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von Neumann Entropy:
S (p)=-Tr plog p

Mutual Entropy:

(pAB | pA®IOB) -Tr pylog p,=Tr pglog o,
11 pye 109 pug =5(04) +5(05) =S(pse)

Conditional Entropy:

S(B|A)=S(pys)-S(ps)



Composite quantum systems

Hilbert space

regardless of B

0 System A is in the state |z)
Product state; == 1 \Measurements on A and B will be uncorrelated

A

O Entanglement: Superposition of product states,

Voo =120 ® 10)s e 1) g = = (290 ®10)g +10)n ©120)




von Neumann entropy of subsystems
- A measure of entanglement

» Density operator of a pure entangled quantum state:
£AB :‘W>AB<W‘AB
» Subsystem density operators:
Pa=Tlsloasl,  P5 =Traloas]

* von Neumann entropy of subsystems
S=—-Trlpoalogpal=—Trloglog pg]
IS a good measure of entanglement for pure bipartite states:
v S=0 necessarily implies that the pure state
v),. is quantum correlated (entangled).

v S=—0 for product states \w)AB =\Z>A®\¢>B



» Subsystem density operators of entangled pure states are
mixed and von Neumann conditional entropies

S(B | A): S(/OAB)_S(IOB)
:_S(PB)

are negative.

Or S(pg)> S(Pas)

In general, an entangled state of two parties, Alice (A) and
Bob (B), may be more disordered locally than globally.

Negative conditional entropies are
unheard of in classical probability theory!




Classically the probabilities are always more disordered globally
than locally and so, the behavior H(X), H(Y) <H(X,Y) for
Shannon Entropies is impossible. It is shown that separable states

too obey a classical behavior S(pa) S(os)=S(oas)



¢ Negative conditional entropies (implied hy the inequality provide sufficient - hut not necessary - criterion to
characterize mixed entangled states.

¢ In the case of two quhbit Werner state,

pap = [Uap){tap|e+ Iy (1-z)/4

where 0 <z <1, |2p) = % (04 15) = [1405)), the conditional entropic criterion leads to 0 < z < 0,747 as
the range of separability ( the von Neumann conditional entropy is positive in this range of the parameter z),
which 1s clearly weaker compared to that obtamed through Peres partial transpose criterion: 0 < 2 < %




Generalized entropic measures offer more
sophisticated tools to explore global vs local
disorder in mixed states and lead to stringent
limitation on separablility than that obtained using
positivity of von Neumann conditional entropy.
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e Quantum Rényi Entropy:

S (p) = —— log Tr [

l—gq

e In the limit lim,_y .S’ém (p) Rényi Entropy reduces to the von Neumann entropy.

e Horodecki et. al. recognized that

(
S 2 S ), 5 (0)

for separable states.

In other words the conditional Rénvi entropy

SI(B|A) = S{% (pap) — S (pa)

15 positive for all separable states and thus negative values of the conditional Rényi entropy is a signature of
quantum entanglement.



Tsallis Entropy:

(p)= T2

S
q 1_q

In the limit q->1 Tsallis Entropy S (p) reduce to the von Neumann entropy

Abe-Rajagopal (AR) g-Conditional entropy:

. 1| Tr{p?(A, B)
S,(B|A) = - { — Ixpl4, B))
Il —q | Tr{pi(A))
— 1 _1 . Zr;n, }"?:(*4'- B;I:|
J_—-q i Zﬂl }\.;}rz_{i‘%}

Sq(B | A)< 0 is a signature of quantum entanglement



For the two qubit Werner State, the AR g-conditional entropy is
given by

L 3 /1—x\" 1/143x)
Su(BA) = S,(4|B) = | [5( . ¥) +5( 5 I) —1]

An implicit plot of S4(B|A)=0 with respect to ¢ and x < [0, 1]

. S. Abe, A K. Rajagopall Physica A 289 (2001) 157-164

X<0.748 Is obtained from
the conditional von
0.4 Neumann entropy (q -21)

. Peres’ criterion

!
] ] 10 13 20 25 20

N

S,(B|4)— 0 in the limit g — oc if and only if x < 1/3-.




o As a further extension, Abe (PRA, 65, 052323 (2002)) showed that the negativity of g-conditional entropy gives
the correct range of inseparahility for generalized Werner states of N-qudits,



Separability of one parameter symmetric multiqubit W and
GHZ states using the AR g-conditional entropies

R Prabhu, A R Usha Devi and G Padmanabha, PRA 76, 042337, 2007
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The strongest limitation on separability, is
obtained in the g— infinity limit, and is
found to agree with the Peres’ criterion
only for two and three qubit states of the

GHZ family.

