

Quantum interferometric visibility as a witness of general relativistic proper time

M. Zych, F. Costa, I. Pikovski, Č. Brukner

Bhubaneswar, 21st December 2011

Interpretation ambiguity of gravitationally induced phase shifts

The state inside the setup

Mach-Zehnder interferometer in the gravitational field

- two beam splitters (BS),
- phase shifter (PS),
- two detectors D_{\pm} .

 $\gamma_{\scriptscriptstyle 1,2}$ – two possible paths through the setup,

g - homogeneous gravitational field,

 Δh - separation between the paths

modes associated with the corresponding paths $\gamma_{1,2}$

$$|\Psi_{MZ}\rangle = \frac{1}{\sqrt{2}} \left(ie^{-i\phi_1} |r_1\rangle + e^{-i\phi_2 + i\varphi} |r_2\rangle \right)$$

Probabilities of detection $P_{\pm} = \frac{1}{2} \pm \frac{1}{2} \cos \left(\Delta \phi + \varphi \right) \qquad \Delta \phi := \phi_1 - \phi_2$ neutrons, COW, 1975

Interpretation ambiguity of gravitationally induced phase shifts

$$|\Psi_{MZ}\rangle = \frac{1}{\sqrt{2}} \left(ie^{-i\phi_1} |r_1\rangle + e^{-i\phi_2 + i\varphi} |r_2\rangle \right)$$

non-relativistic quantum mechanics

- gravity: potential force (possibly non-Newtonian)
- there exists a global time paramter,
- flat space-time

$$\phi_i \propto_{\mathbb{R}_{I,2}} \frac{1}{\hbar} \int_{\gamma_i} dt \ V_{eff}(x)$$

ΔΦ: gravitational analog of anAharonov-Bohm effect

general relativity

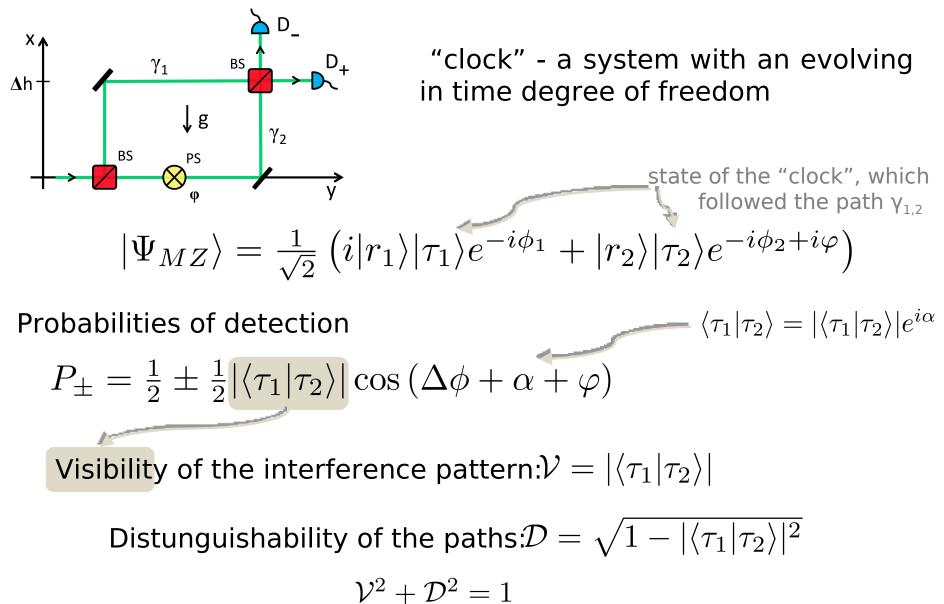
- gravity : metric theory,
- proper time τ may flows at different rates ,
- curved space-time geometry

$$\phi_i \underset{\mathbb{Z}_{2}}{\propto} - \frac{mc^2}{\hbar} \int_{\gamma_i} d\tau$$

