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Plan of the talk

e Quantum Entanglement.

e Different states.

e Quantum Communication.

e Non-Destructive Discrimination (NDD) and its examples and uses.
e Quantum Teleportation: Different modes.

e Dense Coding and Quantum Conversation.

e Non-Standard Probabilistic Teleportation
— Through |W) and Quadripartite (|P1) and |P1)) states.

e Quantum Information Splitting (QIS):
— Procedure.
— Theorems and lemmas.

— Efficiency.



Quantum Entanglement and Teleportation

Non-intuitive quantum correlations can exist between two or more parti-
cles.

It enables different types of quantum communication protocols like tele-
portation, superdense coding, secret sharing, quantum cryptography,
one-way quantum computation etc..

Teleportation of arbitrary single qubit, through an entangled channel of
EPR pair [Bennett et al.].

Experimentally it has been achieved using different quantum systems.

References : Bennett et al., Phys. Rev. Lett. 70, 1895 (1993);
Bouwmeester et al., Nature (London) 390, 575 (1997).



3-qubit States

e Classification is done on the basis of stochastic local operations and
classical communications (SLOCCQ).

— GHZ state: |GHZ)123 = %(|OOO)123—|—|111>123)—> suitable for perfect
teleportation.

— W state: |W>123 = %(|100>123 + |010>123 -+ |001>123) —— not suitable
for perfect teleportation.

e A new W-class of state: |W,)ioz = \/2_1|_72n(|100>123 + /ne7|010)123 +

vn + 1€ |001)123), is suitable for teleportation [ n is real; v, are phases].

e References : P. Agarwal, and A. K. Pati, Phys. Rev. A 74, 062320
(2006); S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000).



Magnon State

e Most general two magnon four qubit state: S;_ o W.oiiii) + W |iiii) +
W~ Jiddi), (i is a compliment of i).

e Can teleport an arbitrary two qubit state deterministically if:

Wfloﬂgou-l-wflowom = 0, |[W101|? = [Wi10|?*+|W100|? = [Woo01|? = |[Wo11|?+
\Wo1ol~.

e — Maximum entanglement.

e References: S. Prasath, S. Muralidharan, P. K. Panigrahi, and C. Mitra,
'eprint:quant-ph/0905.1233v2.



Five Qubit State

e [Brown et al., J. Phys. A. Math. Gen. 38(5), 1119 (2005)] Maximally
entangled 5-qubit state by extensive numerical optimization:

[¥s) = 301001)|6-)+I010)6-) + [100) 6 )+{111)[44)],
where [i42) = 35(/00) £ 11)) and |¢x) = 25(|01) % |10)).

e The von Neumann entropy between (1234—5) is equal to 1 and between
(123—45) is 2 — Teleportation.

e Reference: Muralidharan, S., Panigrahi, P.K., Phys. Rev. A 77, 032321
(2006).



Composite GHZ-Bell State

e Some of the Bell states are decoherence free under certain environment.

e Being the superposition of two terms, the GHZ state can be less prone
to decoherence.

e Five-qubit composite GHZ-Bell state: |¢) = —(|000) + |111>)%(|00> -+

11)) = 2(|00000) + [00011) + [11100) + [11111)).

e [ his state has the maximum possible entanglement between two subsys-
tem.

e Reference: Rao, D.D.B., Panigrahi, P.K., Mitra, C., Phys. Rev. A 78,
022336 (2008).



Composite GHZ-Bell State

e Five-qubit state can teleport one and two-qubit state deterministically.

e [ he Generalized ‘2N + 1’ qubit state can be represented by the product
of one GHZ and (NN — 1) number of Bell states :

1Co) = |ET) aB|YT) AB weeee 1Y) aB,

where [¢T)4p = %UOAOAOB) + |14141p)) and |[YT)ap = %UOAOB) +
11415)).

e For deterministic N-qubit teleportation, the basis states of Alice’'s system
can be decomposed into GHZ-Bell pair.

e The capacity of superdense coding of this channel is (2N +41), satisfying
‘Holevo bound’.

e References : D. Saha and P. K. Panigrahi, Quantum Inf. Process, DOI
10.1007/s11128-011-0270-x.