Vanishing von Neumann conditional
entropy, leads to x=0.6593 -- a weaker
domain of separability.



The AR g-entropy approach relies on finding the global and local
spectra of the density matrices, which is not straightforward in the
case of continuous variable systems. However, for n-mode
Gaussian states, one can evaluate finite number (n) of symplectic
eigenvalues of the corresponding 2n x 2n variance matrix (which
completely characterizes the Gaussian state) -- in terms of which
the eigenvalues of the density matrix may be expressed readily. It
IS thus possible to address the issue of separability based on
conditional g-entropy approach in the context of Gaussian states



Review of Symplectic Transformations and Gaussian states

R. Simon, N. Mukunda, and B. Duita, Phys. Rev. A 49, 1567
(1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, ibid. 52,
1609 (1995).

¢ Consider a n-mode CV system - with a density operator p,

¢ The '7?1 cc:mponent opcmmr colurmn ET = (g0, 01, (o, P2, G, P ) Of canomical quadrature operators gy =
0 + a V2 i = =il - uD [\/2 (where H-I,, a; denote creation and annihilation operators of kth mode
lELElDIlb.

[Ef.h'fﬁ] - ?On-'f ﬂ:‘,,’j - 1,2,...,??1,

where () :@ J J= (_Ul [1))
=1

o 2n % In symplectic transformation S € Sp(2n, R) preserves the canoncial commutation relations.



T
|
|
o

¢ As a consequence of the Stone-Neumann theorem) a corresponding unitary operator U'(S) on the Hilhert space
on which the operators ¢ act

US)EU(8)=€,= ) S

such that [¢] &1 =105 2 Q8" =
¢ Our focus 15 on Gaussian states, which are completely determimed by the 2n X 2n covariance matrix

lf’rﬂg = ({ﬂfﬂ.ﬂfj}) a,f=12..n

-z | —

where A = (={¢), {0, 00} = 04 0y+0y 0y and (0) = Tr{p0] denotes the expectation value of the aperator
0.

[ First statistical moments {¢,) can be arhitrarily adjusted by local unitary operations, and they do not play
any role n the discussion of entanglement property of the state, We can set them as zero without any loss of
oenerality.



¢ A Gaussian state 15 mapped to another Gausslan state under symplectic transformations

= V' =gvst

o Willilamson theorem: For every covarlance matrix V' there exists a symplectic matrix S such that
ol o
SVS™ = diag(v, v;im,19;. .50y

and vy, k=0,1,...,n denote the symplectic eigenvalues,



o Gaussian density matrix is expressed as a tensor product of n thermal states of oscillators:

n
Pn— P;q = U(S) Pn E*"TT(S] = @ P(E”H
k=1

o0 1yJ

=5\ 4 .
Z(; +§) il
j:D ”1‘ 2

where p(vy,) =

1
m;-l-%

&

(Here {|7)x, j=0,1,...,00} denote the number states of the kth mode).

o An arhitrary positive power Tr[p?], 0 < ¢ < 00 of the n-mode Gaussian density operator may thus be readily
expressed n terms of the symplectic eigenvalues as follows

Tii] = [] Tl )]
k=1

n

1
) H vt 3) - (-3

k=1 2




¢ AR ¢-conditional entropy for a bipartite division of a n mode Gaussian system p,(4, B), with marginals
Tralpa(4,B)] = px(A), Tralpn(4,B)] = pr-w)(B) (with A = Nmodes, B — (n N} modes, N < n ),

in terms of symplectic eigenvalues of p,(4, B) and py(A), using Eq. (2):

l
S;(Bld)=—
84)=—

¢ The ¢-conditional entropy is necessarily positive, when the modes A, B are separable. Negative values of 5,(B|4)
therefore 1mply entanglement between the modes A and B - offering a sufficient condition to characterize
entanglement in Gausslan states,



