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Why Why quantumquantum computation?computation?

No efficient classical algorithm that factorizes an integer into its prime factors.

If we believe that there are none, then quantum computation promises qualitatively 
better efficiencies than its classical counterpart:

“Shor’s algorithm”.“Shor’s algorithm”.“Shor’s algorithm”.“Shor’s algorithm”.

Moreover, quantum computers can be used to simulate complex quantum systems.

Also: With the rapidly decreasing size of computer chips, sooner or later quantum 
effects will begin to show up.

Feynman 1982, Shor 1994, Grover 1995, ...



Why Why quantumquantum cryptography?cryptography?
• All practical classical cryptographic schemes rely, for its security, on 

the unproven premise that integers cannot be efficiently factored.

• They will be insecure if the eavesdropper implements Shor’s 
algorithm.algorithm.

• Security of quantumquantum cryptographic schemes rely on quantum 
mechanics.

Wiesner 1970s; Bennett & Brassard 1984; Ekert 1991; Bennett, 

Brassard, & Mermin 1992; Bennett 1992; Bruss 1998.



Why Why quantumquantum communication?communication?
�A two-state classical system (e.g. a ball that may be either 

blue or green) can be used to send at most one bit of 
classical information. 

If the sender and receiver are allowed to share a quantum If the sender and receiver are allowed to share a quantum 
state, a two-dimensional quantum state can be used to send 
up to two bits of classical information: 

“Quantum dense coding”.“Quantum dense coding”.

Bennett & Wiesner 1992.



Why Why quantumquantum communication?communication?
�An infinite amount of classical communication is needed for 

sending a two-dimensional quantum system. 

Only two bits of classical communication may be needed, if 
a quantum state is shared between the sender and receiver:a quantum state is shared between the sender and receiver:

“Quantum teleportation”.“Quantum teleportation”.

Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters 1993.
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Separable and Entangled statesSeparable and Entangled states

• Quantum states that can be prepared by 

LOCC → Separable states.LOCC → Separable states.

• How do they look like? Mathematically? 

• Separable states: mixture of products over 

pure states of individual systems.
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• Osborne and Nielsen, QIP’02, PRA’02

• Osterloh, Amico, Falci, Fazio, Nature’02• Osterloh, Amico, Falci, Fazio, Nature’02

Idea of using entanglement-like concepts

in quantum many-body phenomena was put forward.
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computecompute??

• Bipartite states.

• For mixed two-party states, only 

entanglement of formation of two-qubit entanglement of formation of two-qubit 

states.

• For pure two-party states, local von 

Neumann entropy is a “good” measure of 

entanglement, and is computable.

Possible in arbitrary dimensions.

This sets the stage for the 

QI - many-body interface.
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Which entanglement can we Which entanglement can we 

computecompute??

• Bipartite states.

• For mixed two-party states, only 

entanglement of formation of two-qubit Indeed, two of the main directions of study areentanglement of formation of two-qubit 

states.

• For pure two-party states, local von 

Neumann entropy is a “good” measure of 

entanglement, and is computable.

Possible in arbitrary dimensions.

Indeed, two of the main directions of study are

1. EoF of reduced densities 

of spin-1/2 ground states

2. Scaling of local entropy 

in ground state partitions
“Area Law”
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Spin-1/2 Chain

The reduced state is a two-qubit state.
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Quantum XY spin model

For g = 1: Transverse Ising Model.

S J [(1 + g) S S + (1 - g) S S  ]– a S
x yyx z

i i ii+1 i+1

Quantum phase transition at h=1.
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TwoTwo--site densitiessite densities

The prescription:

1. Find ground state of spin-1/2 system

Why NN?

1. Find ground state of spin-1/2 system

2. Remove all spins except two NNs

3. Find EoF of resulting two-site density

4. Investigate it wrt the relevant system parameter

In many instances, 

but NOT all,

NNN and so on

have little to no entanglement.



