On the spectra of the partial transpose

Arul Lakshminarayan

Department of Physics Indian Institute of Technology Madras Chennai, India.

December 22, 2011

Collaborators: **Udaysinh Bhosale (IITM), S. Tomsovic (WSU, Pullman)** In related previous work: J. Bandyopadhyay (NUS), S. Majumdar (Orsay), O. Bohigas (Orsay)

What is the entanglement within subsystems of a pure state?

- Bipartite states well understood; Tripartite states $(N_1 \otimes N_2) \otimes N_3$ less
- Tripartite states $(N_1 \otimes N_2) \otimes N_3$ such that if $4N_1N_2 < N_3$ dominantly PPT, $4N_1N_2 > N3$ dominantly NPT.
- Possible to calculate the average third moment after PT exactly.
- Quantify with average negativity/log-negativity.
- Classic spectra of random matrix theory (Wigner semicircle) arises prominently in the spectrum after PT.
- Applications of Extreme-Value statistics at critical dimensions $4N_1N_2 = N_3$.

Purity and Entropy of bipartite pure states

$$\mathcal{H} = \mathcal{H}_{N_1} \otimes \mathcal{H}_{N_2}, \ N_2 \ge N_1. \ |\psi\rangle = \sum_i \sum_{\alpha} a_{i\alpha} |i\alpha\rangle$$

Random states: choose uniformly from $2N_1N_2 - 1$ dimensional unit sphere.

$${\cal P}(\{a_{ilpha}\}) = C \, \delta\left(\sum_{ilpha} |a_{ilpha}|^2 - 1
ight)$$

Measure: Unitarily invariant Haar measure: Usual geometric hypersurface volume on the unit sphere $S^{2N_1N_2-1}$.

$$\langle \mathrm{Tr}(\rho_A^2) \rangle = \frac{N_1 + N_2}{N_1 N_2 + 1} \approx \frac{1}{N_1} + \frac{1}{N_2}$$

 $\langle E \rangle \approx \log(N_1) - \frac{N_1^2 - 1}{2N_1 N_2 + 2}, \ N_1 \ll N_2$ (Lubkin 1978)

The spectrum of the density matrix

j.p.d.f. ($\beta = 1, 2$ for real, complex states)

$$P_{\beta}(\lambda_1, \cdots, \lambda_{N_1}) = B\delta\left(\sum_{i=1}^{N_1} \lambda_i - 1\right) \prod_{i=1}^{N_1} \lambda_i^{\frac{\beta}{2}(N_2 - N_1 + 1) - 1} \prod_{j < k} |\lambda_j - \lambda_k|^{\beta}.$$

S. Lloyd, H. Pagels, "Complexity as Thermodynamic Depth" Ann. Phys. 1988.

K. Zyczkowski, H-J Sommers, J. Phys. A. 2001. Average Entanglement:

$$\langle E \rangle = -\int d\lambda_1, ..., d\lambda_{N_1} \sum_i \lambda_i \log(\lambda_i) P_2(\lambda_1, ..., \lambda_{N_1}) = -N_1 \int \lambda \log(\lambda) f(\lambda) d\lambda_i$$

 $f(\lambda) = \int d\lambda_2 \cdots \int d\lambda_{N_1} P_2(\lambda, \lambda_2, \cdots, \lambda_{N_1})$

Distribution of eigenvalues of RDM

 $Q = N_2/N_1$. For large N_2 and N_1 and finite Q the distribution of $f(\lambda)$ is that of Marcenko and Pastur.

$$f(\lambda) = rac{Q}{2\pi} rac{\sqrt{(\lambda - \lambda_{min})(\lambda_{max} - \lambda)}}{\lambda}$$
 $\lambda_{max,min} = rac{1}{N_1} (1 \pm \sqrt{Q})^2$

Arul (IIT Madras)

L qubits in a typical pure state. What is the entanglement between two blocks having L_1 and L_2 number of qubits, when $L_1 + L_2 < L$?