L)

¢ Peres’ Partial Transpose Chiterion: The lowest symplectic eigemvalue iy, of the variance matrix VV (where the

canonical momenta p; of the transposed modes reverse their sign of the partially transposed density matrix p"
|

satisfies iy, > 5 for all separable Gaussian states. And violation of this condition viz,
» 1
Vin < 7
)

s a characteristic of entanglement, The PPT based characterization serves as a necessary and sufficlent condition
for separability In two mode Ganssian states,

R. Simon, Phys. Rev. Lett. 84, 2726 (2004)




Two mode squeezed thermal state

o(4,B) = U(S,) pen(4) ® pen(B)U(S,)

159 = e[l -]

ol A), py ( B) denote single mode thermal states, hoth at same temperature T

Variance Matrix:

/cnsh*r 0 smhr 0 \

0 coshr 0 -siohr

e 0 coshr

th{s/
1’:(_4~B): Eﬂ (2/)
\ 0 -dhr 0 cslr




Symplectic eigenvalues --  (a5) _ coth(5/2)

R S p—
Two mode state: k=1,2 2

coth(/3/2) coshr
-'-J

Single mode subsystem: pA) =

AR g-conditional entropy:

1 | (coth(3/2) coshr + 1)7 — (coth(5/2) coshr — 1)*

1-1 (coth(8/2) +1)? — (coth(8/2) — 1))’
! i
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We studied the separabillity features of Gaussian states
using AR g-entropic approach and compared the results
with those obtained from conditional von-Neumann
entropy (g=1 limit of AR g-entropy) and with the PPT
method.

Strongest limitation on separability is realized in the limit

g -2 infinity, although the g-entropy approach leads to
weaker domain of separability than the exact one obtained
from PPT method.

Sudha, A. R. Usha Devi, A. K. Rajagopal, PRA 81, 024303 (2010)




Theory of Majorization:

A relationship between separability with global and local
spectra of composite systems follows from the theory of
Majorization.



Given X = (xp,....x4) and ¥ = (y1.....va)
probability vectors (i.e., the components are positive
and they sumto 1) the symbol x < ¥ IS read as

“XIs majorized by y” i.e., X Is more disordered
than v .

More specifically, arranging the vectors x and v in

decreasing order as y! = (_1‘{*,,,*_1'3;'}, where .a;{ = ﬂ = 2 .a;ir
<R o
2.4 =2y ) x<y
j=l j=1 '



Disorder criterion of separability

M. A. Nielsen and J. Kempe, Phys. Rev. Lett. 86, 5184 (2001)

Majorization is known to be a more stringent notion of
disorder than entropy in the sense that if x < v then it
follows that  H(x) = H(y)

If #~aB |s separable, then the global and local
eigenvalues obey the majorization condition

Mpap) < Mpy) and  Alpap) < Alpg).

The majorization results in conditional entropies of
separable states being non-negative.



Limitations of spectral criteria (disorder criterion)

Two qubit iso-spectral states: Nielsen and Kempe (Phys. Rev. Lett. 86, 5184 (2001))
show that attempts to characterize separability based only upon the eigenvalue spectra of
the state p4p and that of 1ts subsystems p4, pp fail. They illustrate 1t with the help of an

example of two 2 qubit states which are 1sospectral - of which, one 1s an entangled state and

the other seperable: /1000) [1000)
o 10110 ) 0000

PaB =3 0110 S 0000

\ 0000/ \000 %)

in the standar asls ‘1 he state ) 1s an entangled state

the standard basis {||0,0), ]|0.1), ||1,0), ||1,1)}) The state p\5 tangled stat

necative under partial transpose) whereas 1s separable - and both the states have same
g P P 29_43 P

clobal and local eigenvalue spectra.



Distillability and global vs local disorder
T. Hiroshima, Phys. Rev. Lett. 91, 057902 (2003)

If a bipartite guantum state satisfies the reduction criterion, i.e.,

Pa®lp = pyp and  14®pp = pp, then it satisfies the
majorization criterion too I.e., Mpag) < Alpy)

In turn a bound entangled state, (which obeys reduction
criterion and so is undistillable) obeys majorization criterion.
This relates distillability with majorization criterion.






