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Overview of Talk

• We talk about some measures of quantum correlations, such as,

entanglement and discord.

• A brief introduction to Open Quantum Systems is made with relevance to

applications to Quantum Information.

• We discuss recent work on studies of these correlations in two-qubit open

quantum systems: in which entanglement is generated dynamically by the

systems interaction with the environment which we take to be both pure

dephasing as well as dissipative.
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Quantum Correlations

Entanglement: A Brief Preview and Motivation

• What is entanglement and what is its use?

• Separability versus entanglement: that which is not separable is entangled.

• A pure state is separable if it can be expressed as a tensor product of

subsystem states: |ψ〉 = |a〉 ⊗ |b〉.
• Examples for pure states:

(a). separable states: |00〉, |11〉
(b). entangled states: |Φ±〉 = 1√

2
(|00〉 ± |11〉); |Ψ±〉 = 1√

2
(|01〉 ± |10〉): Bell

states.
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Entanglement: A Brief continued...

• A mixed state is separable if it can be represented as a mixture of product

states: ρ =
∑

i

pi|ai〉〈ai| ⊗ |bi〉〈bi|. Correlations between different subsystems

due to incomplete knowledge of quantum states completely characterized

by classical probabilities pi.

• Examples for mixed states:

(a). separable state: ρ = 1
2
(|00〉〈00|+ |11〉〈11|)

(b). entangled state: ρW = (1− p) 1
4
I + p|Φ+〉〈Φ+|, where 1/3 < p ≤ 1:

Werner state.
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Entanglement: A Brief continued...

• Entanglement can be used to perform tasks not possible classically. E.g.:

Using entanglement it is possible to teleport a qubit in state |χ〉 = α|0〉+ β|1〉
using a shared entangled state |Φ+〉.

• Thus entanglement is a resource in quantum communication and

information.
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Quantifying Entanglement: abstract approach

• A state function can be used to quantify entanglement, if it satisfies some

natural properties: entanglement of two systems cannot be increased

without, direct or indirect, quantum interaction between them: [Bennett et

al. (1997)].

• If the systems are spatially separated, then entanglement cannot increase if

only classical communication is allowed between them.

• This is expressed as monotonicity under local operations and classical

communication (LOCC) [G. Vidal: (2000)].
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Quantifying Entanglement: operational ap-
proach

• Entanglement is related to operational tasks... system more entangled if it

allows for better performance of certain tasks (impossible without

entanglement).

• Example: teleportation... by use of a single pair of two qubits in state

|Φ+〉 = 1√
2
(|00〉+ |11〉) and classical communication, a qubit can be

transmitted. Impossible by using only classical communication.
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Concurrence

• For a pair of qubits there exists a general formula for the entanglement of

formation: Ef : based on the quantity “CONCURRENCE”. [W. K. Wootters:

(1998)]

• Consider pure state |Φ〉 of a pair of qubits. Concurrence

C(Φ) = |〈Φ|Φ̃〉|

, where |Φ̃〉 = (σy ⊗ σy)|Φ∗〉, σy is the Pauli operator, |Φ∗〉 is the complex

conjugate of |Φ〉.
• Spin flip operation, via σy , when applied to a pure product state, takes the

state of each qubit to the orthogonal state, i.e., state diametrically opposite

on the Bloch sphere resulting in zero concurrence. A completely entangled

state is left invariant by a spin flip, resulting in C taking the maximum value 1.

• Relation between entanglement and concurrence of a pure state is:

E(Φ) = E(C(Φ)), where E(C) = h

(

1+
√

1−C2

2

)

,

h(x) = −x log2(x)− (1− x) log2(1− x).

Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.8/53



Concurrence continued...

• E(C) is monotonically increasing for 0 ≤ C ≤ 1 implying that concurrence

can be regarded as a measure of entanglement in its own right.

• Concurrence of a mixed state of two qubits is defined as the average

concurrence of an ensemble of pure states representing ρ, minimised over all

decompositions of ρ:

C(ρ) = inf
∑

j

pjC(Φj).

• E(C), in addition to being monotonically increasing, is also convex implying

E(C(ρ)) = inf E

(

∑

j

pjC(Φj)

)

≤ inf
∑

j

pjE(C(Φj)) = Ef (ρ).

• Thus E(C(ρ)) is a lower bound on Ef (ρ).
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Concurrence continued...

• There always exists a decomposition of ρ that achieves the minimization

required, for C(ρ), with a set of pure states having the same concurrence.

This makes E(C(ρ)) = Ef (ρ).

