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A classical random walk can be defined by specifying

1 States: |n〉 for n ∈ Z
2 Allowed transitions:

|n〉 →


|n − 1〉 a left move
or
|n + 1〉 a right move

3 An initial state: |0〉
4 Rule(s) to carry out the

transitions: In our case we toss a
(fair) coin , and move left or right
with equal probability (0.5).

This defines a 1 dimensional random walk, sometimes known
as the “drunk man’s walk”, which is well understood in
mathematics and computer science. Let us denote by pc(n, k)

michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin



2

CLASSICAL RANDOM WALKS
QUANTUM RANDOM WALKS

2D QUANTUM RANDOM WALKS
ENTANGLEMENT GENERATION

the probability of finding the particle at position k in an n step
walk (−n ≤ k ≤ n). Some of its properties are

1 The probability distribution is Gaussian (plot of pc(n, k)
against k ).

2 For an odd (even) number of steps, the particle can only
finish at an odd (even) integer position: pc(n, k) = 0 unless
(n − k) mod 2 = 0

3 The maximum probability is always at the origin (for an
even number of steps in the walk): pc(n,0) > pc(n, k) for
even n and even k 6= 0.

4 (Non-localization) For an infinitely long walk, the probability
of finding the particle at any fixed point goes to zero:
limn→∞ pc(n, k) = 0.

5 On average, after n steps the walker will be at distance
√

n
from the origin.
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Example: A short classical walk

In a 3 step walk, starting at |0〉, what is the probability of finding
the particle at the point |−1〉?
We denote by L(R) a left (right) step respectively.

Possible paths that terminate at |−1〉 are LLR,LRL and
RLL, i.e. those paths with precisely 1 right step and 2 left
steps. So there are 3 possible paths.
Total number of possible paths is 23 = 8.

So the probability is 3/8 = 0.375.

So, how do we calculate the probabilities?
Physicist (Feynman) Path Integral.

Statistician Summation over Outcomes.
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Let us denote by NL the number of left steps and NR the
number of right steps. Of course, fixing NL and NR fixes k and
n, and vice versa: The equations are

NR + NL = n
NR − NL = k

We have an easy closed form solution for the probabilities
pc(n, k): For a fixed NL and NR,

n!
NL!NR!2n =

n!
((n − k)/2)!((n + k)/2)!2n = pc(n, k)

We can tabulate the probabilities for the first few iterations:
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Number of steps
position 0 1 2 3 4

4 0 0 0 0 0.0625
3 0 0 0 0.125 0
2 0 0 0.25 0 0.0625
1 0 0.5 0 0.375 0
0 1 0 0.5 0 0.0375
−1 0 0.5 0 0.375 0
−2 0 0 0.25 0 0.0625
−3 0 0 0 0.125 0
−4 0 0 0 0 0.0625
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Quantum Random Walks: Definitions
One Dimensional Discrete Quantum Walks (also known as
Quantum Markov Chains) take place on the State Space
spanned by vectors

|n,p〉 (1)

where n ∈ Z (the integers) and p ∈ {0,1} is a boolean variable.
p is often called the ‘coin’ state or the chirality, with

0 ≡ spin up

1 ≡ spin down

We can view p as the “quantum part” of the walk, while n is the
“classical part”.
One step of the walk is given by the transitions

|n,0〉 −→ a |n − 1,0〉+ b |n + 1,1〉 (2)
|n,1〉 −→ c |n − 1,0〉+ d |n + 1,1〉 (3)
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where (
a b
c d

)
∈ SU(2), (4)

the group of 2× 2 unitary matrices of determinant 1.

Aside
We can view the transitions as consisting of 2 distinct steps, a
“coin flip” operation C followed by a shift operation S:

C : |n,0〉 −→ a |n,0〉+ b |n,1〉 (5)
C : |n,1〉 −→ c |n,0〉+ d |n,1〉 (6)
S : |n,p〉 −→ |n ± 1,p〉 (7)

These walks have also been well studied: See Kempe
(arXiv:quant−ph/0303081) for a thorough review.
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The final probability distribution depends on
The initial (coin) state
The coin flip matrix used

The Hadamard Walk
We choose for our coin flip operation the Hadamard matrix

(
a b
c d

)
=

1√
2

(
1 1
1 −1

)
(8)

If we start at initial state |0,0〉, the first few steps of a standard
michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin
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quantum (Hadamard) random walk would be

|0,0〉 −→ 1√
2
(|−1,0〉+ |1,1〉) −→ (9)

