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Plan of the talk

• Quantum Entanglement.

• Different states.

• Quantum Communication.

• Non-Destructive Discrimination (NDD) and its examples and uses.

• Quantum Teleportation: Different modes.

• Dense Coding and Quantum Conversation.

• Non-Standard Probabilistic Teleportation

– Through |W 〉 and Quadripartite (|P1〉 and |P1〉) states.

• Quantum Information Splitting (QIS):

– Procedure.

– Theorems and lemmas.

– Efficiency.
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Quantum Entanglement and Teleportation

• Non-intuitive quantum correlations can exist between two or more parti-
cles.

• It enables different types of quantum communication protocols like tele-
portation, superdense coding, secret sharing, quantum cryptography,
one-way quantum computation etc..

• Teleportation of arbitrary single qubit, through an entangled channel of
EPR pair [Bennett et al.].

• Experimentally it has been achieved using different quantum systems.

• References : Bennett et al., Phys. Rev. Lett. 70, 1895 (1993);
Bouwmeester et al., Nature (London) 390, 575 (1997).
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3-qubit States

• Classification is done on the basis of stochastic local operations and
classical communications (SLOCC).

– GHZ state: |GHZ〉123 = 1√
2
(|000〉123+|111〉123)−→ suitable for perfect

teleportation.

– W state: |W 〉123 = 1√
3
(|100〉123 + |010〉123 + |001〉123) −→ not suitable

for perfect teleportation.

• A new W-class of state: |Wn〉123 = 1√
2+2n

(|100〉123 +
√
neiγ|010〉123 +

√
n+ 1eiδ |001〉123), is suitable for teleportation [ n is real; γ, δ are phases].

• References : P. Agarwal, and A. K. Pati, Phys. Rev. A 74, 062320
(2006); S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000).
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Magnon State

• Most general two magnon four qubit state:
∑1

i=0Wiĩi
|iĩĩi〉+ W

ĩii
|ĩiĩi〉+

W̃
iii
|ĩĩii〉, (i is a compliment of ĩ).

• Can teleport an arbitrary two qubit state deterministically if:

W ∗
110W011+W ∗

110W001 = 0, |W101|2 = |W110|2+|W100|2 = |W001|2 = |W011|2+
|W010|2.

• −→ Maximum entanglement.

• References: S. Prasath, S. Muralidharan, P. K. Panigrahi, and C. Mitra,
’eprint:quant-ph/0905.1233v2.
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Five Qubit State

• [Brown et al., J. Phys. A. Math. Gen. 38(5), 1119 (2005)] Maximally
entangled 5-qubit state by extensive numerical optimization:

|ψ5〉 = 1
2
[|001〉|φ−〉+|010〉|ψ−〉+ |100〉|φ+〉+|111〉|ψ+〉],

where |ψ±〉 = 1√
2
(|00〉 ± |11〉) and |φ±〉 = 1√

2
(|01〉 ± |10〉).

• The von Neumann entropy between (1234—5) is equal to 1 and between
(123—45) is 2 −→ Teleportation.

• Reference: Muralidharan, S., Panigrahi, P.K., Phys. Rev. A 77, 032321
(2006).
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Composite GHZ-Bell State

• Some of the Bell states are decoherence free under certain environment.

• Being the superposition of two terms, the GHZ state can be less prone
to decoherence.

• Five-qubit composite GHZ-Bell state: |ζ〉 = 1√
2
(|000〉+ |111〉) 1√

2
(|00〉+

|11〉) = 1
2
(|00000〉+ |00011〉+ |11100〉+ |11111〉).

• This state has the maximum possible entanglement between two subsys-
tem.

• Reference: Rao, D.D.B., Panigrahi, P.K., Mitra, C., Phys. Rev. A 78,
022336 (2008).
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Composite GHZ-Bell State

• Five-qubit state can teleport one and two-qubit state deterministically.

• The Generalized ‘2N + 1’ qubit state can be represented by the product
of one GHZ and (N − 1) number of Bell states :

|ζ0〉 = |ξ+〉AB|ψ+〉AB........|ψ+〉AB,

where |ξ+〉AB = 1√
2
(|0A0A0B〉 + |1A1A1B〉) and |ψ+〉AB = 1√

2
(|0A0B〉 +

|1A1B〉).

