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DD-General Idea

* Motivation: To protect the qubit in presence of
decoherence.

* Applying pulses to time-reverse the system-bath
interaction.

* A pulse producing a unitary evolution P, such that

PHSB P-‘-='HSB, i.e. {P, HSB}=O
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For ideal (zero-width) pulses

Pexp(-itHgz)PTexp(-itHgg)=
exp(-itPHgzP") exp(-itHgg)

One cycle = exp(itHgg) exp(-itHgp)
=]
Quick Example: Pure dephasing->Hz=AZ®B X7ZX=-7=>
“time-reversed’,

P _  P_ P p Hcy averaged to zero (in 1

order Magnus expansion)
He | Heg Heg = Sys’rem-BaTh Interaction

P = Pulse(typically T pulses)

free evolution

One?ycle




Effective Hamiltonian
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Another view of the universal decouplhing sequence:

x oz X z X
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\\L/ f':CXp[—fTHw'(T)]
f=exp|-itH]|

H (1 )=0, 1deally

But, errors accumulate...: H g 170



DD AS SYMMETRIZATION

“Symmetrizing group” of pulses { g;} and their inverses are applied in series:

(gvEgy)-(g,£8,)(g/£g,) = exp(-it) g 'Hg,)

f=exp(-iHgr) T

first order Magnus expansion

Choose the pulses so that:

1 _ t - : : ..
H g H off = Zi g, H B = 0 Dynamical Decoupling Condition

For a qubit the Pauli group G={X.Y.Z./} (7 pulses around all three axes) removes an
arbitrary Hgg:

(X£X) (Y£Y) (Z2£2) (IfI) =XfZfXfZf

Periodic DD: periodic repetition of the universal DD pulse sequence



DD as a Rescaling Transformation

J=||HsB||«
B= ||HB||w

« Interaction terms are rescaled after the DD cycle

J=JOn JO  max[r(J®)2, 73]

3— 3+ 0O((J9)3*7?)

« We need a mechanism to continue this




Periodic Dynamical Decoupling
PDD Strategy: repeat the basic X{Z{ZfXfZ cycle with total of N pulses.
The total duration is fixed at 7. N can be changed.
Pulse interval: 7 = T'/N

Recall noise strength 1) = | |H of f (T) | |T

norm of final effective system-bath Hamiltonian times the total
duration.

PDD leading order result for error:
noc N2

Can we do better?



Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods £ :

p(l)=X£f 2z £ X£f 2z £
p(2)= X p(1)2 p(L)X p(1)Z p(1)
p(n+l)= X p(n)2 p(n)X p(n)Z p(n)

Level Concatenated DD Series after multiplying Pauli matrices
1 XLZLX1IzZf
2 TZEXTZEYLZEXTZffZTXTZEYTZEXEZ T
3 PEVADSHA RS VAISFA S VA S VAR EIAIS VA VAFAISVAREVADSHAS VA CHARS VA D SHA D $ ¥4
pEFAREFAISFAITAISFAREVADCIATAVEISFAIEFAISTASIFAI VA EIAS ¢ T4

Length grows exponentially; how about error reduction?




Performance of Concatenated Sequences

error = (error)? = ((error)?)? = (((error)?)?)? - (error)2¥

For fixed total time 7-Nt and N zero-width (ideal) pulses:

noc N b N=clog N
Compare to periodic DD: n X @




PDD vs. CDD

* CDD outperforms PDD for the bounded bath with super-polynomial

advantage.
* In PDD, errors accumulate if not removed in the basic cycle.

* While in CDD, the next-layer-up removes the errors left from the last

layer.

e Particularly important up to the 274 order errors in the Magnus

expansion




BETTER THAN CONCATENATED DD

Question

Does there exist an optimal pulse sequence?

Optimal-> removes maximum decoherence with
least possible number of pulses.




Uhrig Dynamical Decoupling

» Optimization of the switching instants.

« Good for pure dephasing as originally
proposed by Uhrig.

» Requires O(n) number of pulses.