Quantum Communication

e All the earlier channels are useful for dense coding, as well as for QIS.

e It is found that the number of protocols for QIS are less for certain
quantum channels then expected.

e Different quantum communication protocols [teleportation, state sharing
and dense coding etc.] require entangled [e.g. Bell]bases.

e It can be used for quantum communication between two and more parties.
For this purpose, we may require Non Destructive Discrimination (NDD).

e NDD of Bell states are analyzed [M. Gupta and P. K. Panigrahi, arXiv:quant-
ph/0504183v1] and experimentally realized [J. R. Samal et al., J. Phys.
B: At. Mol. Opt. Phys. 43 095508 (2010)].



Generation of cluster states:Q-Circuit

e Cluster states containing 4 and 5 particles can be generated
through following circuitry:
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Non-Destructive Discrimination (NDD)

e Sixteen orthogonal cluster states are distinguished without disturbing:
Measurements on four ancilla bits.

e Four qubit cluster states are made to interact with these ancillas:

|Ca)
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4-qubit NDD

TABLE I: Four-qubit Cluster State discrimination from the ancilla measurements

Ancilla Measurement | Corresponding four-qubit Cluster State
|0000) |0000) + [0011) + |1100) — |1111)
|0001) |0000) — |0011) + |1100) + |1111)
|0010) |0001) + |0010) — |1101) + |1110)
|0011) |0001) — |0010) — |1101) —|1110)
|0100) |0000) + |0011) — |1100) + |1111)
|0101) |0000) — |0011) — |1100) —|1111)
|0110) |0001) + |0010) + |1101) — |1110)
|0111) |0001) — |0010) + |1101) + |1110)
|1000) |0100) + [0111) + |1000) — |1011)
|1001) |0100) — |0111) + |1000) + |1011)
|1010) |0101) + |0110) — |1001) + |1010)
[1011) |0101) — |0110) — |1001) — |1010)
|1100) |0100) + |0111) — |1000) + |1011)
[1101) |0100) — |0111) — |1000) — |1011)
[1110) |0101) + |0110) + |1001) — |1010)
[1111) |0101) — |0110) + |1001) + |1010)
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5-qubit NDD
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5-qubit NDD

TABLE II: Five qubit cluster state discrimination from the ancilla measurements

Ancilla Measurement | Corresponding five qubit Cluster State
|00000} [00000} + [0D111}) + [11101} + [11010)
|00001) |00000) — |0D111}) + [11101} — [11010)
|00010) [00010} + |00101}) + [11111} — [11000)
|00011) [00010}) — |00101}) + [11111} — [11000)
|00100) [00000} + |00111) — [11101) — |11010)
|00101) |00000) — |00111) — |11101) + |11010)
|00110) [00010} + |00101) — 11111} — |11000}
[00111) |00010) — |00101) — 11111} + |11000)
|01000) [01000} + |01111}) + [10101} + |10010)
|01001) [01000}) — |01111} + [10101} — |10010)
|01010) (01010} + |01101}) + [10111} + |10000)
[01011) (01010} — |01101}) + [10111} — |10000)
|01100) [01000} + |01111) — [10101) — |10010}
|01101}) |01000) — |01111) — 10101} + |10010)
[01110) [01101} + |01010) — 10000} — |10111)
[01111) [01010) — |01101) — 10111} + | 10000}
| 10000} [00001) + [00110}) 4+ [11100} + [11011)
[10001) [00001) — |00110}) 4+ [11100} — [11011)
|10010) (00011} + [00100}) 4+ [11110} + [11001)
[10011) (00011} — |00100}) 4+ [11110} — [11001)
|10100) [00001) + |00110) — 11100} — |11011)
|10101}) |00001) — |00110) — 11100} + |11011)
[10110) [00011} + |00100) — 11110} — |11001)
[10111) [00011) — |00100}) — |11110}) + |11001)
[11000) [01001} + |01110} + |10100}) + |10011)
[11001}) [01001) — 01110} + |10100}) — |10011)
[11010) [01011} + 01100} + |10110} + |10001)
[11011}) [01011) — |01100} + |10110}) — |10001)
[11100) [01001} + |01110) — 10100} — |10011)
[11101) [01001) — |01110} — |10100} + |10011)
[11110) [01011} + |01100) — |10110) — |10001)
[11111) [01011) — 01100} — |10110}) + |10001)
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Quantum Dialogue using NDD

e Holevo bound: Four classical bits transmitted by sending two qubits and
five classical bits transmitted by sending three qubits respectively.

e Alice encodes four classical bits into two qubits by performing a (o; ® o;)
operation, 4,5 € (0,1,2,3).

e On receiving the qubits from Alice, Bob performs NDD to decode:

F U"i ™

|Ca) Uj —
‘ NDD ’

—| 1C)

\ F.

