
  

Introduction to Introduction to 
Quantum Game TheoryQuantum Game Theory

Multiparticipant decision problemsMultiparticipant decision problems

strategic interdependence strategic interdependence 



  

Classical game theory
• began in 1944 with ‘The Theory of 

Games and Economic Behavior’, by John 
von Neumann and Oscar Morgenstern

• Originally based in classical physics 
• generalized to include laws of quantum 

mechanics by Meyer in 1999.

What range of application does 
game theory have?



  

Applications
• Economic theory (game of maximizing monetary rewards, stock 

market, business, ie supply and demand)
• Diplomacy(2 to N players, N>2 coalitions tend to form)
• Secure communications (the quantum-mechanical protocols 

for eavesdropping [Gisin & Huttner 1997, Ekert 1991] and 
optimal cloning can be formulated as games 

• Quantum algorithms can be formulated as a game between 
classical and quantum players 

• Fundamental questions of Quantum mechanics (e.g. protein 
folding, and electrons can be viewed as playing a quantum 
game competing for atomic orbitals) 

• Dawkins' dictum of the ‘Selfish Gene’ can be thought of in 
terms of games of survival. Colonies of bacteria appear to play 
the game of prisoner dilemma

Hence a `game’ is quite a general construct.



  

Protein folding



  

E.g. Prisoner Dilemma game
         Bob
Alice

C D

C (3,3) (0,5)

D (5,0) (1,1)
Payoff(Alice,Bob)

Regardless of Bob’s choice, Alice always maximizes her 
payoff by playing D and similarly for Bob thus forming the 
pure Nash equilibrium of D,D with a payoff of 1 unit for 
each player.

NB: Both players would prefer the
outcome C,C!



  

Bacterium Prisoner’s 
dilemma

• Realized pay-off matrix for the evolved high MOI phage ØH2 
relative to its ancestor Ø6 reveals evolution of an 
evolutionarily stable strategy conforming to the prisoner's 
dilemma. Turner & Chao, Letters to Nature, 1999.



  

Nash equilibrium
• A NE is found if any unilateral deviation of 

this strategy results in a lower payoff
• A NE, X’,Y’ Can be defined as
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Elements of a Game
• Information about the game 

situation can be full or partial
• Strategy sets, e.g. C or D as in PD 

game, the strategic choice made 
depends on the information available 
to the player

• Game equilibrium such as Nash 
equilibrium(NE) arise



  

Nash Equilibria(NE)
-Player responses to maximize the payoff 

function.  Any variation of this strategy will 
produce a lower payoff

• Repeated games
• A mixed NE always exist(J. Nash)
• A subset of NE are evolutionary stable 

strategies
• Bayesian games
• Decoherence can also be included 
• Parrondo games can also arise



  

The Quantum 
extension…

• The game state can now become 
entangled

• strategy sets can be expanded to 
general unitary transformations

• Strategic choices can be quantum 
superpositions of two separate 
strategies



  

Definition of a 
quantum game

We define a game
Γ = Γ(H,Λ,{Si}j,Π)
• H is a Hilbert space
• Λ is the initial state of the game
• {Si}j are the set of allowed choices for each player j, 

usually unitary transformations or classical choices
• Π the payoff function determined after measurement
• A strategy is determined by the players after analyzing 

game setup and the payoff matrix



  

Penny Flip game

Bob prepares coin Alice can flip coin Bob can flip coin

Heads:  Bob wins
Tails:    Alice wins

Once placed in box coin is hidden from the players



  

Penny flip game 
classical solution

• Each player flips with a 50% 
probability, that is a mixed strategy

• A mixed strategy is used so that their 
choices are unpredictable

• Payoff expectation is zero for each 
player, and so a fair game



  

Quantum penny flip game



  

Meyer’s Penny flip 
general solution

Chappell et al. JPSJ 2009



  

Grover search

Classical 
observer 
extracts 
informatio
n from 
quantum 
system



  

Clifford’s Geometric 
Algebra

• Modeling of a qubit in a real space 
thus avoiding complex numbers and 
allowing a visual picture(Bloch sphere, 
density matrix)

• Elegant expressions for probabilistic 
outcomes for multiple qubits



  

Quantum games vs 
gaming the quantum

• We seek a proper extension of a classical 
game, so that at zero entanglement we 
recover the classical game.

• For example, we can use an EPR experiment 
setting, which retains classical strategies

• Avoids arguments by Ent & Pike, that unitary 
transformations fundamentally change the 
corresponding classical game.



  

EPR setting

• An entangled 
qubit is 
distributed to 
each player 
who select one 
of 2 possible 
measurement 
directions.



  

Quantum games-EPR setting
• Prisoner dilemma



  

Gaming the quantum
• Utilize the full range of quantum 

mechanical properties, entanglement, 
unitary transformations and 
superposition of states.



  

Non-factorizable joint 
probabilities

• Quantum mechanical measurements result in 
probabilistic outcomes, and hence a alternate 
framework is non-factorizable joint probabilities. 
Gives a superset of quantum mechanical correlations

• When the joint probability distribution becomes 
factorizable(equivalent to being unentangled) then we 
recover the classical game. Fines theorem.



  

Heirarchy of Games
Framework Strategy space Cirel’son

bound
Comment

NFJP* 4

Quantum Unitary transform 2√2 Gaming the 
quantum

EPR Probabilistic 
choice

2√2 Quantum 
gaming

Mixed 
classical

Probabilistic 
choice

2 NE always 
exists,eg PF

Classical Classical choice 2 eg PD

*NFJP=Non-factorizable joint probability



  

Structure of game settings

* Classical strategies



  

Summary
• We highlighted the distinction between 

quantum games and gaming the quantum.
• EPR setting provides a proper quantum 

extension to a classical game as it retains 
classical strategies

• Geometric algebra a useful tool
• Non-factorizable joint probability provides a 

general framework for classical and quantum 
games.

• Wide applicability of quantum game theory 
to many areas of science
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