• An explicit formula for concurrence: [W. K. Wootters: (1998)]

C(ρ) = max

{

0, λ1 − λ2 − λ3 − λ4

}

,

where λi are the square roots of the eigenvalues of ρρ̃ in descending order

and ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
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Quantum Correlations

Discord

• Correlation between two random variables X and Y is: ‘Mutual Information’

J(X : Y ) = H(X)−H(X|Y ).

• Here H(X|Y ) is the conditional entropy of X given that Y has already

occured and H(X) is the Shannon entropy of the random variable X.

• H(X|Y ) = H(X,Y )−H(Y ): an alternative expression for mutual information

I(X : Y ) = H(X) +H(Y )−H(X,Y ).

• Classically: no ambiguity between these two expressions of mutual

information and they are same.
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Discord continued...

• Situation different in quantum regime [H. Ollivier and W. H. Zurek:(2001); L.

Henderson and V. Vedral:(2001); S. Luo: (2008)].

• Consider a bipartite state ρXY : where ρX and ρY are the states of the

individual subsystems.

• Shannon entropies H(X), H(Y ) are replaced by von-Neumann entropies

(e.g: H(X) = S(ρX) = −TrXρXLog(ρX)).

• Conditional entropy S(X|Y ) requires a specification of the state of X given

the state of Y .

• Such a statement in quantum theory is ambiguous until the to-be-measured

set of states of Y are selected.

• Focus on perfect measurements of Y defined by a set of one dimensional

projectors {πY
j }. The subscript j is used for indexing different outcomes of this

measurement.
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Discord continued...

• The state of X, after the measurement is given by

ρX|πY
j

=
πY
j ρXY π

Y
j

Tr(πY
j ρXY )

,(1)

with probability pj = Tr(πY
j ρXY ).

• S(ρX|πY
j
) is the von-Neumann entropy of the system in the state ρX , given

that projective measurement is carried out on system Y .

• The entropies S(ρX|πY
j
) weighted by the probabilities pj , yield the conditional

entropy of X, given the complete set of measurements {πY
j } on Y:

S(X|{πY
j }) =

∑

j
pjH(ρX|πY

j
).

• The quantum analogue of J(X : Y ) is thus

J(X : Y ) = S(X)− S(X|{πY
j }),(2)

where a supremum is taken over all {πY
j }.
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Discord continued...

• I(X : Y ) is similar to its classical counterpart

I(X : Y ) = S(X) + S(Y )− S(X,Y ).(3)

• It is clearly evident that these two expressions are not identical in quantum

theory. Quantum discord is the difference between these two generalizations

of classical mutual information,

D(X : Y ) = I(X : Y )− J(X : Y ).(4)

• Quantum discord aims to quantify the amount of quantum correlation that

remains in the system and also points out that classicality and separability are

not synonymous. In other words, it actually reveals the quantum advantage

over the classical correlation.
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Quantum Correlations

Bell’s Inequality

• Bell’s inequality: one of the first tools used to detect entanglement. [J. Bell:

(1965;1971)]

• Consider a bipartite system of two qubits where Alice and Bob share a

particle, each supplied and initially prepared by another party, say, Charlie.

Each of them are allowed to perform measurements on their respective

particle. Once Alice recieves her particle she performs a measurement on it.

• Alice is provided with two sets of measurement operators and she could

choose to do one of the two measurements: say PM1 and PM2, respectively.

• Since Alice does not know in advance which measurement to apply, she

adopts a random method to make her decision. Assume that each of these

measurements can have two possible values {+1,−1}. LetM1 andM2 be

the values revealed by the two measurements PM1 and PM2. Similarly, Bobs

measurements are labelled by PM3 and PM4. Each of theseM1,M2,M3

andM4 can have the values {+1,−1}.
• Bob does not decide in advance which measurement he will carry out and

waits until he has recieved the particle from Charlie and then chooses

randomly.
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Bell’s Inequality continued...

• The Clauser-Horne-Shimony-Holt inequality [J. F. Clauser and A. Shimony:

(1978)], derived on the premises of a local realistic theory is:

E[(M1)(M3] + E[(M2)(M3] + E[(M2)(M4]− E[(M1)(M4)] ≤ 2,(5)

where E stands for the mean value.

• Interestingly, it can be seen that in standard quantum theory, it is always

possible to design experiments for which this inequality gets violated [A.

Aspect, P. Grangier and G. Roger: (1981)]. This shows that quantum physics

can violate local realism.