4 ancillas

Outcome H—
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Quantum Dialogue using NDD

e Bob can send two qubits of |C4) to Alice and encode four cbits of infor-
mation by operating on her two qubits and send them to Alice.

e Alice can decode this information through NDD and the dialogue con-
tinues without destroying the entanglement.

e Same can be done using |Cs).

e Position of errors [bit flip and phase flip] in initial cluster states can be
known: No cluster basis measurement required.

16



Dense Coding Protocol

e Alice and Bob possess, the first three and the last two qubits of |¢s)
respectively.

e [0 send a secret message “mimomsmams’ to Bob, where m; € {O, 1},
Alice operates unitarily on her first three qubits:

((CI'C2-C3-C4'C5) ® I ® I)|¢5> — |¢5>m1m2m3m4m5' (1)

where,

(=0, IR, m =1, IRIRI, mi =0,
CC=I0IR0c,, me=1, IQRIRI, mo=0,
(*=0.®0.®I, my=1, I®I®I, m3=0,
(*=0, IR0, ma=1, IQRIRI, mas=0,
C=IQ0, R0, ms=1, IRIRI, ms=0. (2)

17



Dense Coding Protocol

e Example: For 5-bit classical information (10010),
(exRIDNARIIDARIRD(0xRTIR0ox)(IRIRI)) TR ID)|5) = (|¥s)100010). (3)

and then sends the three qubits to Bob.

e Bob performs a joint five partite von-Neumann measure-
ment in [¢¥5)m;mom3mms Dasis and distinguishes these states,
thereby obtaining the message encoded by Alice.

18



Quantum Conversation

e Alice first prepares an ordered sequence of N copies of the
five qubit Brown et al., state

ws): [(q1, @3, @3, ai. 4d)), (4%, @5, @) 1.

e Alice then takes the same one qubit from each |¢5) to form
five ordered sequences corresponding to the five qubits
Sk = la}, a2, q3...-a}].

e she keeps the particle sequences S1, S>, S3 and transmits the

sequences S4 and Sg to Bob.

19



Measurement basis of Alice and Bob

e |Y5) can be written down in two different forms:

1
95) 12345 = §(|001>|¢—> + [010)|¥—) + |100)[¢p+) + |111)[¢)4)) 12345,

[¥5)13245 = ([|¢4)]1) + [¥+)[0)]|0+) + [[¢+)[1) — [¥+)]0)]|0—)) 13245
—[|lo=)|1) 4 [9-)[0)]|14) + [|¢-)|1) — [¥-)[0)]|1—). (4)

— to check the presence of an eavesdropper.

e Measuring the qubits 4 and 5 by projection on the Bell basis, Alice’s first
three qubits collapse into one of the computational basis:

(/001),|010),|100),|111))123, — Basis of Alice’'s measurement

e For the other choice of |¢s5), if Bob measures his two qubits in the ba-
sis |04)4s, |0—)as, |14 )45, |1 —) 45, corresponding Alice’'s measurement basis
would be:

(I 11)+[¥4)10))132, (|64)]1)=[¥4)|0))132, (—[¢-)[1) - [¢-)]0))132 and ([¢-)|1)—|¢-)|0))132.

e [ hus, Alice and Bob can guard against eavesdropping.