- If $L_1 + L_2 < L/2$ then ρ_{12} has a minimum eigenvalue $\sim 1/N$.
- If $L_1 + L_2 = L/2$ the minimum eigenvalue $\sim 1/N^3$. (S. Majumdar, O. Bohigas, AL, JSP, 2009)
- If $L_1 + L_2 > L/2$ there are eigenvalues that are zero; RDM does not have full-rank. ($N = N_1 N_2 = 2^{L_1 + L_2}$).

Partial Transpose: Reminders

• It preserves the first two moments: $tr(\rho_{12}^{T_2}) = tr(\rho_{12}) = 1$ and $tr(\rho_{12}^{T_2})^2 = tr(\rho_{12})^2 < 1$. That is if $spec(\rho_{12}^{T_2}) = \{\mu_i, i = 1, ..., N_1N_2\}$, then $\sum_i \mu_i = 1$ and $\mu_i^2 < 1$.

Measure of bipartite entanglement in a density matrix: Negativity:

$$\mathcal{N}(\rho_{12}) = \frac{\sum_i |\mu_i| - 1}{2}$$

Log-negativity:

$$E_{LN} = \log\left(||\rho_{12}^{T_2}||_1\right) = \log\left(\sum_i |\mu_i|\right)$$

Both are Entanglement monotones that vanish for separable states.

The third moment, $\langle tr(\rho_{12}^{T_2})^3 \rangle$, after PT

Recall that the first two moments are the same before and after PT. An *exact* calculation yield ensemble averages:

$$\langle \operatorname{tr}(\rho_{12}^{T_2})^3 \rangle = \frac{N_1^2 + N_2^2 + N_3^2 + 3N_1N_2N_3}{(N_1N_2N_3 + 1)(N_1N_2N_3 + 2)}$$

constrast [$N_1 \rightarrow N_1 N_2$, $N_2 \rightarrow 1$]

$$\langle \operatorname{tr}(\rho_{12})^3 \rangle = \frac{N_1^2 N_2^2 + N_3^2 + 3 N_1 N_2 N_3 + 1}{(N_1 N_2 N_3 + 1)(N_1 N_2 N_3 + 2)}$$

Remarkable **permuation symmetry in the PT**. Related to invariants. In fact:

$$\sum_{i} \left(\mu_{i}^{(12)}\right)^{3} = \sum_{i} \left(\mu_{i}^{(23)}\right)^{3} = \sum_{i} \left(\mu_{i}^{(31)}\right)^{3}.$$

- $(N \times N)$ Gaussian random matrix: $X \equiv [x_{ij}]$
- $\operatorname{Prob}[x_{ij}] = \exp\left[\frac{-\beta}{2}\operatorname{Tr}(X, X)\right]$
- Dyson index $\beta = 1, 2, 4$ (GOrthogonalE,GUnitaryE,GSymplecticE).
- *N* real eignvalues $\{\lambda_1, \lambda_2, \dots, \lambda_N\}$ are correlated random variables

• Joint distribution (Wigner, 1951)

$$P(\lambda_1, \lambda_2, \dots, \lambda_N) = rac{1}{Z_N} \exp\left[-rac{eta}{2} \sum_{i=1}^N \lambda_i^2\right] \prod_{i < j} |\lambda_i - \lambda_j|^eta$$

Spectral Density: Wigner's Semicircle law

- Average density of states: $\rho(\lambda, N) = \left\langle \frac{1}{N} \sum_{i=1}^{N} \delta(\lambda \lambda_i) \right\rangle$
- Wigner's Semicirlce: $ho(\lambda, N) o \sqrt{rac{2}{N\pi^2}} \left[1 rac{\lambda^2}{2N}\right]^{1/2}$

 ⟨λ_{max}⟩ = √2N for large N.
 λ_{max} fluctuates. What is Prob[λ_{max}, N]? Arul (IIT Madras) partial transpose

Tracy-Widom distribution for extreme λ_{max}

• $\langle \lambda_{max} \rangle = \sqrt{2N}$, typical fluctuations $|\lambda_{max} - \sqrt{2N}| \sim N^{-1/6}$.