1
2
(|−2,0〉+ |0,1〉+ |0,0〉 − |2,1〉) −→ (10)

1
2
√

2
(|−3,0〉+ |−1,1〉+ |−1,0〉 − |1,1〉

+ |−1,0〉+ |1,1〉 − |1,0〉+ |3,1〉). (11)

Thus after the third step of the walk we see
destructive interference (cancellation of 4th. and 6th. terms)
constructive interference (addition of 3rd. and 5th. terms)
which are features that do not exist in the classical case.
The calculation of pq(n, k) proceeds by again looking at all
paths that lead to a particular position k , but this time, since we
are in the quantum domain:
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We calculate firstly amplitudes − so we have a 1/
√

2 factor
added at every step, and final probabilities are amplitudes
squared (in our examples, with the Hadamard walk there
are no imaginary numbers).

There are also phases that we must take account of in our
amplitude calculations.

In particular, note that the phase −1 from the Hadamard matrix
arises every time, in a particular path, we follow a right step by
another right step.

Asymptotic Properties
Brun, Carteret & Ambainis (arXiv:quant−ph/0210161) have
calculated explicitly (using combinatorial techniques) the
amplitudes:
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Amplitude for final state |k ,0〉

1√
2n

M∑
C=1

(−1)NL−C
(

NL − 1
C − 1

)(
NR

C − 1

)

Amplitude for final state |k ,1〉

1√
2n

M∑
C=1

(−1)NL−C
(

NL − 1
C − 1

)(
NR

C

)

where M has value NL for k ≥ 0 and value NR + 1 otherwise.
The analyses of Kempe (and others) show that for the quantum
(Hadamard) random walk with initial state |0,0〉

1 The probability distribution pq(n, k) is not gaussian − it
oscillates with many peaks.
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2 For large n, the place at which the particle is most likely to
be found is not at the origin: rather it is most likely to be at
distance n/

√
2 from the origin.

3 In some general sense, the particle “travels further”: The
probability distribution is spread fairly evenly between
−n/
√

2 and n/
√

2, and only decreases rapidly outside
these limits.

4 It is not even symmetric. The asymmetric nature of pq(n, k)
is a figment of the initial state chosen: We can choose a
more symmetric initial state to give a symmetric probability
distribution.

5 (Non-localization) For an infinitely long walk, the probability
of finding the particle at any fixed point goes to zero:
limn→∞ pq(n, k) = 0.
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2D Quantum Random Walk
In general, to move on a 2D square lattice, we toss a “coin with
four sides”. Our setup is

1 States: |m,n,p〉 for m,n ∈ Z and p ∈ {0,1,2,3}.
2 Transitions:

|m,n,0〉 −→ a11 |m + 1,n + 1,0〉+ a12 |m + 1,n − 1,1〉
+a13 |m − 1,n + 1,2〉+ a14 |m − 1,n − 1,3〉

|m,n,1〉 −→ a21 |m + 1,n + 1,0〉+ a22 |m + 1,n − 1,1〉
+a23 |m − 1,n + 1,2〉+ a24 |m − 1,n − 1,3〉

|m,n,2〉 −→ a31 |m + 1,n + 1,0〉+ a32 |m + 1,n − 1,1〉
+a33 |m − 1,n + 1,2〉+ a34 |m − 1,n − 1,3〉

|m,n,3〉 −→ a41 |m + 1,n + 1,0〉+ a42 |m + 1,n − 1,1〉
+a43 |m − 1,n + 1,2〉+ a44 |m − 1,n − 1,3〉
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where
A = (aij)

is a 4x4 unitary matrix.
3 An initial state: |0,0,p〉

The Grover Walk
This is a 2D quantum walk using the “coin”

G =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


which is the 4x4 Grover “diffusion” matrix G = −2 |s〉 〈s|+ I,
where s =

∑
x |x〉 /

√
n.
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Observation
G is equivalent to the 4x4 Sylvester matrix H ⊗ H, where H is
the standard 2x2 Hadamard.

The remarkable feature of the Grover walk is we get localization
at the origin (limn→∞ pq(n, (0,0)) 6= 0) for all initial states except
the particular initial state

(|0,0,0〉 − |0,0,1〉 − |0,0,2〉+ |0,0,3〉)/2.