20



Dense coding, NDD and gquantum conversation

e [ he secret message “mimomsmams’ IS encoded by Alice in 3 qubits
[dense coding] and sent to Bob.

e Bob applies NDD on the 5 qubit Brown et al. state and decodes the
message without disturbing the entanglement.

e The circuit outcome with input |¥s5)m,msmsm.m; iIN general is |ys5)x|x) where
|x) is given by, |mimaomsmyms) and [ys)x iS given by,

¢> m;m,ms;m,ms -

e Bob now measures the ancillas in the product basis and thereby obtains
the classical message.

e Bob encodes his message in the first 3 qubits unitarily, and sends the 5
qubits to Alice in two sets of (4,5) and (1,2,3).

e [ he cycle is established.

21



Six Qubit State

e Borras et. al. [J. Phys. A. Math. Gen. 21]: Genuinely entangled 6-qubit
state non-decomposable into pairs of Bell states.

[¥6) = z[1000)(|0)|¢+) + [1)[1h+4)) + [001)(|0)[9—-) — [1)[$-))
+(010)([0)[¢4) — [1)[¢+4)) + [011) (|0} [¢—) + [1)[v-))+
[100) (—[0)[v—) — [1)|¢-)) 4+ [101)(—[0)|$+4) + [1)|¥-))
[110)([0)|¢—) — [1)[¢—)) +[111)(|0)[vo1) + [1)[e4))],

where |¢y) = %(|OO) +(11)) and |¢+) = LQ(|01) + [10)).

e Reference: Choudhury, S., Muralidharan, S., Panigrahi, J. Phys. A.
Math. Theor. 42, 115303 (2009).

22



Non-Standard Probabilistic Teleportation protocol

A non-standard teleportation scheme is proposed, wherein probabilistic
teleportation is achieved in conventionally non-teleporting channels.

We make use of entanglement monogamy to incorporate an unknown
state in a multipartite entangled channel, such that the receiver partially
gets disentangled from the network.

the sender performs local measurement based teleportation protocol in
an appropriate measurement basis, which results with the receiver in the
possession of an unknown state, connected by local unitary transforma-
tion with the state to be teleported.

This procedure succeeds in a number of cases, like that of W and other
non-maximally entangled four qubit states, where the conventional mea-
surement based approach has failed.

23



Comparison between Conventional and non Conventional
Approach

e Conventional Approach

Let us consider a Bell state of the form [|n) = LQ[\OAOB) + [141p)].

Addition of single qubit unknown state to the Bell state at Alice’s
Side, |n) = %[a|OAOAOB> + a|04141lp) 4+ B|140405) + 5|14l alB)].
Now rearranging the above state,we get

1) = 161)[2l0B) + BI18)] + |¢4)[l05) — B|15)]
+y 1) [el1s) + 5l05)]
+)lalls) — 8l0B)]] (5)
where, the {|¢j), w3)} forms a Bell-Basis.

Therefore a measurement in Bell Basis on Alice’s side will lead to a
state i.e. unitarily equivalent to the unknown state, she wanted to

send.

24



Non - Conventional Approach

e In this Case also consider a Bell state of the form: |n) = %HOAOB) +
1141p)].

e Similarly, addition of single qubit unknown state to the Bell state at
Alice's Side, we get: |n/) = -[a]|04040B) + a|041415) + B]140405) +

2
B114141p)]

e Now Alice applies C-NOT 1 — 2 and subsequently Hadamard on 1
qubit,we get
1
') = §[|OOA>[04|OB> + B|1p)] 4+ |014)[|0p) — B|1p)] + |104)[c|1B) + B|0B)]

+[114)[a[1B) — B|0B)]] (6)

where, the {[|004),[014),|104),|114)} forms a two qubit computational
basis.

25



Probabilistic Teleportation of single qubit unknown state

through |W) state

Consider a W-state (particle 2 and 3 belongs to Alice, 4 belongs to Bob)
- |W)azs = %[|100>234 +1010)234 + |001)234]

Addition of unknown state at Alice's end:

1
(W) ® |[W)oza = —3[Oé|0100>1234 + «|0010)1234 + «|0001) 1234 (7)

7
+ 5|1100) 1234
+/3|1010)1234 + B/1001)1234]. (8)

Initially, Alice applies a control-NOT 1 — 2 and subsequently a Hadamard
gate on the first qubit :

(W11)1234 = %[|010>1z3(a|0>4 + B]1)4) +000)123(cx|1)4 + 3|0)4)