• It may also provoke the implication that, if measurements on a quantum

state violate a Bell’s inequality, the state is entangled. However, the converse

of this statement need not be true.

• One can express the most general form of Bell-CHSH inequality for the

two-qubit mixed state

ρ = 1
4
[I ⊗ I + (r.σ)⊗ I + I ⊗ (s.σ) +

∑3

n,m=1
tmn(σm ⊗ σn)] asM(ρ) < 1,

whereM(ρ) = max(ui + uj), where ui, uj are the eigenvalues of the matrix

T †T (where the elements of the correlation matrix T is given by,

tmn = Tr[ρ(σm ⊗ σn)]) [Horodecki family: (1995)].
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Quantum Correlations

Teleportation Fidelity

• In addition to all these measures of quantum correlation one could also

attempt to quantify them in terms of an application, for e.g., fidelity of

teleportation [C. H. Bennett et al.: (1993)].

• The basic idea is to use a pair of particles in a singlet state shared by sender

(Alice) and receiver (Bob). Pairs in a mixed state could be still useful for

(imperfect) teleportation [S. Popescu: (1994)].

• The general mixed state of a two-qubit system :

ρ =
1

4
[I ⊗ I + (r.σ)⊗ I

+ I ⊗ (s.σ) +

3
∑

n,m=1

tmn(σm ⊗ σn)].(6)

• The quantities tnm = Tr[ρ(σn ⊗ σm)] are the coefficients of a real matrix

denoted by T. This representation is most convenient when one talks about

the inseparability of mixed states. In fact, all the parameters fall into two

different classes: those that describe the local behaviour of the state, i.e., (r

and s), and those responsible for correlations (T matrix).
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Teleportation Fidelity continued...

• In the standard teleportation scheme a mixed state ρ acts as a quantum

channel.

• One of the particles is with Bob while the other one and a third particle in an

unknown state |φ〉 are subjected to joint measurement in Alice’s Hilbert

space. These measurement operators are given by a family of projectors

Pk = |ψk〉〈ψk|, k = 0, 1, 2, 3,(7)

where ψk constitute the so-called Bell basis.

• Using two bits Alice sends Bob the result of outcome k on basis of which he

applies some unitary transformation Uk, obtaining in this way his particle in a

state k.

• Fidelity of transmission of the unknown state is given by [S. Popescu: (1994);

Horodecki family: (1996)],

F =

∫

S

dR(φ)
∑

k

pkTr(ρkPφ),(8)

where the integral is taken over all states (indexed by the angle φ) belonging

to the Bloch sphere with uniform distribution R and pk = Tr[(Pk ⊗ I)(Pφ ⊗ ρ)]

denotes the probability of the k-th outcome.
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Teleportation Fidelity continued...

• The task is to find those unitary transformations Uk that produce the highest

fidelity (a choice of a quadruple of such Uk is what would be called a

strategy).

• Maximizing F over all strategies gives [Horodecki : (1996)]

Fmax =
1

2
(1 +

1

3
N(ρ))

=
1

2
(1 +

1

3
[
√
u1 +

√
u2 +

√
u3]).(9)

Here ui and uj are the eigenvalues of U = T †(ρ)T (ρ), where

T (ρ) = [Tij ], Tij = Tr[ρ(σi ⊗ σj)] and T
† implies the Hermitian conjugate of

T . The classicial fidelity of teleportation in the absence of entanglement is

obtained as 2
3
. Thus whenever Fmax >

2
3
(N(ρ) > 1), teleportation is possible.

• At this point it is interesting to note that there is a non-trivial interplay between

Bell’s inequality and teleportation fidelity. This is because bothM(ρ), N(ρ) are

dependent on the correlation matrix T. The relationship between these two

quantities is the inequality N(ρ) > M(ρ). Hence, it is clear that states which

do violate Bell’s inequality are always useful for teleportation. However, this

does not rule out the possibility of existence of entangled states that do not

violate Bell’s inequality, but can still be useful for teleportation.
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Open Quantum Systems

• The theory of open quantum systems addresses the problems of damping

and dephasing in quantum systems by the assertion that all real systems of

interest are ‘open’ systems, surrounded by their environments [U. Weiss:

(1999); H. -P. Breuer and F. Petruccione: (2002)].

• Quantum optics provided one of the first testing grounds for the application

of the formalism of open quantum systems [W. H. Louisell: (1973)]. Application

to other areas was intensified by the works of [Caldeira and Leggett: (1983)]

and [Zurek: (1993)], among others.