• For deterministic N-qubit teleportation, the basis states of Alice’s system
can be decomposed into GHZ-Bell pair.

• The capacity of superdense coding of this channel is (2N +1), satisfying
‘Holevo bound’.

• References : D. Saha and P. K. Panigrahi, Quantum Inf. Process, DOI
10.1007/s11128-011-0270-x.
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Quantum Communication

• All the earlier channels are useful for dense coding, as well as for QIS.

• It is found that the number of protocols for QIS are less for certain
quantum channels then expected.

• Different quantum communication protocols [teleportation, state sharing
and dense coding etc.] require entangled [e.g. Bell]bases.

• It can be used for quantum communication between two and more parties.
For this purpose, we may require Non Destructive Discrimination (NDD).

• NDD of Bell states are analyzed [M. Gupta and P. K. Panigrahi, arXiv:quant-
ph/0504183v1] and experimentally realized [J. R. Samal et al., J. Phys.
B: At. Mol. Opt. Phys. 43 095508 (2010)].
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Generation of cluster states:Q-Circuit

• Cluster states containing 4 and 5 particles can be generated

through following circuitry:
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Non-Destructive Discrimination (NDD)

• Sixteen orthogonal cluster states are distinguished without disturbing:
Measurements on four ancilla bits.

• Four qubit cluster states are made to interact with these ancillas:
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4-qubit NDD
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5-qubit NDD
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5-qubit NDD
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Quantum Dialogue using NDD

• Holevo bound: Four classical bits transmitted by sending two qubits and
five classical bits transmitted by sending three qubits respectively.

• Alice encodes four classical bits into two qubits by performing a (σi⊗σj)
operation, i, j ∈ (0,1,2,3).

• On receiving the qubits from Alice, Bob performs NDD to decode:
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Quantum Dialogue using NDD

• Bob can send two qubits of |C4〉 to Alice and encode four cbits of infor-
mation by operating on her two qubits and send them to Alice.

• Alice can decode this information through NDD and the dialogue con-
tinues without destroying the entanglement.

• Same can be done using |C5〉.

• Position of errors [bit flip and phase flip] in initial cluster states can be
known: No cluster basis measurement required.
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Dense Coding Protocol

• Alice and Bob possess, the first three and the last two qubits of |ψ5〉
respectively.

• To send a secret message “m1m2m3m4m5” to Bob, where mi ∈ {0, 1},
Alice operates unitarily on her first three qubits:

((ζ1.ζ2.ζ3.ζ4.ζ5)⊗ I⊗ I)|ψ5〉 = |ψ5〉m1m2m3m4m5
. (1)

where,

ζ1 = σx ⊗ I ⊗ I, m1 = 1; I ⊗ I ⊗ I, m1 = 0,
ζ2 = I ⊗ I ⊗ σx, m2 = 1; I ⊗ I ⊗ I, m2 = 0,
ζ3 = σz ⊗ σz ⊗ I, m3 = 1; I ⊗ I ⊗ I, m3 = 0,
ζ4 = σx ⊗ I ⊗ σx, m4 = 1; I ⊗ I ⊗ I, m4 = 0,
ζ5 = I ⊗ σx ⊗ σx, m5 = 1; I ⊗ I ⊗ I, m5 = 0. (2)
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Dense Coding Protocol

• Example: For 5-bit classical information (10010),

(((σx ⊗ I⊗ I)(I⊗ I⊗ I)(I⊗ I⊗ I)(σx ⊗ I⊗ σx)(I⊗ I⊗ I))⊗ I⊗ I)|ψ5〉 = (|ψ5〉100010). (3)

and then sends the three qubits to Bob.

• Bob performs a joint five partite von-Neumann measure-

ment in |ψ5〉m1m2m3m4m5 basis and distinguishes these states,

thereby obtaining the message encoded by Alice.
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Quantum Conversation

• Alice first prepares an ordered sequence of N copies of the

five qubit Brown et al., state

|ψ5〉: [(q1
1, q1

2, q1
3, q1

4, q1
5)), (q2

1, q2
2,......, qN5 ) ].