+|110)123(|0)a — B]1)a) + [100)123(c|1)a — B|0)a) + @[001)123|0)4
+a|101)123|0)4 + 5|011)123|0)a — B]111)123|0)4].  (9)

26



Probabilistic Teleportation of single qubit unknown state

through |W) state

e At last ,Alice performs a three particle measurement on her
qubits in the computational basis.

e And communicates the obtained result to Bob, on the other
hand he carries out the required operations on his qubit to
get the desired state.

e Note:- It is evident that teleportation is possible, only if the
measurement outcomes are |010)153, |000)123, |110)123 and
|1100)1o3 and fails completely if the outcomes are |001)1o3,
|1101)153, |011)153 and |111)153. Hence probability of tele-
portation is half.

27



2-qubit non-maximally entangled unknown state through |W)

e Probabilistic teleportation of unknown two qubit entangled state can be
done through W-state as the entangled channel: Bob measures one of
his particles before unitary transformation [Cao et al.]

e Teleportation occurs without the interaction of Alice’'s qubits with Bob's
qubits. Although general unknown 2-qubit state cannot be teleported
using W-state [Muralidharan et al.], probabilistic teleportation of non-
maximally entangled two qubit state: |W)1o = «|00) + B[|01) 4 |10)] is
possible ( |a]? 4+ 2|8|% = 1).

e A 4-qubit W-state of the type (particle 3 with Alice and 4,5 with Bob):

1
(W)12 ® |[W)z45 = \/—§[Oé|00001>12345 + @[00010)12345 + «|00100) 12345

+ 8|10001) 12345 + B|10010) 12345 + B|10100) 12345
+ 3/01001) 12345 4+ £]01010) 12345 4 5|01100)12345]. (10)
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2-qubit non-maximally entangled unknown state through |[W)

e Alice applies a control-NOTs 2 — 3 and 1 — 3 subsequently and measures
the qubit 3 in computational basis:

1

(13|W7)12345 = [«|0000) 1245 + 8/1010)1245 + $|0100) 1245
\/a2 + 432
+ B]0110)1245 + 8|1001)1245], (11)
or
1
(03|W7)12345 = NTEETY: [«|0001)1245 + «[0010) 1245

+ 8]/1000) 1245 + 3|0100)1245]. (12)

e It can be seen that, teleportation is possible if the measurement outcome
1S |13>.

29



2-qubit non-maximally entangled unknown state through |[W)

e Alice applies a Hadamard on qubit 1 and then measures qubit 2 in com-
putational basis, leading to two outcomes:

(02| W11)1245 = %[(|0>1)(5|01>45 + B]10)45) — (]1)1)(B|01)45 + B|10)4s)
+(]0)1)(«|00)45) + (|1)1)(|00)45)](13)

or
1

2—52[(|O)1)(5\00>45 + B8|10)as5) + (|1)1)(8]00)4s + B]10)45)].

(14)

(1o|W11)1045 =

e Teleportation is possible if measurement outcome is |02) and fails if it is
|12). First outcome: Alice measures qubit 1 in computational basis and
sends the results to Bob, who makes |local operations to get the state.

e If the outcome of Alice’'s measurement is |1), then Bob applies a unitary
transformation to obtain the desired state.
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2-qubit non-maximally entangled unknown state through |[W)

e Probabilistic teleportation of partially entangled two qubits have been
implemented probabilistically.

e If one considers |W)o3s = —=[|101)934 4 |110)234 4+ |011)934] as entangled
V3

channel, then the state that can be teleportated is |W)1o = «a|11)12 +
Bl101)12 + [10)12].

e W-State Recovery :- It is interesting to note that, even if she fails
to teleport through non-maximally entangled unknown two qubit state,
Alice can regain this unknown two qubit state, with certain probability,
by classical communication to Bob.

e Bob then applies a Hadamard operation on particle 5, followed by a
measurement of his two particles in computational basis.

e With the help of Bob, we can check that Alice is able to recover the
w-state again probabilistically.
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Teleportation Through Quadripartite State

e On SLOCC basis classification, 4 particle states are classified into different types. a
subset of which is investigated for possibility of implementing the present protocol.