• The recent upsurge of interest in the problem of open quantum systems is

because of the spectacular progress in manipulation of quantum states of

matter, encoding, transmission and processing of quantum information, for all

of which understanding and control of the environmental impact are

essential [Turchette et al.: (2000); Myatt et al.: (2000)]. This increases the

relevance of open system ideas to quantum computation and quantum

information.
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Open Quantum Systems: continued...

• Hamiltonian of the total (closed system):

H = HS +HR +HSR.

• S- system, R- reservoir (bath), S −R-interaction between them.

• System-reservoir complex evolves unitarily by:

ρ(t) = e−
i
h̄
Htρ(0)e

i
h̄
Ht.

• We are interested in the reduced dynamics of the system S, taking into

account the influence of its environment. This is done by taking a trace over

the reservoir degrees of freedom, making the reduced dynamics non-unitary:

ρs(t) = TrR(ρ(t)) = TrR

[

e−
i

h̄
Htρ(0)e

i

h̄
Ht
]

.
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Open Quantum Systems: continued...

• Open quantum systems can be broadly classified into two categories:

(A). Quantum non-demolition (QND), where [HS , HSR] = 0 resulting in

decoherence without any dissipation [Braginsky et al.: (1975), (1980); Caves

et al.: (1980); G. Gangopadhyay, S. M. Kumar and S. Duttagupta: (2001); SB

and R. Ghosh: (2007)] and

(B). Quantum dissipative systems, where [HS , HSR] 6= 0 resulting in

decoherence with dissipation [Caldeira and Leggett: (1983); H. Grabert, P.

Schramm and G-L. Ingold: (1988); SB and R. Ghosh: (2003), (2007)].

• In the parlance of quantum information theory, the noise generated by a

QND open system would be a “phase damping channel”, while that

generated by a dissipative (Lindblad) evolution would be a “(generalized)

amplitude damping channel”.

Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.22/53



Time scales associated with the Open System
Evolution

• The open system evolution is characterized by a number of time-scales, the

salient ones being:

• Scale associated with the natural frequency of the system.

• Relaxation time scale determined by the S-R coupling strength.

• Reservoir correlation time (memory time) associated with the high-frequency

cutoff in the reservoir spectral density and the time scale associated with the

reservoir temperature, which measures the relative importance of quantum

to thermal effects.
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Quantum Operations

• Any evolution consistent with the general rules of quantum mechanics can

be described by a linear, completely positive map, called quantum

operation (E). [M. A. Nielsen and I. L. Chuang: (2000)]

• Complete positivity: Consider any positive map E : E maps density operators

of system Q1 to density operators of system Q2, such that E(A) is positive for

any positive operator A.

If an extra system R of arbitrary dimensionality is introduced, and (I ⊗ E)(A) is
positive on any positive operator A on the combined system RQ1, where I
denotes the identity map on system R: then E is completely positive.

• A unitary evolution is a special case of a quantum operation: general

quantum operations can describe non-unitary evolutions, due to coupling

with environment.
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Quantum Operations continued...

• Any such quantum operation can be composed from elementary

operations:

• unitary transformations: E1(ρ) = UρU†

• addition of an auxiliary system: E2(ρ) = ρ⊗ σ: here ρ is the original system

and σ is the auxiliary one

• partial traces: E3(ρ) = TrB(ρ)

• projective measurements: E4(ρ) = PkρPk/Tr(Pkρ), with P 2
k = Pk.
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Quantum Operations continued...

Connection to quantum noise processes

• Interpret results from open quantum systems in terms of familiar noisy

channels. How these environmental effects can affect quantum computing.

In operator-sum representation, action of superoperator E due to

environmental interaction

ρ −→ E(ρ) =
∑

k

〈ek|U(ρ⊗ |f0〉〈f0|)U†|ek〉 =
∑

k

EkρE
†
k
,

unitary U acts jointly on system-environment |f0〉: environment’s initial state;

{|ek〉} a basis for the environment.

• environment-system assumed to start in a separable state.

• Ek ≡ 〈ek|U |f0〉 are the Kraus operators; partition of unity:
∑

k
E†

k
Ek = I. Any

transformation representatable as operator-sum is a completely positive (CP)

map.
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Model: (A). Dynamics of the Reduced Density
Matrix for two-qubit QND system

[SB, V. Ravishankar and R. Srikanth: (2009)]

• Hamiltonian, describing the QND interaction of two qubits with the bath:

H = HS +HR +HSR

=

L=2
∑

n=1

h̄εnJ
n
z +

∑

k

h̄ωkb
†
k
bk +

∑

n,k

h̄Jn
z (gnk b

†
k
+ gn∗

k bk).

