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Why quantum computation?

No efficient classical algorithm that factorizes an integer into its prime factors.

If we believe that there are none, then quantum computation promises qualitatively
better efficiencies than its classical counterpart:

“Shor’s algorithm”.

Moreover, quantum computers can be used to simulate complex quantum systems.

Also: With the rapidly decreasing size of computer chips, sooner or later quantum
effects will begin to show up.

Feynman 1982, Shor 1994, Grover 1995, ...



Why quantum cryptography?

e All practical classical cryptographic schemes rely, for its security, on
the unproven premise that integers cannot be efficiently factored.

e They will be insecure if the eavesdropper implements Shor’s
algorithm.

e Security of quantum cryptographic schemes rely on quantum
mechanics.

Wiesner 1970s; Bennett & Brassard 1984; Ekert 1991; Bennett,
Brassard, & Mermin 1992; Bennett 1992; Bruss 1998.



Why guantum communication?

» A two-state classical system (e.g. a ball that may be either
blue or green) can be used to send at most one bit of
classical information.

If the sender and receiver are allowed to share a quantum
state, a two-dimensional quantum state can be used to send
up to two bits of classical information:

“Quantum dense coding”.

Bennett & Wiesner 1992.



Why guantum communication?

» An infinite amount of classical communication is needed for
sending a two-dimensional quantum system.

Only two bits of classical communication may be needed, 1t
a quantum state 1s shared between the sender and receiver:

“Quantum teleportation”.

Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters 1993.
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e If the state 1s shared between two or more parties,
the parties would only be able to act locally.

Allowed operations: LOCC.
e What do we mean by LOCC?

Not this!!
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What do we mean by LOCC?

e Alice makes a measurement and communicates her result to
Bob (say, by a phone call).

e Then depending on her result, Bob will make his
measurement and communicate his result to Alice.

e And so on.
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Separable and Entangled states

e Quantum states that can be prepared by
LOCC — Separable states.

 How do they look like? Mathematically?

e Separable states: mixture of products over
pure states of individual systems.
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Circa 2000

e Nielsen, Preskill, Wootters et al.

Idea of using entanglement-like concepts
in quantum many-body phenomena was put forward.



Circa 2000

e Nielsen, Preskill, Wootters et al.
e Osborne and Nielsen, QIP’02, PRA’02

e Osterloh, Amico, Falci, Fazio, Nature’02
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e For mixed two-party states, only
entanglement of formation of two-qubit
states.

* In higher dimensions, logarithmic negativity
can be calculated. But it cannot detect
bound entanglement.
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Quantum Phase Transitions

e Transitions at zero temperature.
* Implying, transition not temp. driven.

* Driven by system parameter, like a
magnetic field.
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Quantum Phase Transitions

Typical situation:

e H=H(nt) + a H(field)

e Ground state of H € guarantees T=0
e GS depends on “a”.

(Y-

e “a” can be changed.

* Nonanalyticity appears in some physical

€¢_9%%

quantity as ““a”’ 1s changed.
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Two-site densities

The prescription:
2. Remove all spins except two NNs

4. Investigate 1t wrt the relevant system parameter
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Quantum XY spin model

1 1+1

ZJ[(1+y)SS+(1 )88, I- a s




Entanglement in states of

many body systems

Linking QI with concepts in quantum statistical
mechanics and quantum phase transitions.

Near QPT 1n 1D transverse
Ising model, 2-site
entanglement remains short
ranged, while 2-site
correlation length diverges.

Entanglement, however,
does show signs of
criticality.

0.5

-0.5

7 sites
—— O sites
— 11 sites
—— 41 sites

| | |
0 0.5 1 1.5
Osterloh, Amico, Falcif & Fazio,
Nature 2002; Osborne & Nielsen,
Phys. Rev. A 2002.
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L (Alice) N-L (Bob)
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Block entanglement: E(I¥); )
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at criticality
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Ising model: H=J Xo0* ¢%  with J>0
?

Ground states: | TT),
[T,
[ I, ...
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Frustration degree

e Given H, IT')
replace one-body, two-body etc. in H by Ising ones,
i.e. by ¢*, or 6,07 etc.

Find H!
Frustrated Non-Frustrated
o i
H'=2, H +2, H';
> (TIHKID)
PEAE 5 O D)
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COO[ing/ Quencﬁing Method L0

» Initial state:
P)in=|Y)1 O W)L ® [y); & ... ® [y)n

» Project |®);, onto the ground state space of
the model.

| D)= (2I)CT]) [P)in

> Calculate EN/Q;N/z(lq))f).

» Maximize Enp.np2(|P)r) over all choices of the
initial state.
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Main Thests

»Highly frustrated systems do not follow any area
law

while

» Weakly frustrated systems follow the same area
law as nonfrustrated systems away from criticality.

A. Sen(De), US, J. Dziarmaga, A. Sanpera, M. Lewenstein, PRL 08
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Area law

Clear departure from area law

»Long range Ising model: “Infinite” dimensions

»Possible area law: k!"1d withd —

Note: Effect due to frustration.
Not due to long-range interactions.
Ising with J<O : constant block entanglement.
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with all except one are negative.

HJG

<ij>

E,.,,.. = constant
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e Cooling technique

e Frustration degree



More work done



More work done

e Adv. Phys. 56, 243 (2007)
e Rev. Mod. Phys. 80, 517 (2008)



More work done

e Adv. Phys. 56, 243 (2007)
e Rev. Mod. Phys. 80, 517 (2008)

And much more left ...
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