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Abstract

The insight that the world is fundamentally quantum mechanical inspired the
development of quantum information theory. However, the world is not only
quantum but also relativistic, and indeed many implementations of quantum
information tasks involve truly relativistic systems. In this lecture series I con-
sider relativistic effects on entanglement in flat and curved spacetimes. I will
emphasize the qualitative differences to a non-relativistic treatment, and demon-
strate that a thorough understanding of quantum information theory requires
taking relativity into account. The exploitation of such relativistic effects will
likely play an increasing role in the future development of quantum information
theory. The relevance of these results extends beyond pure quantum informa-
tion theory, and applications to foundational questions in cosmology and black
hole physics will be presented.
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Introduction

The main purpose of the research in the field of relativistic quantum information
is developing quantum information theory that is compatible with the relativis-
tic structure of spacetime. An ultimate aim is to exploit relativity in order to
improve quantum information tasks. The vantage point of these investigations
is that the world is fundamentally both quantum and relativistic. Impressive
technological achievements and promises have already been derived from tak-
ing seriously solely the quantum aspects of matter: quantum cryptography and
communication have become a technical reality in recent years, but the prac-
tical construction of a quantum computer still requires to understand how to
efficiently store, manipulate and read information, without prohibitively large
disturbances from the environment. Throwing relativity into the equation fun-
damentally changes the entire game, as I intend to show in this series of lectures.
Hopefully, we will be able to push this exciting line of theoretical research to the
point where relativistic effects in quantum information theory can be exploited
technologically.

Far from yielding only quantitative corrections, relativity plays a dominant
role in the qualitative behavior of many physical systems used to implement
quantum information tasks in the laboratory. The prototypical example is pro-
vided by any system involving photons, be it for the transmission or manip-
ulation of quantum information. There is no such thing as a non-relativistic
approximation to photons, since these always travel at the speed of light. While
relativistic quantum theory, commonly known as quantum field theory, is a very
well studied subject in foundational particle physics, research in quantum infor-
mation theory selectively focused almost exclusively on those aspects one can
study without relativity. Thus both unexpected obstacles (such as relativistic
degradation of entanglement) and unimagined possibilities for quantum infor-
mation theory (such as improved quantum cryptography and hypersensitive
quantum measurement devices) have gone unnoticed. Moreover, the impact of
the work done in the field of relativistic quantum information extends beyond
pure quantum information theory, and applications to foundational questions
in cosmology and black hole physics have been found.

vii



viii INTRODUCTION

BACKGROUND

Quantum information was first considered in a relativistic setting by Czachor in
1997 who analyzed a relativistic version of the Einstein-Podolsky-Rosen-Bohm
experiment [2, 3]. Czachor’s work showed that relativistic effects are relevant to
the experiment where the degree of violation of Bell’s inequalities depends on
the velocity of the entangled particles. In 2002 A. Peres & D. Terno at Technion
pointed out that most concepts in quantum information theory may require a
reassessment [4]. Further interesting results on entanglement in flat spacetime
were obtained by Adami, Bergou, & Gingrich at Caltech, and Solano & Pachos
at the Max-Plank Institute [5]. Their work shows that although entanglement
is overall conserved under a change of inertial frame, it may swap between spin
and position degrees of freedom. For the physically interesting case of non-
inertial frames, however, collaborators and I were able to show in a series of
papers [6, 7, 8] that entanglement is observer-dependent, since it is degraded
from the perspective of observers in uniform acceleration. This effect intro-
duces errors in entanglement-based quantum information tasks in non-inertial
frames such as the teleportation scheme studied by P. Alsing (University of New
Mexico) & G. Milburn (University of Queensland) [9, 10]. Errors induced by
relativistic effects were also found in a cryptographic protocol analyzed by M.
Czachor and M. Wilczewski at Politechnika Gdańska [11]. However, J. Barrett
(Universite Libre de Bruxelles), L. Hardy (Perimeter Institute), and A. Kent
(University of Cambridge) showed that constraints imposed by relativity can be
useful in ensuring security in quantum cryptography even if quantum theory is
incorrect [12]. Considering quantum information in curved spacetime is more
complicated since generically particle states are ill-defined if the background
spacetime does not at least feature a timelike Killing vector field. In spacetimes
with two asymptotically flat regions, however, we showed that measurements of
entanglement may be used to learn about the history of spacetime [13]. This
work was followed up by G. Ver Steeg (Caltech) & N. Menicucci (Princeton)
[14]. Entanglement in spacetime has also been studied by Shi at Tsinghua Uni-
versity [15] and by P. Kok, U. Yurtsever, S. L. Braunstein, and J. P. Dowling
at Caltech and Bangor University [16].
Employing quantum information to address open questions in other fields, grav-
ity being a particularly fruitful example, has become important to quantum in-
formation scientists. J. Preskill (Caltech), D. Gottesman (Perimeter Institute),
D. Ahn (University of Soul), S. Lloyd (MIT), G. Adesso and myself, among
others, have shown that quantum information is a useful tool in the under-
standing of the information loss problem in black holes [17]. Quantum informa-
tion has also been recently employed by D. Terno (Macquarie University), E.
Livine (ENS-Lyon) and F. Markopoulou (Perimeter Institute) to make progress
in quantum gravity [18]. Relativistic quantum information starts to be a topic
of interest in the scientific community. However, technological applications of
relativistic quantum information are yet to be proposed.