• HS , HR and HSR stand for the Hamiltonians of the system, reservoir and

system-reservoir interaction, respectively. b†
k
, bk denote the creation and

annihilation operators for the reservoir oscillator of frequency ωk, g
n
k stands for

the coupling constant (assumed to be position dependent) for the

interaction of the oscillator field with the qubit system and are taken to be

gnk = gke
−ik.rn ,

where rn is the qubit position. Since [HS , HSR] = 0, the Hamiltonian (1) is of

QND type.
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Dynamics of the Reduced Density Matrix
continued...

• The position dependence of the coupling of the qubits to the bath helps to

bring out the effect of entanglement between qubits through the qubit

separation: rmn ≡ rm − rn. This allows for a discussion of the dynamics in two

regimes:

(a). Localized (independent) Decoherence:

where k.rmn ∼ rmn

λ
≥ 1

and

(b). Collective Decoherence:

where k.rmn ∼ rmn

λ
→ 0.
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Dynamics of the Reduced Density Matrix
continued...
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Fig.1 : Purity, Tr(ρ2(t)), as a function of temperature T (in units where h̄ ≡ kB = 1)

for the localized decoherence model. The bold, large-dashed and small-dashed

curves correspond to evolution time t = 2.0, 3.0 and 2.0, respectively. The bath

squeezing parameter α is equal to 0.2, 0.2 and 1.0, respectively, for the three

curves. Also the bath parameters γ0, ωc are equal to 0.01 and 100.0, respec-

tively. It can be shown from these results that with the increase in temperature, as

also evolution time t and bath squeezing α, the system becomes more mixed and

hence looses its purity.Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.29/53



Dynamics of the Reduced Density Matrix
continued...
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Fig.2 : Purity, Tr(ρ2(t)), as a function of temperature T (in units where h̄ ≡ kB = 1)

for the collective decoherence model. The bold, large-dashed and small-dashed

curves correspond to evolution time t = 2.0, 3.0 and 2.0, respectively. The bath

squeezing parameter α is equal to 0.2, 0.2 and 1.0, respectively, for the three

curves. Also the bath parameters γ0, ωc are equal to 0.01 and 100.0, respec-

tively. It can be shown from these results that with the increase in temperature, as

also evolution time t and bath squeezing α, the system becomes more mixed and

hence looses its purity.Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.30/53



Model: (B). Dynamics of the Reduced Density
Matrix for two-qubit Dissipative system

[SB, V. Ravishankar and R. Srikanth: (2010)]

• Hamiltonian, describing the dissipative, position dependent, interaction of

two qubits with bath (modelled as a 3-D electromagnetic field (EMF)) via

dipole interaction as:

H = HS +HR +HSR

=

N=2
∑

n=1

h̄ωnS
z
n +
∑

~ks

h̄ωk(b
†
~ks
b~ks + 1/2)− ih̄

∑

~ks

N
∑

n=1

[~µn.~g~ks(~rn)(S
+
n + S−

n )b~ks − h.c.].

~µn : transition dipole moments, dependent on the different atomic positions

~rn

S+
n = |en〉〈gn|, S−

n = |gn〉〈en| :

dipole raising and lowering operators satisfying the usual commutation

relations

Sz
n =

1

2
(|en〉〈en| − |gn〉〈gn|) :

energy operator of the nth atom
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Dynamics of the Reduced Density Matrix
continued...

b†
~ks

, b~ks: creation and annihilation operators of the field mode (bath) ~ks with the

wave vector ~k, frequency ωk and polarization index s = 1, 2

• System-Reservoir (S-R) coupling constant:

~g~ks(~rn) = (
ωk

2εh̄V
)1/2~e~kse

i~k.rn .

V : the normalization volume and ~e~ks: unit polarization vector of the field.

• S-R coupling constant: dependent on the atomic position rn.

This leads to a number of interesting dynamical aspects.
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Dynamics of the Reduced Density Matrix
continued...

• Assuming separable initial conditions, and taking a trace over the bath the

reduced density matrix of the qubit system in the interaction picture and in

the usual Born-Markov, rotating wave approximation (RWA) is obtained as

dρ

dt
= − i

h̄
[HS̃ , ρ]−

1

2

2
∑

i,j=1

Γij [1 + Ñ ](ρS+
i S

−
j + S+

i S
−
j ρ− 2S−

j ρS
+
i )

− 1

2

2
∑

i,j=1

ΓijÑ(ρS−
i S

+
j + S−

i S
+
j ρ− 2S+

j ρS
−
i )

+
1

2

2
∑

i,j=1

ΓijM̃(ρS+
i S

+
j + S+

i S
+
j ρ− 2S+

j ρS
+
i )

+
1

2

2
∑

i,j=1

ΓijM̃∗(ρS−
i S

−
j + S−

i S
−
j ρ− 2S−

j ρS
−
i ).
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Dynamics of the Reduced Density Matrix
continued...