• Alice then takes the same one qubit from each |ψ5〉 to form

five ordered sequences corresponding to the five qubits

Sk = [q1
k , q

2
k , q

3
k ....q

N
k ].

• she keeps the particle sequences S1, S2, S3 and transmits the

sequences S4 and S5 to Bob.
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Measurement basis of Alice and Bob

• |ψ5〉 can be written down in two different forms:

|ψ5〉12345 =
1

2
(|001〉|φ−〉+ |010〉|ψ−〉+ |100〉|φ+〉+ |111〉|ψ+〉)12345,

|ψ5〉13245 = ([|φ+〉|1〉+ |ψ+〉|0〉]|0+〉+ [|φ+〉|1〉 − |ψ+〉|0〉]|0−〉)13245

−[|φ−〉|1〉+ |ψ−〉|0〉]|1+〉+ [|φ−〉|1〉 − |ψ−〉|0〉]|1−〉. (4)

→ to check the presence of an eavesdropper.

• Measuring the qubits 4 and 5 by projection on the Bell basis, Alice’s first
three qubits collapse into one of the computational basis:

(|001〉, |010〉, |100〉, |111〉)123, → Basis of Alice’s measurement

• For the other choice of |ψ5〉, if Bob measures his two qubits in the ba-
sis |0+〉45, |0−〉45, |1+〉45, |1−〉45, corresponding Alice’s measurement basis
would be:

(|φ+〉|1〉+|ψ+〉|0〉)132, (|φ+〉|1〉−|ψ+〉|0〉)132, (−|φ−〉|1〉 - |ψ−〉|0〉)132 and (|φ−〉|1〉−|ψ−〉|0〉)132.

• Thus, Alice and Bob can guard against eavesdropping.
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Dense coding, NDD and quantum conversation

• The secret message “m1m2m3m4m5” is encoded by Alice in 3 qubits
[dense coding] and sent to Bob.

• Bob applies NDD on the 5 qubit Brown et al. state and decodes the
message without disturbing the entanglement.

• The circuit outcome with input |ψ5〉m1m2m3m4m5
in general is |ψ5〉x|x〉 where

|x〉 is given by, |m1m2m3m4m5〉 and |ψ5〉x is given by, |ψ〉m1m2m3m4m5
.

• Bob now measures the ancillas in the product basis and thereby obtains
the classical message.

• Bob encodes his message in the first 3 qubits unitarily, and sends the 5
qubits to Alice in two sets of (4,5) and (1,2,3).

• The cycle is established.
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Six Qubit State

• Borras et. al. [J. Phys. A. Math. Gen. 21]: Genuinely entangled 6-qubit
state non-decomposable into pairs of Bell states.

|ψ6〉 = 1
4
[|000〉(|0〉|φ+〉+ |1〉|ψ+〉) + |001〉(|0〉|ψ−〉 − |1〉|φ−〉)

+|010〉(|0〉|ψ+〉 − |1〉|φ+〉) + |011〉(|0〉|φ−〉+ |1〉|ψ−〉)+

|100〉(−|0〉|ψ−〉 − |1〉|φ−〉) + |101〉(−|0〉|φ+〉+ |1〉|ψ−〉)
|110〉(|0〉|φ−〉 − |1〉|ψ−〉) + |111〉(|0〉|ψ+〉+ |1〉|φ+〉)],

where |ψ±〉 = 1√
2
(|00〉 ± |11〉) and |φ±〉 = 1√

2
(|01〉 ± |10〉).

• Reference: Choudhury, S., Muralidharan, S., Panigrahi, J. Phys. A.
Math. Theor. 42, 115303 (2009).
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Non-Standard Probabilistic Teleportation protocol

• A non-standard teleportation scheme is proposed, wherein probabilistic
teleportation is achieved in conventionally non-teleporting channels.

• We make use of entanglement monogamy to incorporate an unknown
state in a multipartite entangled channel, such that the receiver partially
gets disentangled from the network.

• the sender performs local measurement based teleportation protocol in
an appropriate measurement basis, which results with the receiver in the
possession of an unknown state, connected by local unitary transforma-
tion with the state to be teleported.

• This procedure succeeds in a number of cases, like that of W and other
non-maximally entangled four qubit states, where the conventional mea-
surement based approach has failed.
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Comparison between Conventional and non Conventional

Approach

• Conventional Approach

– Let us consider a Bell state of the form [|η〉 = 1√
2
[|0A0B〉+ |1A1B〉].