- Typical fluctuations are distributed according to the *Tracy-Widom* law (1994).
- $\mathsf{Prob}[\lambda_{max} \leq t, N]
 ightarrow \mathsf{F}_{eta}\left(\sqrt{2}\mathsf{N}^{1/6}(t-\sqrt{2N})
 ight)$
- $F_{\beta}(z)$ obtained from solutions of a Painleve-II equation

Wigner's semicircle in the PT

If $L_1 = L_2 = L/2$ the spectrum of the ρ_{12}^{PT} fits the Wigner semicircle law! The Partial Transpose is NPT.

$$x = \mu N$$
, $p(x) = \frac{1}{2\pi}\sqrt{4 - (x - 1)^2}$

The DoS before and after PT: Marcenko-Pastur to Wigner Semicircles

Figure: $L_1 = L_2 = 3$, $L = L_1 + L_2 + L_3$

Critical Dimensions: $L_1 + L_2 = L/2 - 1$ or $N_3 = 4N_1N_2$. $N_3 > 4N_1N_2$, states are dominantly PPT, $N_3 < 4N_1N_2$ dominantly NPT

Non-symmetric cases

Figure: Fixed L and $L_1 + L_2$. Skewness is minimum for $L_1 = L_2 = 4$ and maximum for $L_1 = 1$ and $L_2 = 7$.

Arul (IIT Madras)

partial transpose

A simple random matrix model for the PT

$$\rho_{12}^{T_2} == A + \frac{I_N}{N}, \quad (N = N_1 N_2)$$

where A is a $N \times N$ GUE random matrix and I_N is the identity matrix. Find $\langle tr(A^2) \rangle$ such that it gives Lubkin's 1978 formula for average purity $\langle (\rho_{12}^{T_2})^2 \rangle$, fixing the only scale in the GUE.

$$P(\mu) = \frac{2}{\pi R^2} \sqrt{R^2 - \left(\mu - \frac{1}{N}\right)^2}, \ -R + \frac{1}{N} < \mu < R + \frac{1}{N}$$
$$R = \frac{2}{\sqrt{N_1 N_2 N_3}} = 2^{-L/2+1}$$

Rescaled radius: $\tilde{R} = NR = 2^{L_1+L_2-(L/2-1)}$. $x = \mu N$:

$$P_{\Gamma}(x) = rac{2}{\pi ilde{R}^2} \sqrt{ ilde{R}^2 - (x-1)^2}, \ \ 1 - ilde{R} < x < 1 + ilde{R}.$$

Average entanglement in a pure tripartite state $(N_1 \otimes N_2) \otimes N_3$

$$\langle E_{LN}^{12} \rangle = \log \left[\frac{2}{\pi} \sin^{-1} \left(\frac{1}{\tilde{R}} \right) + \frac{2}{3\pi \tilde{R}} \sqrt{1 - \frac{1}{\tilde{R}^2}} \left(1 + 2\tilde{R}^2 \right) \right], \quad \tilde{R} = 2\sqrt{\frac{N_1 N_2}{N_3}}$$

Average Log-negativity $(N_1 \otimes N_2) \otimes N_3$

 $ilde{R} \gg 1$, $N_1 N_2 \gg N_3$, deep in the NPT regime, this gives

$$\langle E_{LN}
angle pprox \log \left(rac{8}{3\pi} \sqrt{rac{N_1 N_2}{N_3}}
ight).$$

When $N_3 = 1$ the state ρ_{12} is pure.

$$\langle E_{LN} \rangle = \left\langle \log \left(\sum_{i=1}^{N_1 N_2} |\mu_i| \right) \right\rangle = \left\langle \log \left(\sum_{i=1}^{N_1} \sqrt{\lambda_i} \right)^2 \right\rangle \approx \log(\kappa^2 N_1).$$

$$\kappa = \left(\frac{8}{3\pi} \right) \text{ when } N_1 = N_2.$$

Slightly different (more analytic & correct) *c.f.* A. Datta, Phys. Rev. A, **81**, 052312 (2010).