OutlineOutline

1. Why quantum information?

2. Separable and Entangled states.

3. Setting the stage: Which “entanglements” can we compute?3. Setting the stage: Which “entanglements” can we compute?

4. Two main streams:

a. Two-site densities of spin-1/2 ground states

b. Area Law: Scaling of ground state local entropy

5. End remarks



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

We r talking abt interacting systems.



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

Would be true if …



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

Boundary particles are pure entangled states.



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

Boundary particles are pure entangled states.

Plus no long-range entangled pairs.



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

Typical situation is far from being such.



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1

L: order of the size of one block

Typical situation is far from being such.

Usually intricately multiparty quantum correlated.



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of   

separation between A and B.

S(rL) ~ Ld-1                 

L: characteristic length of A



Area LawArea LawArea LawArea LawArea LawArea LawArea LawArea Law

A

B

Reduced entropy S would depend on the surface of  

separation between A and B.

S(rL) ~ Ld-1          

L: characteristic length of A

Area Law



Area Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1D

L (Alice)                               N-L (Bob)

1          2          3          4          51          2          3          4          5

Block entanglement: E(||YYÚL:N-L)

E(||YYÚL:N-L)= S(rL)



Area Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1D

L (Alice)                               N-L (Bob)

1          2          3          4          51          2          3          4          5

Block entanglement: E(||YYÚL:N-L)

E(||YYÚL:N-L)= S(rL) ~ Ld-1 ≡ constant

away from criticality



Area Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1D

L (Alice)                               N-L (Bob)

1          2          3          4          51          2          3          4          5

Block entanglement: E(||YYÚL:N-L)

E(||YYÚL:N-L)= S(rL) ~ Ld-1 ≡ constant

away from criticality



Area Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1D

L (Alice)                               N-L (Bob)

1          2          3          4          51          2          3          4          5

Block entanglement: E(||YYÚL:N-L)

E(||YYÚL:N-L)= S(rL) ~ ln L

at criticality



Area Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1DArea Law:1D

L (Alice)                               N-L (Bob)

1          2          3          4          51          2          3          4          5

Block entanglement: E(||YYÚL:N-L)

E(||YYÚL:N-L)= S(rL) ~ ln L

at criticality



Lot of progress in different directions.



Lot of progress in different directions.

A case study:A case study:

Frustrated systems



What is frustration?What is frustration?What is frustration?What is frustration?What is frustration?What is frustration?What is frustration?What is frustration?

Definition Definition Definition Definition 

& & & & 

QuantificationQuantificationQuantificationQuantification



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

Ground states:

↑↑↓↑↑↓↑↑↓↑↑↓〉〈〉〈〉〈〉〈↑↑↓↑↑↓↑↑↓↑↑↓, , , , ↑↓↑↑↓↑↑↓↑↑↓↑〉〈〉〈〉〈〉〈↑↓↑↑↓↑↑↓↑↑↓↑, , , , ↓↑↑↓↑↑↓↑↑↓↑↑〉〈〉〈〉〈〉〈↓↑↑↓↑↑↓↑↑↓↑↑,  ,  ,  ,  ↓↑↓↓↑↓↓↑↓↓↑↓〉〈〉〈〉〈〉〈↓↑↓↓↑↓↓↑↓↓↑↓,  ,  ,  ,  

↑↓↓↑↓↓↑↓↓↑↓↓〉〈〉〈〉〈〉〈↑↓↓↑↓↓↑↓↓↑↓↓, , , , ↓↓↑↓↓↑↓↓↑↓↓↑〉〈〉〈〉〈〉〈↓↓↑↓↓↑↓↓↑↓↓↑



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

Ground states:

↑↑↓↑↑↓↑↑↓↑↑↓〉〈〉〈〉〈〉〈↑↑↓↑↑↓↑↑↓↑↑↓, , , , ↑↓↑↑↓↑↑↓↑↑↓↑〉〈〉〈〉〈〉〈↑↓↑↑↓↑↑↓↑↑↓↑, , , , ↓↑↑↓↑↑↓↑↑↓↑↑〉〈〉〈〉〈〉〈↓↑↑↓↑↑↓↑↑↓↑↑,  ,  ,  ,  ↓↑↓↓↑↓↓↑↓↓↑↓〉〈〉〈〉〈〉〈↓↑↓↓↑↓↓↑↓↓↑↓,  ,  ,  ,  

↑↓↓↑↓↓↑↓↓↑↓↓〉〈〉〈〉〈〉〈↑↓↓↑↓↓↑↓↓↑↓↓, , , , ↓↓↑↓↓↑↓↓↑↓↓↑〉〈〉〈〉〈〉〈↓↓↑↓↓↑↓↓↑↓↓↑



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

Ground states:

↑↑↓↑↑↓↑↑↓↑↑↓〉〈〉〈〉〈〉〈↑↑↓↑↑↓↑↑↓↑↑↓, , , , ↑↓↑↑↓↑↑↓↑↑↓↑〉〈〉〈〉〈〉〈↑↓↑↑↓↑↑↓↑↑↓↑, , , , ↓↑↑↓↑↑↓↑↑↓↑↑〉〈〉〈〉〈〉〈↓↑↑↓↑↑↓↑↑↓↑↑,  ,  ,  ,  ↓↑↓↓↑↓↓↑↓↓↑↓〉〈〉〈〉〈〉〈↓↑↓↓↑↓↓↑↓↓↑↓,  ,  ,  ,  

↑↓↓↑↓↓↑↓↓↑↓↓〉〈〉〈〉〈〉〈↑↓↓↑↓↓↑↓↓↑↓↓, , , , ↓↓↑↓↓↑↓↓↑↓↓↑〉〈〉〈〉〈〉〈↓↓↑↓↓↑↓↓↑↓↓↑



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

Ground states:

↑↑↓↑↑↓↑↑↓↑↑↓〉〈〉〈〉〈〉〈↑↑↓↑↑↓↑↑↓↑↑↓, , , , ↑↓↑↑↓↑↑↓↑↑↓↑〉〈〉〈〉〈〉〈↑↓↑↑↓↑↑↓↑↑↓↑, , , , ↓↑↑↓↑↑↓↑↑↓↑↑〉〈〉〈〉〈〉〈↓↑↑↓↑↑↓↑↑↓↑↑,  ,  ,  ,  ↓↑↓↓↑↓↓↑↓↓↑↓〉〈〉〈〉〈〉〈↓↑↓↓↑↓↓↑↓↓↑↓,  ,  ,  ,  

↑↓↓↑↓↓↑↓↓↑↓↓〉〈〉〈〉〈〉〈↑↓↓↑↓↓↑↓↓↑↓↓, , , , ↓↓↑↓↓↑↓↓↑↓↓↑〉〈〉〈〉〈〉〈↓↓↑↓↓↑↓↓↑↓↓↑



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

?

Ground states:

↑↑↓↑↑↓↑↑↓↑↑↓〉〈〉〈〉〈〉〈↑↑↓↑↑↓↑↑↓↑↑↓, , , , ↑↓↑↑↓↑↑↓↑↑↓↑〉〈〉〈〉〈〉〈↑↓↑↑↓↑↑↓↑↑↓↑, , , , ↓↑↑↓↑↑↓↑↑↓↑↑〉〈〉〈〉〈〉〈↓↑↑↓↑↑↓↑↑↓↑↑,  ,  ,  ,  ↓↑↓↓↑↓↓↑↓↓↑↓〉〈〉〈〉〈〉〈↓↑↓↓↑↓↓↑↓↓↑↓,  ,  ,  ,  

↑↓↓↑↓↓↑↓↓↑↓↓〉〈〉〈〉〈〉〈↑↓↓↑↓↓↑↓↓↑↓↓, , , , ↓↓↑↓↓↑↓↓↑↓↓↑〉〈〉〈〉〈〉〈↓↓↑↓↓↑↓↓↑↓↓↑



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

?