– Addition of single qubit unknown state to the Bell state at Alice’s
Side, |η′〉 = 1√

2
[α|0A0A0B〉+ α|0A1A1B〉+ β|1A0A0B〉+ β|1A1A1B〉].

– Now rearranging the above state,we get

|η′〉 = |φ+
A 〉[α|0B〉+ β|1B〉] + |φ−A〉[α|0B〉 − β|1B〉]

+|ψ+
A 〉[α|1B〉+ β|0B〉]

+|ψ+
A 〉[α|1B〉 − β|0B〉]] (5)

where, the {|φ±A〉, |ψ
±
A〉} forms a Bell-Basis.

– Therefore a measurement in Bell Basis on Alice’s side will lead to a
state i.e. unitarily equivalent to the unknown state, she wanted to
send.
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Non - Conventional Approach

• In this Case also consider a Bell state of the form: |η〉 = 1√
2
[|0A0B〉 +

|1A1B〉].

• Similarly, addition of single qubit unknown state to the Bell state at
Alice’s Side, we get: |η′〉 = 1√

2
[α|0A0A0B〉 + α|0A1A1B〉 + β|1A0A0B〉 +

β|1A1A1B〉]

• Now Alice applies C-NOT 1 → 2 and subsequently Hadamard on 1
qubit,we get

|η′〉 =
1

2
[|00A〉[α|0B〉+ β|1B〉] + |01A〉[α|0B〉 − β|1B〉] + |10A〉[α|1B〉+ β|0B〉]

+|11A〉[α|1B〉 − β|0B〉]] (6)

where, the {|00A〉, |01A〉, |10A〉, |11A〉} forms a two qubit computational
basis.
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Probabilistic Teleportation of single qubit unknown state

through |W 〉 state

• Consider a W-state (particle 2 and 3 belongs to Alice, 4 belongs to Bob)
- |W 〉234 = 1√

3
[|100〉234 + |010〉234 + |001〉234]

• Addition of unknown state at Alice’s end:

|Ψ〉1 ⊗ |W 〉234 =
1√
3

[α|0100〉1234 + α|0010〉1234 + α|0001〉1234 (7)

+ β|1100〉1234

+β|1010〉1234 + β|1001〉1234]. (8)

• Initially, Alice applies a control-NOT 1→ 2 and subsequently a Hadamard
gate on the first qubit :

|Ψ′′〉1234 =
1√
6

[|010〉123(α|0〉4 + β|1〉4) + |000〉123(α|1〉4 + β|0〉4)

+|110〉123(α|0〉4 − β|1〉4) + |100〉123(α|1〉4 − β|0〉4) + α|001〉123|0〉4
+α|101〉123|0〉4 + β|011〉123|0〉4 − β|111〉123|0〉4]. (9)
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Probabilistic Teleportation of single qubit unknown state

through |W 〉 state

• At last ,Alice performs a three particle measurement on her
qubits in the computational basis.

• And communicates the obtained result to Bob, on the other
hand he carries out the required operations on his qubit to
get the desired state.

• Note:- It is evident that teleportation is possible, only if the
measurement outcomes are |010〉123, |000〉123, |110〉123 and
|100〉123 and fails completely if the outcomes are |001〉123,
|101〉123, |011〉123 and |111〉123. Hence probability of tele-
portation is half.
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2-qubit non-maximally entangled unknown state through |W 〉

• Probabilistic teleportation of unknown two qubit entangled state can be
done through W-state as the entangled channel: Bob measures one of
his particles before unitary transformation [Cao et al.]

• Teleportation occurs without the interaction of Alice’s qubits with Bob’s
qubits. Although general unknown 2-qubit state cannot be teleported
using W-state [Muralidharan et al.], probabilistic teleportation of non-
maximally entangled two qubit state: |Ψ〉12 = α|00〉 + β[|01〉 + |10〉] is
possible ( |α|2 + 2|β|2 = 1).