Chapter 1

Motivation and technical
tools in quantum
information

1.1 Why relativistic qunatum information?

In information theory we study how to send messages, how to transmit informa-
tion in secure ways, how to compute and in general, how to process information.
In order to process information, information must be stored in physical systems.
Therefore, it is the underlying physical theory which sets the rules for which
information tasks can be preformed and on their efficiency.

The field of information theory made great progress last century considering
that the world is classical. Thanks to the seminal work by Turing [1], it was
possible to theoretically predict what problems could, in principle, be solved.
This before the first calculator was actually built!

Last century we also learned that there is a more fundamental theory of
nature: quantum mechanics. It then became interesting to revise information
theory in the light of this new physical theory. This is what quantum information
is. We have been learning to exploit quantum properties, such as entanglement,
to improve information task. A good example of this is quantum teleportation.

However, something very important is missing in the picture. Las century
we also learned that the world is not only quantum but also relativistic. In fact,
before quantum information was conceived some relativistic considerations in
information theory were considered: we all know that it is not possible to send
messages faster than the speed of light.

The field of information theory is going through interesting times. The way
we process information is being revolutionized by incorporating quantum theory.
However, if we want to push this revolution further, as far as we possibly can,
we need to incorporate relativity. It is important to do so now since most,

1



2CHAPTER 1. MOTIVATION AND TECHNICAL TOOLS IN QUANTUM INFORMATION

if not all, implementations of quantum information in fact employ relativistic
systems. Such is the case in Cavity QED and quantum information based
protocols employing photons. The research of relativistic quantum field aims
at understanding how to process information in the overlap of quantum theory
and relativity: were real life experiments take place. And in the same way as
we have been able to exploit quantum resources to improve information tasks
we might be able to learn how to make use of relativistic effects as well.

1.2 Abstract quantum information

The main aim of quantum information theory is to learn how to store, process
and read information using quantum systems. In this section we will briefly
revise basic concepts of quantum information theory. Namely, quantum entan-
glement for pure and mixed states. Entanglement is a quantum property which
is a consequence of the superposition principle and the tensor product structure
of the Hilbert space. It plays a central role in the field of quantum information
since it is at the heart of many quantum information tasks such as quantum
teleportation and quantum cryptography.

Pure States

Entanglement for pure bi-partite systems is well understood. In what follows
we will define and learn how to quantifying entanglement in this case.