Ground states: ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉, , , , 
↑↓↑↑↓↑↑↓↑↑↓↑〉〉〉〉,,,,
↓↑↓↓↑↓↓↑↓↓↑↓〉〉〉〉, ........, ........, ........, ........



Frustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degree
• Given H, |ΓÚ, 

replace one-body, two-body etc. in H by Ising ones, 

i.e. by σz
i or σz

iσ
z
j etc.

Find HI

Frustrated Non-Frustrated 

HI = ∑k Hk
f   +∑l Hl

nf

∑k ‚Γ|Hk
f|ΓÚ

∑l ‚Γ|Hl
nf|ΓÚ

Frustrated 

part
Non-Frustrated 

part

Φ =



Frustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degree
• Given H, |ΓÚ, 

replace one-body, two-body etc. in H by Ising ones, 

i.e. by σz
i or σz

iσ
z
j etc.

Find HI

Frustrated Non-Frustrated 

HI = ∑k Hk
f   +∑l Hl

nf

∑k ‚Γ|Hk
f|ΓÚ

∑l ‚Γ|Hl
nf|ΓÚ

Frustrated 

part
Non-Frustrated 

part

Φ =



Frustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degree
• Given H, |ΓÚ, 

replace one-body, two-body etc. in H by Ising ones, 

i.e. by σz
i or σz

iσ
z
j etc.

Find HI

Frustrated Non-Frustrated 

HI = ∑k Hk
f   +∑l Hl

nf

∑k ‚Γ|Hk
f|ΓÚ

∑l ‚Γ|Hl
nf|ΓÚ

Frustrated 

part
Non-Frustrated 

part

Φ =



Frustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degree
• Given H, |ΓÚ, 

replace one-body, two-body etc. in H by Ising ones, 

i.e. by σz
i or σz

iσ
z
j etc.

Find HI

Frustrated Non-Frustrated 

HI = ∑k Hk
f   +∑l Hl

nf

∑k ‚Γ|Hk
f|ΓÚ

∑l ‚Γ|Hl
nf|ΓÚ

Frustrated 

part
Non-Frustrated 

part

Φ =



Frustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degreeFrustration degree
• Given H, |ΓÚ, 

replace one-body, two-body etc. in H by Ising ones, 

i.e. by σz
i or σz

iσ
z
j etc.

Find HI

Frustrated Non-Frustrated 

HI = ∑k Hk
f   +∑l Hl

nf

∑k ‚Γ|Hk
f|ΓÚ

∑l |‚Γ|Hl
nf|ΓÚ|

Frustrated 

part
Non-Frustrated 

part

Φ = avg



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



FrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustrationFrustration

Ising model: Η=J Σσz
i σz

j with J>0

HI = ∑k Hk
f   +∑l Hl

nf

?

∑k ‚Γ|Hk
f|ΓÚ σz

1 σz
2 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ 1111

σz

2 σz
3 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111

∑l |‚Γ|Hl
nf|ΓÚ|   σz

3 σz
1 ↑↑↓↑↑↓↑↑↓↑↑↓〉〉〉〉    →→→→ −−−−1111



� Initial state: 

||||ΦΦΦΦ〉〉〉〉in ≡≡≡≡ ||||ψψψψ〉〉〉〉1 1 1 1 ⊗ ⊗ ⊗ ⊗ ||||ψψψψ〉〉〉〉2 2 2 2 ⊗ ⊗ ⊗ ⊗ ||||ψψψψ〉〉〉〉3 3 3 3 ⊗ ⊗ ⊗ ⊗ ... ... ... ... ⊗ ⊗ ⊗ ⊗ ||||ψψψψ〉〉〉〉ΝΝΝΝ
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� Calculate EN/2:N/2(|Φ〉f ). 

� Maximize EN/2:N/2(|Φ〉f ) over all choices of  the 

initial state.
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