• A 4-qubit W-state of the type (particle 3 with Alice and 4,5 with Bob):

|Ψ〉12 ⊗ |W 〉345 =
1√
3

[α|00001〉12345 + α|00010〉12345 + α|00100〉12345

+ β|10001〉12345 + β|10010〉12345 + β|10100〉12345

+ β|01001〉12345 + β|01010〉12345 + β|01100〉12345]. (10)
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2-qubit non-maximally entangled unknown state through |W 〉

• Alice applies a control-NOTs 2→ 3 and 1→ 3 subsequently and measures
the qubit 3 in computational basis:

〈13|Ψ′〉12345 =
1√

α2 + 4β2
[α|0000〉1245 + β|1010〉1245 + β|0100〉1245

+ β|0110〉1245 + β|1001〉1245], (11)

or

〈03|Ψ′〉12345 =
1√

2α2 + 2β2
[α|0001〉1245 + α|0010〉1245

+ β|1000〉1245 + β|0100〉1245]. (12)

• It can be seen that, teleportation is possible if the measurement outcome
is |13〉.
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2-qubit non-maximally entangled unknown state through |W 〉

• Alice applies a Hadamard on qubit 1 and then measures qubit 2 in com-
putational basis, leading to two outcomes:

〈02|Ψ′′〉1245 =
1√
2

[(|0〉1)(β|01〉45 + β|10〉45)− (|1〉1)(β|01〉45 + β|10〉45)

+(|0〉1)(α|00〉45) + (|1〉1)(α|00〉45)].(13)

or

〈12|Ψ′′〉1245 =
1

2β2
[(|0〉1)(β|00〉45 + β|10〉45) + (|1〉1)(β|00〉45 + β|10〉45)].

(14)

• Teleportation is possible if measurement outcome is |02〉 and fails if it is
|12〉. First outcome: Alice measures qubit 1 in computational basis and
sends the results to Bob, who makes local operations to get the state.

• If the outcome of Alice’s measurement is |1〉, then Bob applies a unitary
transformation to obtain the desired state.
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2-qubit non-maximally entangled unknown state through |W 〉

• Probabilistic teleportation of partially entangled two qubits have been
implemented probabilistically.

• If one considers |W 〉234 = 1√
3
[|101〉234 + |110〉234 + |011〉234] as entangled

channel, then the state that can be teleportated is |Ψ〉12 = α|11〉12 +
β[|01〉12 + |10〉12].

• W-State Recovery :- It is interesting to note that, even if she fails
to teleport through non-maximally entangled unknown two qubit state,
Alice can regain this unknown two qubit state, with certain probability,
by classical communication to Bob.

• Bob then applies a Hadamard operation on particle 5, followed by a
measurement of his two particles in computational basis.

• With the help of Bob, we can check that Alice is able to recover the
w-state again probabilistically.
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Teleportation Through Quadripartite State

• On SLOCC basis classification, 4 particle states are classified into different types. a
subset of which is investigated for possibility of implementing the present protocol.

• These states are:

|P1〉 ≡ |W 〉 =
1

2
[|0001〉+ |0010〉+ |0100〉+ |1000〉],

|P2〉 =
1
√

5
[|0000〉+ |1111〉+ |0011〉+ |0101〉+ |0110〉], (15)

Teleportation of unknown 1 qubit state through |P1〉 and |P2〉 and 2 qubit non-maximally
entangled state through |P1〉 and |P2〉, conventional measurement based approach has
failed, whereas the present protocol results in a probabilistic teleportation.

• We start with,

|P1〉3456 = [
1

2
][|0001〉3456 + |0010〉3456 + |0100〉3456 + |1000〉3456], (16)

where the particles 3, 4 and 5 belong to Alice and the particle 6 belongs to Bob.
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Teleportation Through quadripartite states |P1〉

• Addition of unknown state of 1 qubit at the Alice’s end yields,

|Ψ〉1 ⊗ |P1〉3456 =
1

2
[α|00001〉13456 + α|00010〉13456 + α|00100〉13456

+α|01000〉13456 + β|10001〉13456 + β|10010〉13456

+β|10100〉13456 + β|11000〉13456]. (17)

