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Outline of talk
(I) The quantum frequentist approach (Finkelstein 1963; Hartle 1968)

(II) Criticism of (I) by Farhi, Gutmann, Goldstone 1989; Gutmann 1995 –
strong law version required.

(III) Criticism of (I) by Squires (1990): frequentist approach fails.

(IV) Criticism of (I, II) by Caves et al. (2004): frequentist approach fails.

(V) Modifying the frequentist approach to evade the above criticisms; but
then resurrecting the criticism (IV) by modifying it.

(VI) Presenting a fundamental philosophical criticism of the quantum fre-

quentist program.



A Postulate of Quantum Mechanics

The probability for obtaining outcome j in a measurement of

observable A =
∑
k λkΠk is, by the Born rule,

Pr(j) = 〈Ψ|Πj|Ψ〉.

where Πk is the projector onto the eigensubspace of A having

eigenvalue λk.

Can one derive this from the remaining structure of quantum

mechanics (QM)?



One possible route: Gleason’s theorem (1958)

For dim ≥ 3, if probability of outcome |j〉 is non-contextual
(independent of how the remaining part of the basis is com-
pleted), then

Prob(j) = Tr(Πjρ),

which is the Born rule applied to density operators.

Example: Given two bases:

A ≡ {|0〉, |1〉, |2〉} and B ≡ {|0〉,
1√
2

(|1〉 ± |2〉)}.

The prob(|0〉) does not depend on whether A or B is used to
complete the basis.

But then: we have merely traded one postulate (Born rule) for
another (non-contextuality).



Non-contextuality from no-signaling?

One might ask: why then is Nature non-contextual?

Possible answer: Contextuality implies signaling

(from previous example):

A ≡ {|0〉, |1〉, |2〉} and B ≡ {|0〉,
1√
2

(|1〉 ± |2〉)}.

Imagine |0〉, |1〉, |2〉 as spatially separate wavepackets, with B re-

quiring a beam-splitter, whereas A not.

Therefore: No-signaling implies non-contextuality:



No-Signaling from WHNE?

Some might wish to ask: and why is Nature no-signaling?

One possible answer (RS, Physica Scripta 2010): “The World
is Not Hard Enough” (WNHE)

WNHE: Hard problems should not be solvable efficiently, nor
communication complexity trivialized (Van Dam 2005), using
polynomial resources in the physical world.

Intuition here is that space is just another kind of information,
and Nature is ultimately about computations performed on ab-
stract bits of information located somewhere in Physical Reality
(Consciousness ?!)

If signaling ⇒ WNHE, then assumption of WNHE would imply
no-signaling.



Unfortunately, there exist polynomial superluminal gates, op-

erations that lead to superluminal signaling but do not allow

polynomial-time solution of NP-complete problems (RS Physica

Scripta 2010).

In any case, the pattern is clear: trading one postulate for an-

other does not help.

We arguably understand better only if fewer axioms are required

to explain the theory or the new axioms are more intuitive (as

pointed out by Pranaw yesterday!).



Another suggested route: the Frequency
operator

The quantum analog of trying to define probability from prop-

erties of frequencies using the law of large numbers.

Bayesians claim that this doesn’t work (classically) because the

laws of large numbers are statements within probability.

The balance would have tipped in the frequentist’s favor, if one

could derive the Born rule from frequentist arguments.

The hope here is that: maybe inner product structure of QM

gives additional leverage in the quantum as against classical case.



The Quantum Frequentist Program (QFP)

By studying infinitely many copies of a quantum system, hopes

to eliminate references to probability from the postulates of

quantum mechanics.

“In |0〉, the probability that a single X-measurement will yield

+1 is 1
2 .”

replaced by

“If the state is |0〉⊗∞, 1
2 of the X-measurements will yield +1.”



Finite-copy frequency/average operator
(Finkelstein 1963; Hartle 1968).
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Consider the N-copy state |ΨN〉 ≡ |ψ〉⊗N , where

|ψ〉 ≡ c|0〉+ s|1〉,

c2 + s2 = 1. It is straightforward to verify that

||FN |ΨN〉 − c2|ΨN〉||2 = (c4 − c4/N + c2/N)− 2c4 + c4

=
c2s2

N
(2)

As N →∞, |ΨN〉 “nearly an eigenstate of FN”.



Axiom of Definite Outcomes (ADO)

ADO: If an observable O is measured on a system in an eigenstate

|ψ〉 of O, i.e., O|ψ〉 = |ψ〉, then the outcome is λ with certainty.