Entanglement at Criticality and Extreme Eigenvalues

For critical dimensions $\tilde{R} = 1$ and the semicircle gives zero entanglement. This is **not true** due to eigenvalues in the **tail of the semicircle**

Table: Percentage of NPT states for $L_1 = L_2$ and various L for the critical case when $L_1 + L_2 = L/2 - 1$.

L_1	L	% NPT (Complex states)	% NPT (Real states)
1	6	0.06 ± 0.008	3.18 ± 0.017
2	10	1.40 ± 0.036	7.82 ± 0.085
3	14	1.92 ± 0.065	11.18 ± 0.121
4	18	2.40 ± 0.077	13.43 ± 0.161
5	22	2.60 ± 0.145	15.17 ± 0.35

The fraction of NPT states = fraction whose μ_{min} , the min. eigenvalue after PT < 0 : A problem in the theory of extreme value statistics.

Table: Percentage of NPT states for $L_1 = L_2$ and various L (Real states).

<i>L</i> ₁	$L = 4L_1 + 1$	% NPT	$L = 4L_1 + 3$	% NPT
1	5	25.39	7	$4.4 imes10^{-2}$
2	9	96.82	11	$8.3 imes10^{-5}$
3	13	pprox 100	15	$< 10^{-5}$
4	17	pprox 100	19	pprox 0
5	21	pprox 100	23	pprox 0

Will constitute a problem of large deviation.

Tracy-Widom and fraction of NPT states

$$x = 2 N^{5/3} \mu_{min}$$
 is asymptotically distributed according to TW
 $f_{NPT} = 1 - F_2(0) \approx .03$
where $F_2(x)$ is related to a solution of the Painlevé-II equation
 $q'' = xq + 2q^3$ with $q(x) \sim \operatorname{Ai}(x)$ as $x \to \infty$.

The Real case, pprox GOE. Log-Neg. at criticality

Table: Average log-negativity for $L_1 = L_2$ and various L for the critical case (complex).

L_1	$L = 4L_1 + 2$	Numerical $\langle E_{LN} \rangle$	$\langle E_{LN} angle$ using TW
3	14	$7.28 imes 10^{-6}$	$8.39 imes10^{-6}$
4	18	$9.28 imes10^{-7}$	$8.95 imes10^{-7}$
5	22	$9.47 imes10^{-8}$	$9.79 imes10^{-8}$

Table: Average log-negativity for $L_1 = L_2$ and various L for the critical case (real).

L_1	$L = 4L_1 + 2$	Numerical $\langle E_{LN} \rangle$	$\langle E_{LN} \rangle$ using TW
3	14	$7.62 imes10^{-5}$	$8.26 imes10^{-5}$
4	18	$9.41 imes10^{-6}$	$9.51 imes10^{-6}$
5	22	$1.13 imes10^{-6}$	$1.06 imes10^{-6}$

- Statistics of the PT of tripartite pure states give rise to Wigner semicircles.
- A simple RMT model captures the NPT-PPT transition
- At critical dimensions extreme value statistics and the Tracy Widom distribution gives the fraction of NPT states
- The average third moment of the PT and the skewness have been calculated exactly
- Three coupled standard maps show slight, but systematic deviations, from random states. Especially at criticality. RMT seems applicable strictly only asymptotically.

This work:

Udaysinh Bhosale, S. Tomsovic, AL: In preparation.

Related Works:

- G. Aubrun, ArXiv:1011.0275v2 [mathPR]. [Discusses the emergence of shifted semicircles, using binary correlations]
- A. Datta, Phys. Rev. A, 81, 052312 (2010) [Average Log-negativity when 1+2 is pure.]

The End. Really. Thanks.