• The above state is not expressible in orthogonal measurement basis for Alice’s end:
unsuitable for standard teleportation. Probabilistic teleportation can be done by using
local operations. Alice applies control-NOT with 1 as a control qubit and 4 as a target
qubit and then another with 2 as a control qubit and 3 as a target:

|P1′〉13456 =
1

2
[α|00001〉13456 + α|00010〉13456 + α|00100〉13456

+α|01100〉13456 + β|10011〉13456 + β|10000〉13456

+β|10110〉13456 + β|11110〉13456], (18)

Now Alice measures 1, 2 and 3, 4 successively in Bell basis to get the probabilistic
result.
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Teleportation Through |P2〉 state

• We consider |P2〉 state as the entangled channel:

|P2〉 =
1
√

5
[|0000〉3456 + |1111〉3456 + |0011〉3456 + |0101〉3456 + |0110〉3456]. (19)

Here the particles 3,4 and 5 belong to Alice and the particle 6 belongs to Bob.

• After the addition of unknown state of 1 qubit at the Alice’s end and application of
a control-NOT with 4 as target qubit and 1 as control qubit and a Hadamard on 1.
Subsequently, Alice measures qubit 3 through von Neumann measurement.

• Teleportation is possible if the result is |03〉 and fails if it is |13〉. Alice performs a
measurement of qubit 4 in computational basis, and measures qubit 1 and 5 together
in computational basis (|0015〉, |1015〉, |0115〉 and |1115〉 ) and sends the information to
Bob. Bob performs unitary transformation to get the desired state.

34



Quantum Information Splitting (QIS)

• Was first demonstrated using 3 qubit GHZ state: 1√
2
(|000〉+ |111〉) as a

shared entangled resource.

• The 4-qubit state can be used for QIS with only one protocol. The 5-
qubit state can be used for single qubit QIS through 3 different protocols,
whereas only one protocol is feasible for two-qubit QIS.

• Splitting quantum information among participants using N qubit entan-
gled channel.

• Characterizing entangled states for quantum networking protocols.

• Reference: S. Muralidharan, S. Karumanchi, S. Narayanaswamy. R.
Srikanth, and P. K. Panigrahi, eprint quant-ph/0907.3532v2.
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Quantum Information Splitting

Pictorial representation of QIS among k parties
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Quantum Information Splitting

• Multipartite entangled system is complex −→ More than one way of
splitting and sharing.

|ψ1〉 ⊗ |φ2345〉 =
4∑
i=1

2∑
j=1

(|ψ12〉i ⊗ |φ34〉j ⊗ |φ5〉j) (20)

or,

|ψ1〉 ⊗ |φ2345〉 =
4∑
i=1

2∑
j=1

(|ψ123〉i ⊗ |φ4〉j ⊗ |φ5〉j) (21)
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Quantum Information Splitting

• First case:

|ψ12〉i −→ 4 orthogonal 2-qubit measurement outcomes of dealer

|φ34〉j −→ 2 2-qubit orthogonal measurement outcomes of intermediate
party

• Second case:

|ψ123〉i −→ 4 orthogonal 3-qubit measurement outcomes of dealer

|φ4〉j −→ 2 1-qubit measurement outcomes of intermediate party
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Quantum Information Splitting

• All distributions of qubits don’t yield successful QIS protocols.

• Four-qubit linear cluster state cannot be used for the QIS of an unknown
two-qubit state

• Five qubit linear cluster state can be used for the same.

• Entanglement properties of physical system mediating QIS protocol:
Quantify the number of ways of splitting quantum information.
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Quantum Information Splitting

• Protocol count for QIS of unknown n-qubit state:

– |ψn〉 =
1∑

i1,...in=0

αi1,...in|i1, ...in〉

– αi1,...in ∈ C

–
∑
|αi1,...in|

2 = 1
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Quantum Information Splitting

• Theorem 1:

If Alice, Bob(s) and Charlie share an N qubit entangled state and Alice has

a arbitrary n qubit state |ψn〉 that she wants the Bobs and Charlie to share,

then Alice needs to possess a minimum of n qubits for this purpose.
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Quantum Information Splitting

• Proof:

– Conflate all Bobs and Charlie into Dolly −→ HD (tensor product of
Bobs and Charlie).

– Quantum teleportation from Alice to Dolly (Information splitting):
Maximal entanglement exists.

– Schmidt decomposition: Dolly’s density operator will be maximally
mixed in a 2n-dimensional subspace of HD.