The Alternating Walk
Our setup is

1 States: |m,n, c〉 for m,n ∈ Z and c ∈ {0,1}.
2 Transitions:

michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin
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1st. step (horizontal move)

|m,n,0〉 −→ a |m − 1,n,0〉+ b |m + 1,n,1〉
|m,n,1〉 −→ c |m − 1,n,0〉+ d |m + 1,n,1〉

2nd. step (vertical move)

|m,n,0〉 −→ a |m,n − 1,0〉+ b |m,n + 1,1〉
|m,n,1〉 −→ c |m,n − 1,0〉+ d |m,n + 1,1〉

3 An initial state: |0,0, c〉

This produces a probability distribution on the same (square
lattice) nodes as in the standard 2D quantum walks.
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Question
When do the two probability distributions ( from the standard
2D quantum walk and from our alternating walk) coincide?

Answer (so far)
We have a (1 parameter) family of cases where coincidence
occurs.
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Result 1
The following two models coincide:

model (a)
Standard 2D quantum walk with

Initial state (|0,0,0〉 − |0,0,1〉 −
|0,0,2〉+ |0,0,3〉)/2.
Coin

G =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



model (b)
Alternating quantum walk
with

Initial state (|0,0,0〉+
i |0,0,1〉)/

√
2.

Coin

H =
1√
2

(
1 1
1 −1

)
Specifically in the wavefunction, if we denote by

αm,n,p(t) the coefficient of the state |m,n,p〉 at time t in the
standard 2D quantum walk;

michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin



2

CLASSICAL RANDOM WALKS
QUANTUM RANDOM WALKS

2D QUANTUM RANDOM WALKS
ENTANGLEMENT GENERATION

βm,n,c(t) the coefficient of the state |m,n, c〉 at time t in the
alternating walk

then the explicit correspondence is

(
βm,n,o(t)
βm,n,1(t)

)
= (−1)teiπ/4

(
1 0 i 0

0 −1 0 i

)
αm,n,0(t)
αm,n,1(t)
αm,n,2(t)
αm,n,3(t)


Our Understanding: From the following table - the complex
amplitudes of the single qubit store twice as many numbers as
the strictly real amplitudes of the 4-state Grover coin.

Entries in
the initial
state

Entries in
the coin
matrix

Entries in
arbitrary
state

Alternate Walk Complex values Real Values Complex values
2D Grover
Walk

Real Values Real Values Real Values
michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin
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We asked the question - if we use other (real) 2x2 matrices (as
a coin flip) in an alternating walk, what do they correspond to in
terms of the 2D picture?

Result 2
We have found correspondences (in 2D quantum walks) for
alternating walks using any possible real single qubit coin
operator. All these coin operators are simply the 2x2
orthogonal matrices which are classified as

rotations
(

cos θ − sin θ
sin θ cos θ

) (which includes the
identity)

reflections
(

cos θ sin θ
sin θ − cos θ

) (which includes the
Hadamard, and the
“swap” (permuta-
tion) matrix)

michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin



2

CLASSICAL RANDOM WALKS
QUANTUM RANDOM WALKS

2D QUANTUM RANDOM WALKS
ENTANGLEMENT GENERATION

Entanglement generation
Let us consider the entanglement between x and y positions of
the state at time t . We find that our alternating walk, with the
Hadamard matrix and initial state (|0,0,0〉+ i |0,0,1〉)/

√
2

generates more of this entanglement than its corresponding
Grover walk: Even though the probability amplitudes
correspond at every point in the lattice, the spatial
entanglement does not.
We have investigated the dependence of this on an arbitrary
initial state,

|ψ〉 = cos(
θ

2
) |0,0,0〉+ eiφ sin(

θ

2
) |0,0,1〉

and we find maximal entanglement uniquely when θ = φ = π/2.
michael.mcgettrick@nuigalway.ie Alternating two dimensional quantum walks constructed using a single qubit coin
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Figure: Entanglement (Negativity) between x and y positions as a
function of the initial state (cos(θ/2) |0,0,0〉+ eiφ sin(θ/2) |0,0,1〉) for
the alternating walk
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Conclusions
We have shown a new correspondence between certain
alternating walks and certain 2D quantum walks - the
advance here is physically for the alternating walk, it is
easier experimentally.
We show the spatial entanglement generated in the
alternating walk is superior to the 2D one.
(Time permitting) 1D quantum random walk with memory
displays localization at the origin.
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