Ñ = Nth(cosh
2(r) + sinh2(r)) + sinh2(r),

M̃ = −1

2
sinh(2r)eiΦ(2Nth + 1) ≡ ReiΦ(ω0),

with

ω0 =
ω1 + ω2

2
,

and

Nth =
1

e
h̄ω

kBT − 1

.

• Here Nth is the Planck distribution giving the number of thermal photons at

the frequency ω and r, Φ are squeezing parameters. The analogous case of

a thermal bath without squeezing can be obtained from the above

expressions by setting these squeezing parameters to zero, while setting the

temperature (T ) to zero one recovers the case of the vacuum bath.

Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.34/53



Dynamics of the Reduced Density Matrix
continued...

HS̃ = h̄

2
∑

n=1

ωnS
z
n + h̄

2
∑

i,j

(i 6=j)

ΩijS
+
i S

−
j ,

where

Ωij =
3

4

√

ΓiΓj

[

−[1− (µ̂.r̂ij)
2]
cos(k0rij)

k0rij
+ [1− 3(µ̂.r̂ij)

2]

× [
sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3
]

]

.

µ̂ = µ̂1 = µ̂2 and r̂ij are unit vectors along the atomic transition dipole moments

and ~rij = ~ri − ~rj , respectively.

k0 = ω0/c, rij = |~rij |.

Dynamics of QuantumCorrelations in OpenQuantum Systems:International School andConferenceOnQuantum Information 2011 (I.O.P., Bhubaneswar) – p.35/53



Dynamics of the Reduced Density Matrix
continued...

• Wavevector k0 = 2π/λ0, λ0 being the resonant wavelength, occuring in the

term k0rij sets up a length scale into the problem depending upon the ratio

rij/λ0. This is thus the ratio between the interatomic distance and the

resonant wavelength, allowing for a discussion of the dynamics in two

regimes:

(a). localized decoherence: where k0.rij ∼ rij
λ0

≥ 1

and

(b). collective decoherence: where k0.rij ∼ rij
λ0

→ 0.

• Collective decoherence would arise when the qubits are close enough for

them to feel the bath collectively or when the bath has a long correlation

length (set by the resonant wavelength λ0) in comparison to the interqubit

separation rij .
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Dynamics of the Reduced Density Matrix
continued...

• Ωij : a collective coherent effect due to the multi-qubit interaction and is

mediated via the bath through the terms

Γi =
ω3
i µ

2
i

3πεh̄c3
.

• The term Γi is present even in the case of single-qubit dissipative system bath

interaction and is the spontaneous emission rate, while

Γij = Γji =
√

ΓiΓjF (k0rij),

where i 6= j with

F (k0rij) =
3

2

[

[1− (µ̂.r̂ij)
2]
sin(k0rij)

k0rij
+ [1− 3(µ̂.r̂ij)

2]

× [
cos(k0rij)

(k0rij)2
− sin(k0rij)

(k0rij)3
]

]

.

• Γij : collective incoherent effect due to the dissipative multi-qubit interaction

with the bath. For the case of identical qubits, as considered here,

Ω12 = Ω21, Γ12 = Γ21 and Γ1 = Γ2 = Γ.
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Dynamics of the Reduced Density Matrix
continued...

2 4 6 8 10 12 14
T

0.2

0.4

0.6

0.8

1
purity

2 4 6 8 10 12 14
T

0.2

0.4

0.6

0.8

1
purity

Fig.3 & 4 : Purity, Tr(ρ2(t)), as a function of temperature T for (3) the localized

decoherence model, where rij/λ0 is ≥ 1 and (4) the collective decoherence

model, where rij/λ0 is ≈ 0. Here with r12 is the inter-qubit distance. The large-

dashed, bold and dotted curves correspond to evolution time t = 1.0 and bath

squeezing parameter r = −0.5, 1.0 and 1.5, respectively. Also ω0 and the bath

parameter Γ, are set equal to 1.0 and 0.05, respectively. Both for the independent

as well as the collective decoherence model, with increase in temperature, as

also evolution time t and bath squeezing r, the system becomes more mixed and

hence looses its purity.
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Dynamics of Entanglement

Quantum Non-Demolition (QND) Evolution

20 40 60 80 100
t

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2
C

10 20 30 40 50
t

0.1

0.2

0.3

0.4

0.5

C

Fig.5 & 6 : Concurrence C as a function of time of evolution t at T = 5.0 and bath

squeezing parameter α equal to 0.2. Figure (5) refers to the localized decoher-

ence model and (6) the collective decoherence model.
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Dynamics of Entanglement: QND contin-
ued...