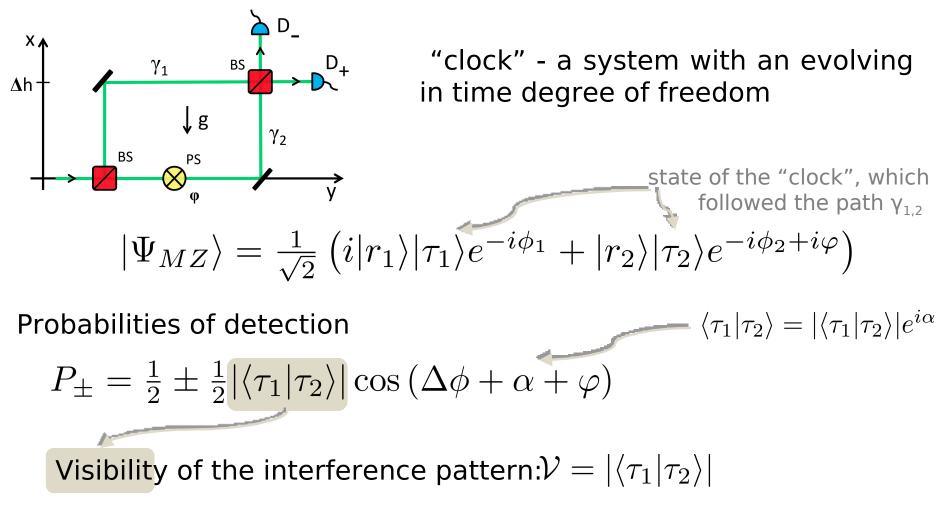
 $\Delta \Phi$: measure of a general relativisitc time dilation

Outline

 General idea: test of general relativistic time dilation in conjunction with the principle of quantum complementarity;

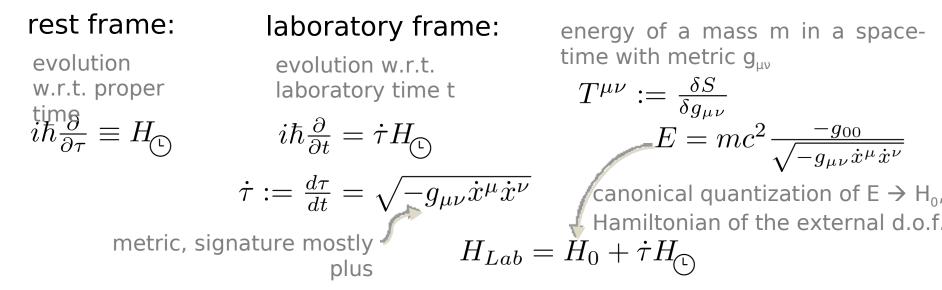

 Derivation of the main result and the experimental proposal quantitative predictions;

Feasibility of practical implementations;


 Discussion and extensions: how to test theories in which proper time is supposed to be a quantum degree of freedom;

Conclusion

Interferometric visibility as a witness of proper time



Interferometric visibility as a witness of proper time

quantum complementarity + time dilation = drop in the interferometric visibility

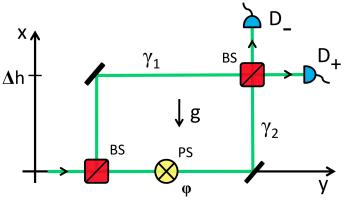
"clock" d.o.f. implemented in internal states of a massive particle (neglecting finite size effects)

Particle in a Schwarzschild metric; up to quadratic terms in the kinetic, potential and internal energy:

$$\begin{split} H_{\rm Lab} &\simeq mc^2 + H_{\odot} + E_k^{GR} + \frac{\phi(x)}{c^2} \left(mc^2 + H_{\odot} + E_{corr}^{GR} \right) \\ \phi(x) &= -\frac{GM}{^x} E_k^{GR} = \frac{p^2}{2m} \left(1 + 3 \left(\frac{p}{2mc} \right)^2 - \frac{1}{mc^2} H_{\odot} \right) \\ E_{corr}^{GR} &= \frac{1}{2} m \phi(x) - 3 \frac{p^2}{2m} \end{split}$$

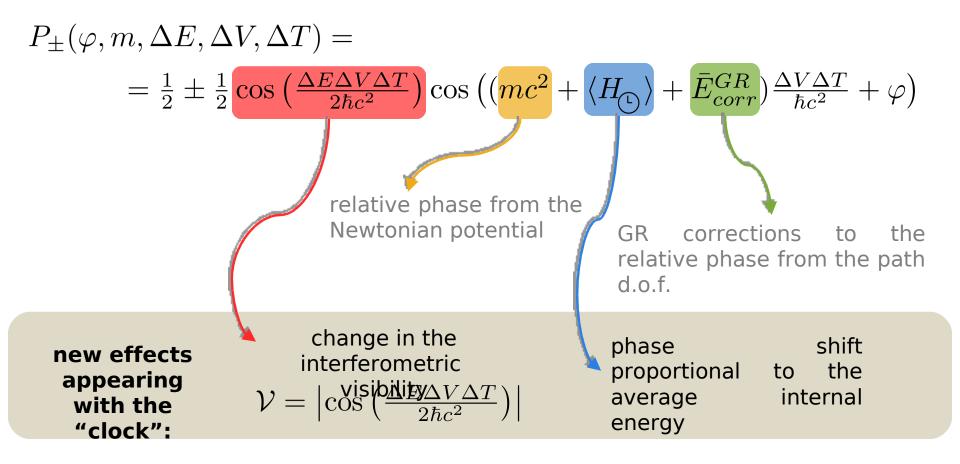
$$H_{\rm Lab} \simeq mc^2 + H_{\bigcirc} + E_k^{GR} + \frac{\phi(x)}{c^2} \left(mc^2 + H_{\bigcirc} + E_{corr}^{GR}\right)$$

