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Motivation

- Non-locality as an interpretation/witness for

entanglement ‘types’?
(mutlipartite entanglment is a real mess)

- Different ‘types’ of non-locality?
(iIs non-locality also such a mess?)

Look at symmetric states - same tool
‘Majorana Representation’ used to study both....
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Outline

Background (entanglement classes, non-

locality, Majorana
representation for symmetric
states)

Hardy’'s Paradox for symmetric states of n-
qubits

Different Hardy tests for different
entanglement classes
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Entanglement

Definition:

State is entangled iff NOT separapable
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Entanglement

Types of entanglement

Communications (SLOCQC)

Dur, Vidal, Cirac, PRA 62, 062314 (2000)

In multipartite case, some states are incomparable, even
under stochastic Local Operations and Classical

<=

Infinitely many different classes!

- Different resources for qguantum information processing
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1DEfgient entanglement measures may apply for different




Permutation Symmetric States

Symmetric under permutation of parties

- Occur as ground states e.g. of some Bose Hubbard models
- Useful in a variety of Quantum Information Processing tasks

- EXperimentally accessible in variety of media
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Permutation Symmetric States

Majorana representation
E. Majorana, Nuovo Cimento 9, 43 - 50 (1932)
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Permutation Symmetric States

Majorana representation
E. Majorana, Nuovo Cimento 9, 43 - 50 (1932)
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Permutation Symmetric States

Majorana representation
E. Majorana, Nuovo Cimento 9, 43 - 50 (1932)

Dicke states
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Permutation Symmetric States

Majorana representation
E. Majorana, Nuovo Cimento 9, 43 - 50 (1932)

Distribution of points
alone determines
entanglement features

Local unitary rotation of sphere
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/ | - Orthogonality relations
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Permutation Symmetric States

( ) entanglement ‘types’

- Different degeneracy cla sﬁ> Different
(w.r.t. SLOCC)

- Different symmetries”

12/333astin, S. Krins, P. Mathonet, M. Godefroid, L. Lamatajand E. Solano , PRL 103,
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Permutation Symmetric States

- Different degeneracy class Different
( ) entanglement ‘types’

(w.r.t. SLOCC)

- Different symmetries

-]NOWE:lAImosﬁ: identical states can be in different
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Comparison to Spinor BEC

E.g. 5=2
R. Barnett, A. Turner and E. Demler, PRL 97, 180412 (2007)
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Comparison to Spinor BEC

E.g. 5=2
R. Barnett, A. Turner and E. Demler, PRL 97, 180412 (2007)
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Non-Locality

Measureme |
nt basis ‘

Measureme
Nt outcome
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Non-Locality

Measureme }'*
nt basis '

Measureme
Nt outcome

‘Local Hidden ,, ., ,\ _ /p{A)P{AMv \)P(B|b, A)dA
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Non-Locality

Measureme }k
nt basis

Measureme
Nt outcome

- Local Hidden Variable model
P(MiMs.. M, |mims...m,) = /p{th[ﬂfﬂml,A]P{ﬂfﬂmg,A]...P[ﬂfﬂ{m.n,hjdl

| 14/oV/1L | | |




n Party case (Hardy’s Paradox)

- For all symmetric ste |U) of n qubits (except Dicke
states)
set of probabilities which contradict LHV
set of measurement which achieve these
measurement probabilities
result

P(Mi{Ms... M, |mims...m,)

P(00...0|00..
P(00...0{10..
P(00...0|01..

P(00...0]00...
P(11...1|11...

- 12/30/11

measurement
basis

0) =0

0)=0

0) =10

1)=20

1)=20




n Party case (Hardy’s Paradox)

states)

set of probabilities which contradict LHV
set of measurement which achieve these

- For all symmetric ste |U)

of n qubits (except Dicke

measurement

result

P(00...0
P(00...0
P(00...0

P(00...0]00...
P(11...1|11...

- 12/30/11

00..
10..
01..

probabilities

P(MyMs...M,|mims...m,) = /p[h} HP[J’LL}mi. A)dA

measuremeﬁt
basis
0)>0 —>
0)=0
0)=0
1) =0
1) =0

for some )\  P(M; =0|m; =0,A) >0




n Party case (Hardy’s Paradox)

states)

set of probabilities which contradict LHV
set of measurement which achieve these

- For all symmetric ste |U)

of n qubits (except Dicke

measurement

result

P(00..
P(11..
12/30/11

.0
.0
.0

00..
10..
01..

0]00...
111...

probabilities

P(MyMs...M,|mims...m,) = /p(h}HP[ﬂL-Lmi-:h}dh

measurement

—>
N m—

basis
0) =0
0)=0 )
0)=10
1)=0 )
1)=20

for some )\ ~ P(M; =0|m; =0,\) >0

forsame A P(M; =0lm; =1,A) =0

C—DP(M, = 1jm; = 1,\) = 1

Y P(M;m;)) =1
M ;




n Party case (Hardy’s Paradox)

- For all symmetric ste |U) of n qubits (except Dicke
states)
set of probabilities which contradict LHV
set of measurement which achieve these
measurement probabilities
resulit

P(00...0|00..
P(00...0{10..
P(00...0|01..

P(00...0]00...
P(11...1|11...