e T hese states are:
1
[P1) = |W) = ~[|0001) +[0010) + [0100) + |1000)},

1P5) = %nooom 4+ [1111) 4 |0011) + [0101) + |0110)], (15)

Teleportation of unknown 1 qubit state through |P1) and |P>) and 2 qubit non-maximally
entangled state through |P;) and |P), conventional measurement based approach has
failed, whereas the present protocol results in a probabilistic teleportation.

e \We start with,

1
| P1)3456 = [5][|0001>3456 + |0010)3456 + |0100)3456 + |1000)3456], (16)

where the particles 3, 4 and 5 belong to Alice and the particle 6 belongs to Bob.
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Teleportation Through quadripartite states |P;)

e Addition of unknown state of 1 qubit at the Alice’'s end vyields,

1
WY1 ® | P1)3as6 = 5[Oé|00001>13456 + @|00010)13456 + @|00100) 13456

+a|01000) 13456 + 3/10001)13456 + 3/10010)13456
+3/10100) 13456 + 5‘11000>13456]- (17)

e The above state is not expressible in orthogonal measurement basis for Alice's end:
unsuitable for standard teleportation. Probabilistic teleportation can be done by using
local operations. Alice applies control-NOT with 1 as a control qubit and 4 as a target
qubit and then another with 2 as a control qubit and 3 as a target:

1
| P1/)13456 = §[a|00001>13456 + @|00010)13456 + @|00100) 13456

+|01100)13456 + 5|10011)13456 + 5|/10000) 13456
+3/10110) 13456 + B]11110)13456], (18)

Now Alice measures 1, 2 and 3, 4 successively in Bell basis to get the probabilistic
result.
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Teleportation Through |Py) state

e We consider |P,) state as the entangled channel:
1
NG
Here the particles 3,4 and 5 belong to Alice and the particle 6 belongs to Bob.

|Po) = [|0000)3456 + [1111)3456 + |[0011)3456 + |0101)3456 + [0110)3456]. (19)

e After the addition of unknown state of 1 qubit at the Alice’'s end and application of
a control-NOT with 4 as target qubit and 1 as control qubit and a Hadamard on 1.
Subsequently, Alice measures qubit 3 through von Neumann measurement.

e Teleportation is possible if the result is |03) and fails if it is |13). Alice performs a
measurement of qubit 4 in computational basis, and measures qubit 1 and 5 together
in computational basis (|0015), |1015), |0115) and |1115) ) and sends the information to
Bob. Bob performs unitary transformation to get the desired state.
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Quantum Information Splitting (QIS)

Was first demonstrated using 3 qubit GHZ state: %QOOO) +]111)) as a
shared entangled resource.

The 4-qubit state can be used for QIS with only one protocol. The 5-
qubit state can be used for single qubit QIS through 3 different protocols,
whereas only one protocol is feasible for two-qubit QIS.

Splitting quantum information among participants using N qubit entan-
gled channel.

Characterizing entangled states for quantum networking protocols.
Reference: S. Muralidharan, S. Karumanchi, S. Narayanaswamy. R.

Srikanth, and P. K. Panigrahi, eprint quant-ph/0907.3532v2.
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Quantum Information Splitting
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Pictorial representation of QIS among k parties
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Quantum Information Splitting

e Multipartite entangled system is complex — More than one way of
splitting and sharing.

4
Y1) ® |p23as) = » Z(le ® |$34); @ |Ps) ;) (20)
=1 j=1
or, j
4 2
1) ® [B23as) = ) > ([$h123)i @ |$a); ® |s);) (21)
i=1j=1
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Quantum Information Splitting

e First case:
|v12); — 4 orthogonal 2-qubit measurement outcomes of dealer

|$p34); —> 2 2-qubit orthogonal measurement outcomes of intermediate
party

e Second case:
l1123); — 4 orthogonal 3-qubit measurement outcomes of dealer

|$pa); — 2 1-qubit measurement outcomes of intermediate party
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Quantum Information Splitting

e All distributions of qubits don't vield successful QIS protocols.

e Four-qubit linear cluster state cannot be used for the QIS of an unknown
two-qubit state

e Five qubit linear cluster state can be used for the same.