The interpretation apparently is that the Born rule follows from

the Hilbert space structure since FN finds ΨN to be an eigenstate

with eigenvalue c2, without invoking the Born rule!

Certain proponents of the Many-Worlds Interpretation of QM

have tried to adapt QFP to that interpretation (Graham 1973;

DeWitt 1973; Geroch 1984).



Squires’ (1990) rejection of the QFP

Consider N copies of the state |Ψ〉 = c|0〉+ s|1〉, given by

|ΨN〉 = |Ψ〉⊗N .

Assuming for simplicity that Nc2 is an integer, |ΨE〉 is the sym-
metric superposition of the K ≡ NCNc2 states with precisely Nc2

|0〉’s. Defining ΠE ≡ |ΨE〉〈ΨE|, we find

Prob(typical) = ||ΠE|ΨN〉||2 ≡ |〈ΨN |ΨE〉|2 = Kc2Nc
2
s2Ns2

≡ ζ.

Applying Stirling’s approximation one can show:

lim
N→∞

ζ = 0.

Thus if the ‘typical’ eigenspace is orthogonal to |ΨN〉, then so
is every other eigenspace of FN (Squires 1990).



Farhi et al.’s (1989) criticism of F∞

ADO applies only when the system is an exact eigenstate.

For exactness of eigenstate, we require infinite copies (in one

shot, and not just convergence towards!) ⇒ the strong law of

large numbers.

The Finkelstein-Hartle result applies only to finite copies, gov-

erned by the weak law of large numbers.

Hence F∞ must be defined using the strong law of large numbers.



Cantorian set theory

Orders of infinity (cardinality and ordinality).

A set that can be put in 1-to-1 relation with N has countably

infinite elements (cardinality ℵ0).

The set of reals in the interval [0,1] is larger (provable via Can-

tor’s diagonal argument) and has cardinality 2ℵ0.

With cardinality of infinite sets, operations addition and subtrac-

tion do not change the cardinal type, but powering does.

A Hilbert space with a countable (resp. uncountable) orthonor-

mal basis is called separable (resp. nonseparable).



Classical Intuition behind F∞

Coleman and Lesniewski (1995) constructed a ‘randomness op-

erator’ based on Kolmogorov-Chaitin complexity of a sequence

of +1’s and -1’s. Their operator measures ? sequence of inde-

pendent σx measurements yields random +1’s and -1’s. If the

state is a product of σz eigenstates, they show the answer is a

deterministic yes ⇒ state an eigenstate.

Similarly, one can construct quantum operator that measures ?

the outcome sequence of σx measurements has any given prop-

erty.



Corresponding to the states, there exists classical probability

measure on the generated +1’s and -1’s. For many cases of

interest, the classical probability that of set of sequences hav-

ing the property, is 0 or 1 ⇒ the state is an eigenstate of the

operator with eigenvalue 0 or 1.



Construction of the infinite-copy frequency
operator

Given a list of vectors {Ψ} ≡ |ψ1〉, |ψ2〉, · · ·, one defines their

tensor product by

|{Ψ}〉 ≡
⊗
j

|ψj〉.

Inner product:

〈{φ}|{ψ}〉 = Π∞r=1〈φr|ψr〉

Equivalence: {φ} ∼ {ψ}, if there exists N ≥ 1 s.t

Π∞r=N〈φr|ψr〉 ≥ 1− ε.



i.e., equivalence if their tails are identical.

It can be shown that:
– the relation ∼ is an equivalence relation
– inequivalent vectors are orthogonal.

Component: subspace spanned by the infinite product vectors
in a class.

Each component is separable: to see this, select sequence {ψ} =
|ψ1〉, |ψ2〉, · · · from the eqivalence class that defines the compo-
nent. Denote this component H⊗∞{ψ} .

For each vector |ψr〉, choose orthonormal basis

|ψr,0〉, · · · , |ψr, D − 1〉



where |ψr,0〉 = |ψr〉.

Define {i} = i1i2 · · ·, where ik = 0, · · · , D−1, to be finite number

of non-zero elements. These elements are countable. It can be

shown that they span H⊗∞{ψ} .

H⊗∞ is a nonseparable space (of dimension D∞) formed by un-

countably many tensor sums of components.



Infinite-copy frequency operaor

Assuming existence of limitng frequencies, we define frequency
of a sequence {j} to be:

f({j}) = lim
N→∞

1

N

N∑
r=0

(
δ0jr

)
.

