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Geometric measure 

|s  quantum state of n parties 

 

|a |b .. |n  a product state of the n parties 

 

1 – sq of mod of inner product is a “distance” 

 

Minimize that distance over all prod states   

This minimum distance quantifies multisite entanglement. 

Minimization usually difficult. 

But possible sometimes by  

using symmetries, … 
Can be generalized to mixed states. 

Computation even more difficult. 
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Global measure detects QPT 

 

Dashed black = G(2,1) 

Solid red = G(2,15) 

Dotted dashed blue = av of the G(2,L) 
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|s  quantum state of n parties 

 

|a |b .. |n  a product state of the n parties 

 

1 – sq of mod of inner product is a “distance” 

 

Minimize that distance over all prod states   

This minimum distance quantifies multisite entanglement. 

completely 

Generalized 

“genuine” 

For any pure state, we get 

a single real number that quantifies 

genuine multisite entanglement. 
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derivative 
anisotropy 

Blue dashes  1 (Ising) 

Pink circles  0.8 

Green dots  0.2 

A. Sen(De), US, 

1002.1253 
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• Local indistinguishability of a set of 

orthogonal states may increase with 

decrease in their entanglement content. 

M. Horodecki, Sen(De), US, K. Horodecki, PRL’03 

We infer that there r other forms of  

quantum correlations 

not captured in the 

entanglement-separability paradigm. 

Other indications as well! 

Won’t go in those directions. 
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Around 2000 … 
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H(X) H(Y) 

H(X|Y) H(Y|X) 

H(X,Y) 

H(X) + H(Y) – H(X,Y) 

H(X) – H(X|Y) or 

Quantizing them produces 

inequivalent quantities 

for bipartite quantum states. 

The difference is called Discord. 
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What abt magnetization? 

• No dynamical phase transition 
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Why Dynamical Phase Transition? 

Dhar, R. Ghosh, Sen(De), US, 1011.5309 
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Entanglement vs. Discord 
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Thesis:  
Discord surge heralds entanglement revival 

For a fixed t, 

 

Increasing discord at entanglement collapse 

    

implies   

 

revival of entanglement. 



Entanglement 

 



Red dashes  derivative of discord  

               at ent collapse 

Black dots  max revived ent 



Upshot 
 

     Bridge being built between many-body physics and 

quantum information science.  



Upshot 
 

     Bridge being built between many-body physics and 

quantum information science.  

Many secrets remain to be uncovered … 



More work done 

• Adv. Phys. 56, 243 (2007)  

• Rev. Mod. Phys. 80, 517 (2008) 
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