e Entanglement properties of physical system mediating QIS protocol:
Quantify the number of ways of splitting quantum information.
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Quantum Information Splitting

e Protocol count for QIS of unknown n-qubit state:

1
— [Yn) = > Qg |t in)
— Q4q.. 4y, € C
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Quantum Information Splitting

e [ heorem 1:

If Alice, Bob(s) and Charlie share an N qubit entangled state and Alice has
a arbitrary n qubit state |¢,) that she wants the Bobs and Charlie to share,
then Alice needs to possess a minimum of n qubits for this purpose.
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Quantum Information Splitting

e Proof:

— Conflate all Bobs and Charlie into Dolly — Hp (tensor product of
Bobs and Charlie).

— Quantum teleportation from Alice to Dolly (Information splitting):
Maximal entanglement exists.

— Schmidt decomposition: Dolly’'s density operator will be maximally
mixed in a 2"-dimensional subspace of Hp.

— If Alice possess m qubits in the entangled quantum network then
m > n from a quantum encryption perspective.
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Quantum Information Splitting

e After Alice's joint measurement in H, Q H 4, but before her classical com-

munication to Dolly — Dolly’s density operator remains maximally mixed
(No-signaling theorem)

e Dolly’s state:

,
T |y) — Y Ujl) (@|U] (22)

Jj=1
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Quantum Information Splitting

e Alice's classical communication (j) — U; (restores [¢)).

e Minimal number P in Eq.(22) — For arbitrary input state [¢), T(|¢)) =
I/D.

e P = D? — Alice's classical communication > log(D?) = 2n bits —
Alice’'s measurement must satisfy m +n > 2n, or, m > n.
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Quantum Information Splitting

e [ heorem 2:

It is necessary for the recipient’'s system to be in a maximally
mixed state, but not for that of any intermediate party P.
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Quantum Information Splitting

e Proof:

— Agrawal-Pati theorem: Charli’s en qubits are maximally mixed. But,

the reduced density operator for any intermediate party P, need not
be maximally mixed.

— Example: Alice, Bob and Charlie share an entangled state:
¢) = cosO|+) Bl ) ac + sinO|—=)g|vT) ac,

1+) = 55(]0) £1]1)) and 6 € [0, 7]
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Quantum Information Splitting

— Manifestly non-maximally entangled for 0 % /4.

e Alice’'s and Bob’s measurements commute, Bob does not use Alice’s
classical communication, Bob might measure first. For outcome |+).

e — Alice teleports to Charlie with fidelity 1

e —> Alice’'s and Charlie's reduced density operator for |{) is maximally
mixed
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Quantum Information Splitting

e Lemma 1:
The maximum number of protocols one can construct is (N — 2n).

e Proof:

— Charlie has the last n qubits — Reconstructs unknown n qubit in-
formation — (N —n + 1) qubit to the N qubit.

— First (N —n) qubits distributed among Alice and Bob — (N —n—1)
protocols

— But all the protocols with Alice having < n qubits fail (Theorem 2)
— Total number of protocols = (N — 2n).

— For at least one protocol to work out — N > (2n+ 1)
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Quantum Information Splitting

e Corollary:
For N =4 and n = 2 — 4 qubit states cannot be used for the QIS of
an unknown 2 qubit state [¢2) .

e Illustration:
— Alice: Unknown two qubit state |¢») and qubit 1

— Bob: Qubit 2 and

— Charlie: 3,4 in the 4 qubit cluster state:
|Ca) = £(]0000) + [0110) + [1001) — [1111))1234
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Quantum Information Splitting

e Alice: Three-qubit measurement and obtains %(|OOO> + |100) + |011) —
111))

e Bob-Charlie system: aoo(|000) 4+ [110)) + a1 (|000) 4 [110)) 4+ a10(]001) —
[111)) + 11(]001) — [111)).

e One cannot obtain |¢2) by performing another measurement or transform
into another state through LOCC and perform a measurement to get

)2
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Quantum Information Splitting

e [ heorem 3:

If Kk (3< k< N-2n+42) parties share an N qubit entangled state and the first
party has an arbitrary n qubit state that he/she wants the remaining members
to share, then the maximum number of protocols that can be constructed for
this purpose is zf;;g P,_>(j) in the symmetric case, and bounded above by

ij:_kaQ Qi_2(j) = N¥=2"C,_» in the general case.
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Quantum Information Splitting

e Proof:

— The Bobs have minimum k£ — 2 qubits and maximum N — 2n qubits,
j in total.