Following generalization of the strong law of large numbers (Feller
1971) required:

Let Xn = {0,1} be a sequence of RVs governed by probabilities
0 ≤ qr ≤ 1. Further, define the average probability:
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1

2
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1

N
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1
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and define the frequency random variable by:

f∞ =
1

2

lim sup
N→∞

1

N

N∑
r=1

δ0Xr + lim inf
N→∞

1

N

N∑
r=1

δ0Xrr



Then, by the Strong Law of Large Numbers (Feller 1965):

f{q} = f∞

with probability = 1.



Consider component H⊗∞Ψ spanned by countable basis elements

|Ψ; {i}〉 where sequences {i} have only finite # non-zero entries.

It is a subspace of non-separable H⊗∞.

Probability ‘mass’ associated with |Ψ; {i}〉 (to yield a sequence

of outcomes) must come through a probability measure defined

in H⊗∞.

Gutmann (1995): measure associated with all sequences begin-

ning with j1, · · · , jN (meant to capture Born rule)

ν|Ψ;{i}〉(j1, · · · , jN) =
∫
dν|Ψ;{i}〉({j

′})ΠN
r=1δjrj′r

= ΠN
r=1|〈Ψr, ir|B, jr〉|2.



Within component, all sequences {i} have same tails (consisting
of 0’s), product of terms |〈ψr|B, jr〉|2.

A function of outcome sequences {j} whose value is determined
by the tail is independent of the first N values j1, · · · , jN , for any
N , is called a tail property (Feller 1971).

Therefore, when integrating a tail property over dν|ψ;{i}〉({j}),
the measures for all {i} will be the same.

Eg., a tail property is the average frequency:∫
dν|ψ;{i}〉({j})f({j}) = f{q},

where rhs is the average probability (for getting outcome 0) of
a probability sequence {qr}, where

qr =
∫
dν|ψ;{i}〉({j})δ0,r = |〈ψr, ir|B,0〉|2 = q|ψr,ir〉(0).



As it is independent of {i}, we write:

f{ψ} ≡ f{q}.

(specifying only the base sequence of vectors).

Define projector onto frequency f :

||Π∞f |Ψ; {i}〉||2 ≡
∫
dν|Ψ;{i}〉({j})δ(f({j})− f).

The generalization of the strong law of large numbers quoted

above (frequency of infinite measurments = avg. probability

with prob = 1) reads as:

||Π∞f |Ψ; {i}〉||2 = δ(f{ψ} − f).



This determinism means the state in question is an eigenvector
of the operator:

Π∞f |Ψ; {i}〉 = δ(f{ψ} − f)|Ψ; {i}〉. (3)

Because this is based on a tail property, eigenvalue Eq. (3) is
true for all vectors |Ψ〉 ∈ H∞{ψ}.

By spectral decomposition theorem, we can define the infinite-
copy frequency operator:

F∞|Ψ〉 = f{ψ}|Ψ〉.

In the present case, the component of interest has representative
sequence {ψ} = |ψ〉, |ψ〉, · · · (infinite repetition state). So qr =
|〈ψ|B,0〉|2 = f{ψ}, the frequency associated with H⊗∞{ψ} .



Caves et al. (2004) refutation of QFP even in
its strengthened form

That there is a priori no special preference for the Born rule

qr = |〈ψ|B,0〉|2 =⇒ N−1g(|〈ψ|B,0〉|),

with ‘manually normalized’ probabilities:

f{ψ} =
g(|〈ψ|B,0〉|)∑
j g(|〈ψ|B, j〉|)

Uncool, no doubt, but not disallowed by Nature !

⇒ no unique extension of the finite-copy frequency operator to

the infinite-copy Hilbert space.



Weakening ADO

It turns out that the important criticism of Squires and Caves et
al. can be evaded by suitably weakening ADO. The insight to
do so comes from information theory.

Squires’ expression for |〈ΨE|ΨN〉|2 is just the probability of ob-
taining a typical sequence from N independent tosses of a clas-
sical coin with probability distribution (c2, s2).

His result is an instance of De Moivre paradox: the number of
heads tends to Nc2, but the probability that it exactly Nc2 is 0.

An easy way to understand this: the maximum of a binomial
distribution tends to 0 as N →∞.

Classical information theory avoids this paradox by invoking ε-
typicality instead of typicality.



For any δ, ε > 0, for N sufficiently large, each ε-typical sequence

of symbols x1x2x3 · · ·xn satisfies

2−n(H(X)+ε) ≤ Prob(x1x2 · · ·xn) ≤ 2−n(H(X)−ε), (4)

and the total probability of all ε-typical sequences is greater than

1− δ. Here H(X) is the entropy rate per symbol.