• In figure 5, concurrence is plotted with respect to time for the case of the

localized decoherence model, while figure 6 depicts the temporal behavior

of concurrence for the collective decoherence model. It is clearly seen from

the figures that the two qubit system is initially unentangled, but with time

there is a build up of entanglement between them as a result of their

interaction with the bath. Also the entanglement builds up more quickly in

the collective decoherence model when compared to the localized model.

This is expected as the effective interaction between the two qubits is

stronger in the collective case. Another interesting feature that can be

inferred from figure 5 is the phenomena of entanglement birth and death [T.

Yu and J. H. Eberly: (2009) ] in the localized decoherence model.
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Dynamics of Entanglement continued...

Dissipative Evolution
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Fig. 7 & 8 : Concurrence C as a function of time of evolution t. Figure (7) deals

with the case of vacuum bath (T = r = 0), while figure (8) considers concurrence

in the two-qubit system interacting with a squeezed thermal bath, for a tempera-

ture T = 1 and and bath squeezing parameter r equal to 0.1. In both the figures

the bold curve depicts the collective decoherence model (kr12 = 0.05), while

the dashed curve represents the independent decoherence model (kr12 = 1.1).

In figure (8) for the given settings, the concurrence for the independent decoher-

ence model is negligible and is thus not seen.
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Dynamics of Entanglement continued...

Dissipative Evolution
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Fig. 9 & 10 : Concurrence C with respect to inter-qubit distance r12. Figure (9)

deals with the case of vacuum bath (T = r = 0), while figure (10) considers

concurrence in the two-qubit system interacting with a squeezed thermal bath,

for T = 1, evolution time t = 1 and bath squeezing parameter r equal to 0.1.

In figure (a) the oscillatory behavior of concurrence is stronger in the collective

decoherence regime, in comparison with the independent decoherence regime

(kr12 ≥ 1). In figure (10), the effect of finite bath squeezing and T has the effect of

diminishing the concurrence to a great extent in comparison to the vacuum bath

case. Here the concurrence for the localized decoherence regime is negligible,
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Dynamics of Quantum Correlations

• We made a comparative study, on states generated by our model, of various

features of quantum correlations like teleportation fidelity (Fmax), violation of

Bell’s inequalityM(ρ) (violation takes place forM(ρ) ≥ 1), concurrence C(ρ)

and discord with respect to various experimental parameters like, bath

squeezing parameter r, inter-qubit spacing r12, temperature T and time of

evolution t [I. Chakrabarty, SB, N. Siddharth: (2011)].

• A basic motivation of this work is to have realistic open system models that

generate entangled states which can be useful for teleportation, but at the

same time, not violate Bell’s inequality. We provide below some examples of

such states. Interestingly, we also find examples of states with positive discord,

but zero entanglement, reiterating the fact that entanglement is a subset of

quantum correlations.
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Dynamics of Quantum Correlations: QND
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Dynamics of Quantum Correlations: QND
continued...

Fig. 11 : The example depicted in Figs. (13 (a)), (b), (c), (d), study two-qubit den-

sity matrices, as a function of bath squeezing parameter r, from the independent

model. In Fig. (11 (a)), concurrence is plotted with respect to bath squeezing pa-

rameter r. It is seen that states are entangled when r lies in the range [−1.8, 1.8].

Teleportation fidelity, as in the Fig. (11 (b)), indicates that the states are useful

for teleportation for the same range of r, i.e., when they are entangled. How-

ever, from Bell’s inequality, as shown in Fig. (11 (c)), in the same range, we see

that the states do not violate Bell’s inequality. Interestingly, from Fig. (11 (d)), we

find a non zero quantum discord in the range [−3, 3] and particularly, in the range

[−3,−1.8]∪[1.8, 3], i.e., where entanglement as depicted in Fig. (11 (a)) is zero, dis-

cord is non-zero. This brings out the fact that the amount of entanglement present

in a system is not equivalent to the the total amount of quantum correlation in it.
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Dynamics of Quantum Correlations: QND
continued...
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Dynamics of Quantum Correlations: QND
continued...