– If Alice possess m qubits in the entangled quantum network then
m ≥ n from a quantum encryption perspective.
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Quantum Information Splitting

• After Alice’s joint measurement in Hx⊗HA, but before her classical com-
munication to Dolly −→ Dolly’s density operator remains maximally mixed
(No-signaling theorem)

• Dolly’s state:

T : |ψ〉 −→
P∑
j=1

Uj|ψ〉〈ψ|U †j (22)
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Quantum Information Splitting

• Alice’s classical communication (j) −→ Uj (restores |ψ〉).

• Minimal number P in Eq.(22) −→ For arbitrary input state |ψ〉, T(|ψ〉) =
I/D.

• P = D2 −→ Alice’s classical communication ≥ log(D2) = 2n bits −→
Alice’s measurement must satisfy m+ n ≥ 2n, or, m ≥ n.

44



Quantum Information Splitting

• Theorem 2:

It is necessary for the recipient’s system to be in a maximally

mixed state, but not for that of any intermediate party P.

45



Quantum Information Splitting

• Proof:

– Agrawal-Pati theorem: Charli’s en qubits are maximally mixed. But,
the reduced density operator for any intermediate party P, need not
be maximally mixed.

– Example: Alice, Bob and Charlie share an entangled state:

|ζ〉 ≡ cos θ|+〉B|ψ−〉AC + sin θ|−〉B|ψ+〉AC,

|±〉 = 1√
2
(|0〉 ± |1〉) and θ ∈ [0, π]
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Quantum Information Splitting

• −→ Manifestly non-maximally entangled for θ 6= π/4.

• Alice’s and Bob’s measurements commute, Bob does not use Alice’s
classical communication, Bob might measure first. For outcome |±〉.

• −→ Alice teleports to Charlie with fidelity 1

• −→ Alice’s and Charlie’s reduced density operator for |ζ〉 is maximally
mixed
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Quantum Information Splitting

• Lemma 1:

The maximum number of protocols one can construct is (N − 2n).

• Proof:

– Charlie has the last n qubits −→ Reconstructs unknown n qubit in-
formation −→ (N − n+ 1)th qubit to the N th qubit.

– First (N −n) qubits distributed among Alice and Bob −→ (N −n−1)
protocols

– But all the protocols with Alice having < n qubits fail (Theorem 2)
−→ Total number of protocols = (N − 2n).

– For at least one protocol to work out −→ N ≥ (2n+ 1)
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Quantum Information Splitting

• Corollary:

For N = 4 and n = 2 −→ 4 qubit states cannot be used for the QIS of
an unknown 2 qubit state |ψ2〉 .

• Illustration:

– Alice: Unknown two qubit state |ψ2〉 and qubit 1

– Bob: Qubit 2 and

– Charlie: 3,4 in the 4 qubit cluster state:

|C4〉 = 1
2
(|0000〉+ |0110〉+ |1001〉 − |1111〉)1234
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Quantum Information Splitting

• Alice: Three-qubit measurement and obtains 1
2
(|000〉+ |100〉+ |011〉 −

|111〉)

• Bob-Charlie system: α00(|000〉+ |110〉) +α01(|000〉+ |110〉) +α10(|001〉−
|111〉) + α11(|001〉 − |111〉).

• One cannot obtain |ψ2〉 by performing another measurement or transform
into another state through LOCC and perform a measurement to get
|ψ〉2.
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Quantum Information Splitting

• Theorem 3:

If k (3 ≤ k ≤ N−2n+2) parties share an N qubit entangled state and the first

party has an arbitrary n qubit state that he/she wants the remaining members

to share, then the maximum number of protocols that can be constructed for

this purpose is
∑N−2n

j=k−2 Pk−2(j) in the symmetric case, and bounded above by∑N−2n
j=k−2 Qk−2(j) = N−2nCk−2 in the general case.
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Quantum Information Splitting

• Proof:

– The Bobs have minimum k − 2 qubits and maximum N − 2n qubits,
j in total.

– Symmetric case: Number of protocols = Number of ways j can be
partitioned into k−2 slots (at least 1 entry/slot) = which is Pk−2(j).

– Sum of all j’s = Total number of protocols in the symmetric case.