It can be understood also as follows: the distribution of the

sample mean can be made as narrow as desired , but not 0

(unless strong law is invoked).



Analogously in the quantum case (Schumacher 1995): given n, ε,

we define ε-typical subspace Λ as space spanned by vectors of

ρ⊗n with eigenvalue λ satisfying

2−n(S(ρ)−ε) ≥ λ ≥ 2−n(S(ρ)+ε)

Analogous to classical info, given δ, ε > 0 and n sufficiently large,

the sum of ε-typical eigenvalues satisfies

Tr(ρ⊗nE) > 1− δ,

where E is projector to the typical subspace.



Weakening ADO.

Weak Axiom of Definite Outcomes (WADO): If an observable

O is measured on a system that is ε-close (according to some

criterion) to an eigenstate |ψ〉 of O, then the outcome is λ with

probability greater than 1− δ(ε).

One may argue that this doesn’t uniquely “fix” quantum me-

chanics in that there is no unique way to weaken ADO.

However, it shows how to preserve “the spirit” of ADO while

evading the objections of Squires and Caves et al.



With regard to Squires: The fact that |ΨN〉 is ⊥ asymptotically

to all eigenstates of FN does not contradict the Weak QFP,

because |ΨN〉 is nearly an eigenstate according to the ε-closeness

criterion. we know that one weak criterion (e.g., the standard

Schumacher one) that exists.

WADO implies that the Weak Law of Large Numbers suffices

to define the frequency operator, and the Strong one is not

appropriate to use. Thus the lack of uniqueness of extension

of the finite-copy frequency operator to the infinite-copy Hilbert

space is not a problem.

This does not mean that QFP can be salvaged, since a modified

version of Caves et al.’s objection could be raised.



Lack of uniquess exists even in weak limit

Claim. Let |Ψp
N〉 ≡ |ψ〉

⊗N , where |ψ〉 ≡ a|0〉 + b|1〉 has been
normalized according to the p-norm. Then there is a unique
number, given by q = |a|p, such that (Finkelstein-Hartle theorem)

lim
N→∞

||FN |Ψp
N〉 − q|Ψ

p
N〉||

2 ≡ lim
N→∞

∆N = 0. (5)

Proof.

∆2
N = (q − 〈ψ|P|0〉|ψ〉)

2 +
〈ψ|P|0〉|ψ〉(q − 〈ψ|P|0〉|ψ〉)

N
. (6)

With the choice of p-norm, we have 〈ψ|P|0〉|ψ〉 = |a|p, and the
theorem follows immediately. •

Thus the lack of uniqueness of the probability measure, pointed
out by Caves et al. (2005), exists even without extending FN to
H⊗∞.



QFP demystified

Eq. 5 is simply a statement that variance of the binomial distri-

bution (FN represents N coin tosses and q the mean),

lim
N→∞

∆2
N =

q(1− q)
N

= 0. (7)

Thus large-number or tail properties (which can be decribed

without referring to the first n outcomes, for any finite n) are

increasingly deterministic, and in the strong law limit, they are

fully deterministic. The spirit of ADO is use this observation to

define probabilities in terms of frequencies. But as we see, it

does not fix q, which can be anything, incluing non-Gleasonian

(contextual) probability laws.



Compatibility vs. implication

Thus, F-H theorem is a purely statistical result that relates

single-copy probability with property of frequencies, and is de-

void of any physical content regarding the form of the single-copy

probability.

Thus the Born rule (2-norm) is compatible, but not a conse-

quence of F-H theorem.



A Meta-theoretic objection to QFP

Any physical theory consists of a body of mathematical theory,

and a meta-theoretic that supplies an interpretation.

The math of Quantum Theory could as well be applied to some

other measure than probability, say ‘brightness’ !

Viewing FHP in another light: the ‘bosonic binomial state’–

|ΦN〉 ≡
(√

p|0〉+
√

1− p|1〉
)⊗N

=
N∑
j=1

√√√√( N
j

)
|(N, j)〉,

where |(N, j)〉 is the symmetrized state over all “typical sequences”

of Np 0’s and N(1− p) 1’s and p is assumed to be real.



As N →∞, most untypical kets will “fade away”. But this does

not mean, typical sequences are more probable, but instead just

brighter !!

Thus Quantum Frequentist Program is as bankrupt philosophi-

cally, as mathematically!

We may yet find a deeper explanation for the Born rule, but not

here.



Thanks to Himanshu Sharma and Ebad Kamil for discssions!

Thank You for your kind
attention!