Up to a phase


$$\begin{split} |\Psi_i\rangle &= e^{-\frac{i}{\hbar}\int_{\gamma_i} dt \frac{\phi(x)}{c^2} \left(mc^2 + H_{\bigcirc} + E_{corr}^{GR}\right)} |x^{in}\rangle |\tau^{in}\rangle \\ H_{\bigcirc} &= E_0 |0\rangle \langle 0| + E_1 |1\rangle \langle 1| \\ |\tau^{in}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \end{split}$$

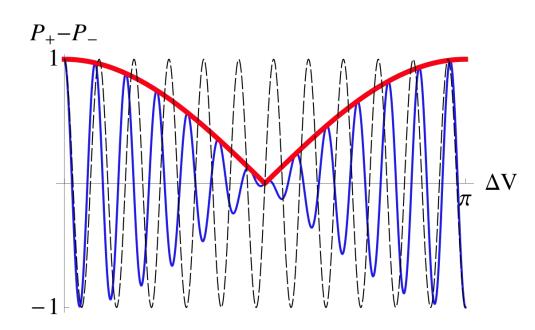
 $\bullet \Delta E := E_1 - E_0,$

•Δh: distance between the paths


• $\Delta V:=g\Delta h$, gravitational potential (up to linear terms in Δh)

 ΔT : time for which the particle travels in superposition at constant heights,

$\bullet \Delta E := E_1 - E_0,$


- • Δ h: distance between the paths
- • ΔV :=g Δh , gravitational potential (up to linear terms in Δh)
- • Δ T: time for which the particle travels in superposition at constant heights,

$\Box \Delta E := E_1 - E_0,$

- • Δ h: distance between the paths
- • ΔV :=g Δh , gravitational potential (up to linear terms in Δh)
- • Δ T: time for which the particle travels in superposition at constant heights,

$$P_{\pm}(\varphi, m, \Delta E, \Delta V, \Delta T) = \frac{1}{2} \pm \frac{1}{2} \cos\left(\frac{\Delta E \Delta V \Delta T}{2\hbar c^2}\right) \cos\left(\left(mc^2 + \langle H_{\bigcirc} \rangle + \bar{E}_{corr}^{GR}\right) \frac{\Delta V \Delta T}{\hbar c^2} + \varphi\right)$$

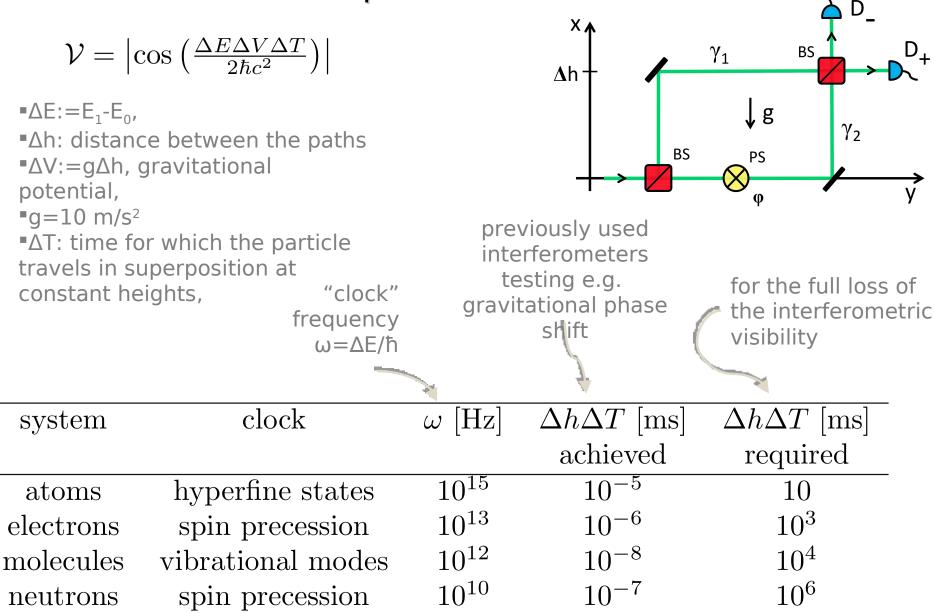
 dashed, black line interference without the "clock"