- 12/30/11

basis

P(MyMs...M,|mims...m,) = /p(h} HP[E‘LL-Lmi-: A)dA

measurement

\

> forsome \  P(Af, =0jm; =0,)) >0

> forsame A P(M, = 0jm; = 1,\) = 0

J

C—DP(M, = 1jm; = 1,\) = 1

Y P(M;m;)) =1

0) >0
0)=0
0) =0
1) =0
1) =0

CONTRADICTION
|




n Party case (Hardy’s Paradox)

- For all symmetric ste |U) of n qubits (except Dicke
states)

set of probabilities which contradict LHV
set of measurement which achieve these

measurement probabilities

result m; =0 {|0),|1)}
P(Mi{Ms... M, |mims...m,) m; = 1 {|[}; |1H}
measurement
basis
P(00...0[00...0) = 0 (0/(0]...{0]|T) # 0
P(00...0/10...0) =0 {” (0]...{0|| W) =0
P(00...0[01...0) =0 <:> { {E} A0 W)y =0

P(00...0/00...1) (0[(0]...{0]| W) =0
- P(1L.111.1) 1|Al...1||w) =0
12/30/11
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n Party case (Hardy’s Paradox)

- Use Majorana representation

F(00...0100...0) = 0 (0[(0]...(0||T) # 0
P(00...0{10...0) =0 (0[(0]...{0|| W) =
P(00...0[01...0) =0 { {E} L0 =0

P(00...0]00...1) = (0[(0]...{0|| ) =0

0
PALAML.1) =0  ([{|(i]...(1||¥) =0
(1. (1] 1) G
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n Party case (Hardy’s Paradox)

- Use Majorana representation

P(00...0(00...0) = 0 (0[{0]...0|| @) # 0

P(00...0]10...0) = 0" (0[(0]...(0||T) =

P(00...0[01...0) =0+ (0[(0]...{0|| ) = 0 —>

P(00...0[00...1) =0v"  (0|(0]...(0]|T) =

P(11..111..1) =0V (|(i|...(I||¥) = 0 P
~N
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n Party case (Hardy’s Paradox)

- Majorana representation always allows satisfaction of lower
conditions, what about the top condition?

Must find, such tnat

F(00...0100...0) = 0 (0[(0]...(0||T) # 0
P(00...0{10...0) = (0[(0]...{0|| W) =

?
v/
P(00...0j01...0) =0y~ (0[{0]...(0]|T) = 0 E:::$>
v
v

P(00...0]00...1) = (0[(0]...{0|| ) =0

P(11..111..1) = 1)1]...(1]|T) =0 (1_>
~N
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n Party case (Hardy’s Paradox)

- Majorana representation always allows satisfaction of lower
conditions, what about the top condition?

Must find, such tnat

It works for all cases except product or Dicke

states

Dicke states too symmetric!

F(00...0|00..
P(00...0{10..
P(00...0|01..

P(00...0]00...
P(11...1|11...

12/30/11

0)>0y" (0/{0]...(0]|F) # 0
0)=0v" (0/(0]...(0]|T) =0
0)=0v" (0[{0]...

L0 T) =0 —>

1)=0v" (0{0]...(0]|T) = 0

D=0V (A(.({w) =0 ==
N




(almost)

All permutation symmetric states
are non-local!

12/30/11




Testing Entanglement class
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Testing Entanglement class

- Use the Majorana representation to add constraints implying

degeneracy
—
—
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Testing Entanglement class

- Use the Majorana representation to add constraints implying

degeneracy
—
—

P(00...0[00...0) > 0
P(00...0[10...0) = 0
P(00...0[01...0) = 0

P(00...0/00...1) =0

POL.111..1) =0  (I|({T]...(1||¥) =0 <:>
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Testing Entanglement class

- Use the Majorana representation to add constraints implying

degeneracy
—
—

P(00...0[00...0) > 0
P(00...0[10...0) =
P(00...0[01...0) = 0

P(00...0/00...1) = 0

POL.111..1) =0  (I|({T]...(1||¥) =0 <:>

P(1..1]1..1)=0

Only satisfied by

P(1.1]1.1)=0 With degeneracy

12/30/. 7. =7

n—d+1 n—d+1




Testing Entanglement class

- Use the Majorana representation to add constraints implying

degeneracy

CAareral 0N DEersi
~Correlat Ul PCI

P(00...
P(00...
P(00...

P(00...

P(11..

0[00...
0[10...
0[01...

0(00...
1[11...

n

1)=0
1)=0

P(1.11..1) =0

(1.
12/30/; =~

d)dl...d|w) =0 <:>

Only satisfied by

With degeneracy




e.g. Hardy Test for W class...

TW

P(0000[000) =

) >
P(0000[001) =
P(0000|010) =0
P(0000[100) =
)
)

P(111[111
P(11/11
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Get REAL!!!
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Get REAL!!!

- We really need to talk about inequalities

P™ :=P(0...0[00...00) Qi =P "—P(L.. . 1[11...1)
. ZP 00...00|x(00...01)) et
—P( L1 11) - P L[ 1)
n—d+1 n—d+1
n n
Pe <0 Qq <0
- ALL states with one MP of degq%racy or greaterg‘gj late for

- CanNOT be any longer true that ‘only’ states of the correct

type violate

12/”20
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Persistency of degenerate states

Q3 = 0.1703

v

12/30/11

P(0000[0000)

— P(0000/0001
P(0000[0010
P(0000[0100
P(0000|1000
P(1111[1111
P(111]111)
P(11]11)

)
)
)
)
)

Q3 = —0.609




Conclusions

- Hardy tests for almost all Eymmetric states

- Different entanglement types Different Hardy
tests

- Non-locality to ‘witness’ / interpret
entanglement types
Different flavour of non-local
arguments to Stabiliser states/ GHZ

states e.t.c.
- More?
‘Types’ of non-locality? (from
operational-perspective)
12/30/11 Witness phase transitions by

B BN of o T B B T T T




Thank you!

- 12/30/11
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