game -

Alice is given a row and Bob is given a column. They are asked to give the entries.

The sum of Alice’s entries should be even.

The sum of Bob’s entries should be odd.

Winning condition:
They should assignh same value to the common element in each turn.
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A deterministic classical strategy can not exist.

A deterministic classical strategy would have to assign definite binary values

to each nine entries of the magic square which is impossible.

Quantum winning strategy

- 1
Y~ >4p= 'ﬁ[ml >ap— |10 >4p]
) R — @8
Alice X Bob
Y~ >cp= \/_5“01 >cp— |10 >¢p]
g —— e e ——@p

1P>acep = W™>5 @ [P >¢p
Write the state in the AC:BD cut.

|¢>AC139 = [lUO >AC |11 >BD = |01 >AC i10 >pp + |10 ZAc |01 >BD + |11 >Ac IUO >BD]

N =
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Alice: Row Unitary operation Bob:

Column  Unitary operation
IR EY & =§ 4 3
1 Uy,=|0-i 1 0 1 V= [F% &3
5 & 9 % 48 ~§ %
1 0 0 i R 3
o & 4§ <11 1 1]
2 U, = —i 1 -1 i 2 V, = 1 & 1
i -1 1-i g 5
o i 4
Lo i g 5 6 0 %
1-1 1 1 ol
1 —1-1 -1 0 1-1 0]

After the unitary operation Alice and Bob measure their qubits in the basis 00>, |01>, |10>, |11>

If Alice collapses on |a;a;>4¢ If Bob collapses on |b;b,>pp

she outputs he outputs

T
(ap, a3 a1 @ ap) (b1,b2,b;® b, D 1)
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Quantum correlation reduces communication

n bit string x

=
| 7
o

n bit string y

n bit string z
x = (Xq,X2,X3 ... ...Xp), x; €{0,1}

Similarly foryand z

There is a constraint on the inputs:
X - Yi + Z; = 1
for all i.

The task for Alice is to compute the function

f(nylZ) = X1.V1-Z4 £3 X2.¥2.2Z9 % "'+xn'yn'zn
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In classical world, it has been shown that more than 2 bits of communication are necessary.
3 bits of communication is sufficient.

Let n = 3.
If x;.y;.z; =1, then none of them can be zero.

If x;.y;.2z; = 0, then two of them have to be zero. (x;+ y;+ z; =1 foralli.)

T4, TR, T¢c be the no. of zeros for Alice's, Bob's and Charie's input respectively.

Total no. of zeros among all their inputs is even and let it be equalto 2k. 4+ 1rg+ 1 = 2K
k no. of terms in X1.yY1.2¢1 + X5.¥2.22 + -+ X,,. ¥,. Z,, are zero.
f(x,y,z) = (n— k)mod?2
To compute k, Alice has to learn rgand .

Possible values of rgand ¢ are 0,1,2,3 which can be communicated by 2 bits 00, 01, 10, 11.

But one of them (say Charlie) can communicate just one bit (first bit) as Alice can determine 1, as

rg+ rp+ re=even

12/31/11




Quantum protocol needs two bits of communication

They share n copies of the following 3 qubits state.
1
e ~[1001> +[010 > +[001 > —[111>] k=1,2...n

@ If the ith bit x; =1, Alice measures in the {|0 >,|1 >}basis

and notes down the output s/

@ If the ith bit x; =0, Alice first applies Hadamard transform on the
respective qubit and then follows the same procedure.

Bob and Charlie do the same.
Alice computes s, = 354
Bob computes s; = ¥5? and communicate to Alice by 1 bit.

Charlie computes S; = $S{ and communicate to Alice by 1 bit.

Alice outputs S, + Sz + S as f(x,y,2).

12/31/11




The protocol works as follows;
First observe that S + S? + §¢ = x;.y,.z; forall i,
Possible values of x; ¥; z; are (100, 010, 001, 111)

Case:x; y; z; =111
then all possible measurement results (s s? s¢) satisfiy

St + ST+ St = x.y;.2
Case:x; y; z; = 001 HRXHXI |Y >E-ABC = %[|011 > +[101> +]|]000> —|110>]
In this case also measurements results (57 s? s¢) satisfiy
S‘f + S? + .S‘ic = X;.Y; 2;

This thing works in other two cases (x; ¥; z; =100, 010)
due to symmetry of the entangled state.

Sa+ Sp+ Sc= ISH+ ISP+ 5S¢ =S(Si+ ST+ S )=3x.y:.2; = f(x,y,2).
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