- blue line interference with the "clock"
- thick, red line modulation in the visibility

Generalization

$$\mathcal{V} = \left| \cos \left(\frac{\Delta E \Delta V \Delta T}{2\hbar c^2} \right) \right|$$
$$H_{\bigcirc} = E_0 |0\rangle \langle 0| + E_1 |1\rangle \langle 1| \qquad |\tau^{in}\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

•orthogonalization time (of a quantum system):


$$t_{\perp} := \min\{t > 0 \mid \langle \Psi(0) | \Psi(t) \rangle = 0\}, \quad |\Psi(t)\rangle = e^{-\frac{i}{\hbar} \int_0^t H ds} |\Psi(0)\rangle$$

here: $t_{\perp} = \frac{\pi \hbar}{\Delta E}$

•total time dilation between the trajectories: $\Delta \tau = \frac{\Delta V \Delta T}{c^2}$

$$\mathcal{V} = \left| \cos \left(\frac{\Delta \tau}{t_{\perp}} \frac{\pi}{2} \right) \right|$$

time dilation between the interferometric paths = orthogonalization time of the "clock" => maximal which-way information & no interference

Implementations

Discussion and final remarks

- phase shift occurs independently of the implementation of the "clock"
- interferometric visibility drops meaning

$$\mathcal{V} = \left| \cos \left(\frac{\Delta \tau}{t_{\perp}} \frac{\pi}{2} \right) \right|$$

take an eigenstate of the internal energy Hamiltonian → only the phase of the state changes...

the ,,clock" does not ,,tick" ⇒ the concept of proper time has no operational meaning ⇒ visibility is maximal!

Discussion and final remarks

- phase shift occurs independently of the implementation of the "clock"
- interferometric visibility drops meaning

interference should always be lost! (since the which-path information is stored "somewhere" in the particle)

In quantum mechanics it makes no sense to speak about quantities without specifying how they are measured!

Discussion and final remarks

• phase shift occurs independently of the implementation of the "clock"

> tests the corrections to the gravitational potential, analogous to the A-B effect in the electromagnetism

 interferometric visibility drops meaning

> tests quantum complementarity principle in the conjunction with the general relativistic time dilation

toward testing new theories

Theories which assume that proper time is a new quantum degree of freedom can be tested with our proposal.

■ V_m - measured visibility, with estimated error Δν; ■ V_{OM} - visibility predicted by quantum mechanics

experimental visibility	possible explanation	current experimental status
$\mathcal{V}_m = 0$	proper time: quantum d.o.f.,	disproved in
	sharply defined	e.g. Ref. $[1,2]$
$0 < \mathcal{V}_m < \mathcal{V}_{QM}$	proper time: quantum d.o.f	consistent with current data
	with uncertainty σ_{τ}	for $\sigma_{\tau} > \frac{ \Delta \tau }{\sqrt{-8\ln(1-\Delta \mathcal{V})}}$
$\mathcal{V}_m = \mathcal{V}_{QM}$	proper time: not a quantum d.o.f.	consistent with current data
	or has a very broad uncertainty	
$\mathcal{V}_m > \mathcal{V}_{QM}$	quantum interferometric complementarity	not tested
	does not hold when general	
	relativistic effects become relevant	

Conclusion

Drop in the visibility of quantum interference due to gravitational time dilation

- new paradigm for tests of genuine general relativistic effects in quantum mechanics
- clarification of the notion of proper time in the quantum context - only operationally well defined physical quantities have meaning in quantum mechanics!
- Test of theories in which proper time is assumed to be a quantum degree of freedom;
- previously not considered mechanism of decoherence (important for quantum-to-classical transition)

Quantum interferometric visibility as a witness of general relativistic proper time

Nat. Commun. 2:505 doi: 10.1038/ncomms1498 (2011)

M. Z., F. Costa, I. Pikovski, C. Brukner

Thank you for your

plane, ba