– If each Bob is inequivalent to any other: Number of protocols =∑N−2n
j=k−2 Qk−2(j) =

∑N−2n
j=k−2

j−1Ck−3 = N−2nCk−2, as Ql(m) = m−1Cl−1

−→ Upper bound on number of protocols(Partial symmetry among
Bobs)
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Quantum Information Splitting

• Theorem 4:

If Alice, Bob and Charlie share an N-qubit entangled state and Alice has an

(entangled) n-qubit entangled state of the form |φn〉 = α|0〉⊗n + β|1〉⊗n that

she wants Bob and Charlie to share, then Alice needs to possess only one

qubit for this purpose.
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Quantum Information Splitting

• Proof:

– Alice, Bob and Charlie share a N-entangled GHZ state 1√
2
(|0〉N+|1〉N),

N = 2 + n.

– First qubit with Alice, second with Bob, and the remaining with Char-
lie.

– Alice: (n + 1) particle measurement −→ To Charlie (or Bob) using
(n+ 1) classical bits.
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Quantum Information Splitting

Alice’s Outcome Bob-Charlie State

|ψ1〉 α|0〉⊗(n+1) + β|1〉⊗(n+1)

|ψ2〉 α|0〉⊗(n+1) − β|1〉⊗(n+1)

|ψ3〉 α|1〉⊗(n+1) + β|0〉⊗(n+1)

|ψ4〉 α|1〉⊗(n+1) − β|0〉⊗(n+1)

√
2|ψ1,2〉 = |0〉⊗(n+1) ± |1〉⊗(n+1) and

√
2|ψ3,4〉 = |0〉⊗n ⊗ |1〉 ±

|1〉⊗n ⊗ |0〉 are form mutual orthogonal measurement outcomes
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Quantum Information Splitting

• Alice’s 2-bit communication −→ Charlie (or Bob): Single-qubit Pauli
operation I, Z,X or Y −→ α|0〉⊗(n+1) + β|1〉⊗(n+1).

• On measuring each of his qubit in a suitable basis (|±〉) −→ 1-bit outcome
to Charlie −→ |φn〉 can be reconstructed.

• If Alice’s 2-bit outcome is known −→ Bob/Charlie has partial information
about α or β −→ |φn〉.
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Quantum Information Splitting

• Lemma 2:

If k = 3, the number of protocols one can construct is N − n− 1 and it is N−2nCk−2 + n− 1
for k > 3.

• Proof:

– k = 3: Number of protocols one can construct = N − n− 1.

– Theorem 1: Number of protocols is N−2n when Alice has ≥ n qubits and protocols
with Alice having ≤ n fail.

– Theorem 3: If n > 2, protocols with Alice having ≤ n qubits also work.

– Charlie (retriever) with n qubits −→ Remaining N − n qubits are shared between
remaining parties.

– Theorem 1: Number of protocols by sharing N − n between Alice and Bob =
N − n− 1 If k > 3, it is N−2nCk−2 + n− 1.
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Quantum Information Splitting

• Efficiency of Information Splitting:

– The theorems −→ efficiency of a quantum channel for QIS.

– Splitting efficiency (η) of a quantum channel:

η =
n0

nmax

∑nmax

n=1 nζn∑nmax

n=1 nζ
′
n

, (23)

– ζn = Number of of protocols constructed by splitting |ψn〉 among k
parties for a given entangled channel.
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Quantum Information Splitting

• ζ ′n = Maximum number of protocols by splitting |ψn〉 among k parties
(Theorem 3).

• nmax = bN−k+2
2
c: Independent of particular channel, but on N and k only.

• n0: Largest size of a secret (in qubit units) that can be split with N qubit
entangled channel among k parties.
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Conclusions

• Quantum communication can be used for information sharing in an effi-
cient and secure manner.

• There can be multiple ways of carrying it out with different advantages.

• Quantum teleportation becomes most efficient through NDD, enabling
secure quantum conversation.

• Non-conventional teleportation protocols are useful for quantum com-
munication, which can be carried out through different channels.

• Quantum Information Splitting (QIS) is useful in quantum communica-
tion, for which one needs to know about the extensive properties of the
channels.
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Thanks

Thanks for such a patient listening.
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