» Cycles with n pulses are used with the
pulses applied at

0; =Tsin?[ jn/(2n + 2)]



Spin- Boson Model with Pure Dephasing

. 1 .
— . T - —_— . T .
H = E,. w;b: b; + 2az E,- ri(b, +b;)) + E
+{Ai, wi} - Properties of the bath

w»Spectral density J(@) = Z A8 — ).

l

+»Free induction decay ,-2x() where the decoherence function

S

x0:= [ =D (nido
0 w

S(w) := ;J(w)coth(Bw/2)

y,- > Filter function for n pulses.



UDD Continued:

« Aim: We have to minimize y.

e %W ~1 when y (t) is written in powers of t.

soft cutoff

S(w)
=2

B
v (ot)]

hard cutoff ,'

0

< Analytically shown first n derivatives of yr(wt) = 0 at wt = 0
for n pulses.



Power Spectra

O

S() - So ~ where a=power law exponent
w? w?t!

* 1
% Convergenceof  X(1)= 5 ‘/0‘ len(wt)lzdw

< For y, (wt) o (wt) ™, we must have & < 2m + 2.

< UDD applies at all temperatures as long as the cut-off is hard

* Experimentally verified case: S(w) & 1/ ot (a=5)




Quadratic Dynamical Decoupling (QDD)
[West, Fong and Lidar 2010]

= One UDD sequence in one direction nested within
another UDD sequence in an orthogonal direction.

= X-type UDD sequence (for pure dephasing) with a
Z-type UDD sequence (for longitudinal
relaxation).

= Relative sizes of the pulse intervals are considered

t; — ;- 2j—1
§; = ] '=sin(( J )ﬂ)csc( 7 ),

I 2n + 2 2n + 2

= Pulse intervals ~(n+1)2are required.



QDD (Contd.)

n+l

: : m
» Total normalized time S, =) s, Tl cscz( )
2n + 2

j=1

» Z-type UDD, z,(7) = 2"U(s,+,7)ZU(s,7) -+ - ZU(5,7)ZU(5,7)

* U(sy7) is replaced by time-scaled sequence X (s;7).
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DD with Polarization Qubits

9,

Motivation

" Wu and Lidar [2004] analytically showed “bang-bang' decoupling
could be used to suppress dephasing in optical fibers.

* However, CPMG sequence has been shown to be very robust
against a variety of dephasing and rotation errors.

* I[n the BB84 protocol, it is crucial to preserve the input polarized

signals against decoherence effects through the fiber.

» L.A.Wu and D.A. Lidar, Phys. Rev.A 70,0623 10 (2004).

» S.Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).




Dynamical Decoupling with Polarization Qubits

s Rotation under X pulse Right Circular Polarization

s Free evolution

- HAP (in dagonal bess) implerrening CPUG.

[ rorose Brarmgent Degnssi

S

: Left Circular Polarization

Lt Lt Lt

* Dephasing after a propagation length AL is Ad=(27/A)AL An;
An = Refractive index difference, A=Wavelength in vacuum.

* CPMG sequence implemented by half-wave plates along the fiber.

* Both AL and An were generated randomly to simulate the random dephasing.



DD Preserves the Polarization State

Fidelity
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Fidelity increases significantly when we apply DD in the fiber, even
when the fluctuations in A¢ are high.
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- Estimating Minimum Number of Waveplates

Fidelity
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 Equivalently, the optimal distance between the waveplates
. can be estimated for a given length of the fiber.




Fidelity for Different Fiber Lengths

Fidelity
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* For a fixed range of A variation (i.e. fixed standard deviation ¢ of Ad), the

fidelity varies when we change the total length of the fiber.

Mean value of AL

* Dimensionless : Ap= (271/A) AL An = [(27/A) An < AL>][AL/< AL>]

=> any fiber length can be used.



Summary

O

We could successfully apply the CPMG sequence to the optical fiber
with flying polarization qubits.

Waveplate seperation for achieving fidelity close to 1 could be
estimated precisely for any arbitrary and practical fiber length.

This is valid for any general polarization qubit.

In future, we wish to incorporate finite width of the waveplate as well
as use DD within gates for polarization qubits.