— Symmetric case: Number of protocols = Number of ways j can be
partitioned into k£ — 2 slots (at least 1 entry/slot) = which is P,_>(j).

— Sum of all y's = Total number of protocols in the symmetric case.

— If ﬁazch Bob is inequJViVQalent to any other: Number of protocols =
D imis Qe2() = 20,057 O3 = N 72"C 2, as Qi(m) = "0

— Upper bound on number of protocols(Partial symmetry among
Bobs)
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Quantum Information Splitting

e [ heorem 4:

If Alice, Bob and Charlie share an N-qubit entangled state and Alice has an
(entangled) n-qubit entangled state of the form |¢,) = «|0)®" + B|1)®" that
she wants Bob and Charlie to share, then Alice needs to possess only one
qubit for this purpose.
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Quantum Information Splitting

e Proof:
— Alice, Bob and Charlie share a N-entangled GHZ state %(|O)N+|1>N),
N =2+ n.

— First qubit with Alice, second with Bob, and the remaining with Char-
lie.

— Alice: (n 4+ 1) particle measurement — To Charlie (or Bob) using
(n 4+ 1) classical bits.
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Quantum Information Splitting

Alice's Outcome Bob-Charlie State
1) oz|0>®(n+1) + 5|1>®(n+1)
o) a|o>®(n+1) _ 5|1>®(n+1)
¥s3) a|1)2 ) 4 gjo) =it
Wa) a|1>®(n—|—1) _ 5|O>®(n+1)

V2l 2) = (020D £ 1)@ HD and V2lg34) = (0)" © [1)
11)®" ® |0) are form mutual orthogonal measurement outcomes
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Quantum Information Splitting

e Alice's 2-bit communication — Charlie (or Bob): Single-qubit Pauli
operation I, Z,X or Y — «|0)®(+1h) 4 g|1)®0+1)

e On measuring each of his qubit in a suitable basis (|+)) — 1-bit outcome
to Charlie — |¢,) can be reconstructed.

e If Alice’s 2-bit outcome is known — Bob/Charlie has partial information
about a or B — |pn).
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Quantum Information Splitting

e Lemma 2:

If £ = 3, the number of protocols one can construct is N —n—1 and it is ¥"2"C,_ ,4+n—1

for k > 3.

e Proof:

k = 3: Number of protocols one can construct = N —n — 1.

Theorem 1: Number of protocols is N —2n when Alice has > n qubits and protocols
with Alice having <n fail.

Theorem 3: If n > 2, protocols with Alice having < n qubits also work.

Charlie (retriever) with n qubits — Remaining N — n qubits are shared between
remaining parties.

Theorem 1: Number of protocols by sharing N — n between Alice and Bob =
N-n—1Ifk>3,itis VN 2"C,_o+n—1.
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Quantum Information Splitting

e Efficiency of Information Splitting:

— The theorems — efficiency of a quantum channel for QIS.

— Splitting efficiency (n) of a quantum channel:
Mimax ), NGl

— ¢, = Number of of protocols constructed by splitting |¢,) among k
parties for a given entangled channel.

(23)

’]’]:
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Quantum Information Splitting

e (/ = Maximum number of protocols by splitting |¢,) among k parties
(Theorem 3).

o nmax = |[2=EE2]: Independent of particular channel, but on N and k only.

e ng. Largest size of a secret (in qubit units) that can be split with N qubit
entangled channel among k parties.
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Conclusions

e Quantum communication can be used for information sharing in an effi-
cient and secure manner.

e T here can be multiple ways of carrying it out with different advantages.

e Quantum teleportation becomes most efficient through NDD, enabling
secure quantum conversation.

e Non-conventional teleportation protocols are useful for quantum com-
munication, which can be carried out through different channels.

e Quantum Information Splitting (QIS) is useful in quantum communica-
tion, for which one needs to know about the extensive properties of the
channels.
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Thanks for such a patient listening.
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