Fig. 12 : Figs. (12 (a)), (b), (c), (d) depict, in the independent regime of the

model, concurrence, teleportation fidelity, Bell’s inequality and discord, respec-

tively, with respect to the inter-qubit spacing r12. In Fig. (12 (a)), from the plot of

concurrence, it can be seen that the states are entangled with a positive concur-

rence for all values of r12, except in the range [1.5, 1.6], [4.6, 4.8]. Figure (12 (b))

shows that the states useful for teleportation are from the same range of r12, for

which they are entangled. From Fig. (12 (c)), it can be seen that there are certain

regions where Bell’s inequality is violated, but mostly it is satisfied. Like in the pre-

vious example, we see non-vanishing value of discord in the range where there is

no entanglement, as shown in Fig. (12 (d)).
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Dynamics of Quantum Correlations: Dissipative
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Dynamics of Quantum Correlations: Dissipative
continued...

Fig. 13 : Quantum correlations in a two-qubit system undergoing a dissipative

evolution. The Figs. (a), (b), (c) and (d) represent the evolution of concurrence,

maximum teleportation fidelity Fmax, test of Bell’s inequality M(ρ), discord as a

function of inter-qubit distance r12. Here temperature T = 300, evolution time t is

0.1 and bath squeezing parameter r = −1. From Fig. (15 (a)), we find that the two

qubit density matrix is entangled with a positive concurrence except at the point

0.133 (approx) and for r12 ≥ 0.4. Figure (13 (b)) illustrates that Fmax > 2
3
, for all

values of r12 except where there is no entanglement. However, from Fig. (13 (c))

we find that M(ρ) < 1 for all values of r12, clearly demonstrating that the states

can be useful for teleportation despite the fact that they satisfy Bell’s inequality.

Moreover, from Fig. (13 (d)), a positive discord is seen for the complete range

of r12, even in the range where there is no entanglement. As a function of the

inter-qubit distance, the various correlation measures exhibit oscillatory behavior,

in the collective regime of themodel, but flatten out subsequently to attain almost

constant values in the independent regime of the model. This oscillatory behavior

is due to the strong collective behavior exhibited by the dynamics due to the

relatively close proximity of the qubits in the collective regime.
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Dynamics of Quantum Correlations: Dissipative
continued...
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Dynamics of Quantum Correlations: Dissipative
continued...

Fig. 14 : Figures (a), (b), (c) and (d) represent the evolution of concurrence,

maximum teleportation fidelity Fmax, test of Bell’s inequality M(ρ), discord with

respect to the time of evolution t, evolving under a dissipative interaction. Here

temperature T = 300, inter-qubit distance r12 = 0.11 and bath squeezing param-

eter r = −1. In Fig. (14 (a)), concurrence is seen to exhibit damped oscillations.

Figure (14 (b)), for teleportation fidelity Fmax, also shows a damped behavior and

can be seen, in general, to be greater than 2
3
, except at the points where there is

no entanglement (zero concurrence), where it touches 2
3
. From Fig. (14 (c)), we

find that the states satisfy Bell’s inequality. Discord, as in Fig. (14 (d)), is positive,

though its value is decreasing with time.
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Dynamics of Quantum Correlations: Dissipative
continued...
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Fig. 15 & 16 : An example showing vanishing entanglement, but non vanishing

discord, for a dissipative two-qubit evolution. Figures (15) and (16) represent the

evolution of mutual information (blue), quantum discord (quantum correlation)

(green), concurrence (red) and classical information (pink) with respect to the

time of evolution t, evolving under a dissipative interaction for collective and in-

dependent models, respectively. We find that in the absence of entanglement

from a certain time t > t̄, the classical correlation and the quantum discord be-

comes identical. Here for (15) temperature T = 10, r = 0 and inter-qubit dis-

tance r12 = 0.11 and for (16) temperature T = 10, r = 0 and inter-qubit distance

r12 = 1.5.
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Conclusions

• We have discussed the dynamics of the evolution of measures of quantum

correlations such as entanglement and discord in open system models

consisting of two qubits interacting with their baths under general settings.

• We discussed examples, generated by our two-qubit evolution, where

entangled states, generated via a QND or dissipative evolution, in both the

collective as well as independent regimes, do not violate Bell’s inequality, but

can still be useful for teleportation. These examples also illustrate that

quantum correlations, when quantified in terms of discord, can be non zero

even in the absence of entanglement.
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