In quantum theory the state of a quantum particle is a vector in a d-
dimensional Hilbert space H where H is an inner product space over C. A state
in the Hilbert spaceH is denoted |ψ〉 ∈ H. It is interesting to consider how we in-
troduce a second particle to the description of our system. The state of two par-
ticles A and B is a vector in a (d×d′)-dimensional Hilbert space Hab = Ha⊗Hb.
The space Hab is the tensor product of the subspaces Ha and Hb of each parti-
cle. An element of the space Hab is written as |ψab〉 =

∑
i,j Aij |i〉a ⊗ |j〉b.

Note: This is very different to classical physics where if a particle has three
degrees of freedom then two identical particles have 3 ⊕ 3 = 6 degrees of free-
dom where ⊕ denotes the direct sum. In quantum mechanics the vector state
describing the state of the two 3-dimensional particles is 3× 3 = 9 dimensional.

Given the tensor product structure of the Hilbert space for two particles we
can consider the following definitions:

Definition 1 A state |ψab〉 ∈ Ha ⊗Hb is seperable if |ψab〉 = |ψ〉a ⊗ |ψ〉b.

Comments (physics)

1. A separable state can be prepared by local operations and classical com-
munication. This means that observers manipulate each particle indepen-
dently by making measurements or applying unitary transformations of
the form |ψab〉 = Ûa ⊗ Ûb |ψi〉 where Ua and Ub are unitaries acting on
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particle A and B, respectively. The observers are also allowed to exchange
classical information.

2. By measurements on particle A one learns nothing about particle B.

Definition 2 If the state is not seperable then it is entangled.

Comments (physics):

1. An entangled state cannot be prepared by local operations and classical
communication. Observers must make global operations on the systems.
An example are interactions between A and B.

2. By measurements on particle A one can learn infomation about B.

Example 1 Two qubits

A state |ψ〉 = 1√
2

(|0〉a |1〉b + |1〉a |1〉b) in the Hilbert space H2 ⊗ H2 can be
written as the product

|ψ〉 =
1√
2

(|0〉a + |1〉a)⊗ |1〉b

and is thus, a seperable state. If we measure subsystem B then we cannot learn
anything about subsystem A.

The state |φ〉 = 1√
2

(|0〉a |0〉b + |1〉a |1〉b) is not a seperable state since we can-
not write it as the product of two states that belong seperatlety to the individual
subsytems Ha and Hb i.e.

|φ〉 6= |ψa〉 ⊗ |ψb〉

.

Question: How do we know if a general state |ψab〉 =
∑
Aij |i〉a |j〉b is entan-

gled or not? To answer this consider the following theorem:

Theorem 2 Let H1 and H2 be d-dimensional Hilbert spaces. For any vector
|ψab〉 ∈ Ha ⊗Hb there exists a set of orthonormal vectors

{|j〉a} ⊂ Ha and {|l〉b} ⊂ Hb

such that we can write
|ψab〉 =

∑
i

λi |i〉a |i〉b

where the Schmidt coefficients λi are non-negative scalars.

This special basis is called the Schmidt basis. For simplicity we assumed the
Hilbert spaces for each system to have the same dimension. However, this
statement can be generalized to a d × d′ system. Note that the correlations
between systems A and B are now made explicit. Therefore, if λi 6=j = 0 and
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λj = 1 then the state is seperable. In the case that all the λi’s are equal and
λi = 1√

d
then the state is maximally entangled.

It is clear that the distribution of the Schmidt coefficients determine how
entangled the state is. Therefore, to quantify entanglement in the pure bi-partite
case we need a monotonous and continuous function of the λi’s such that

1. S(λi) = 0 for separable states

2. S(λi) = log(d) for maximally entangled states

Considering the density matrix ρab = |ψab〉 〈ψab| and it’s reduced density matrix
ρb = Tra(ρab), we find that the Von-Neuman entropy

S(ρb) = −Tr (ρb log2 ρb)

= −
∑
i

|λi|2 log2 |λi|2

quantifies the entanglement between system A and B. We observe from the
Schmidt decomposition that it is equivalent to trace over either system A or
B and therefore, S(ρa) = S(ρb). The Von-Neuman entropy of a pure state is
S(ρab) = 0.

Example 3 Calculate the Von-Neumann entropy of the state |ψ〉ab = 1√
2

(|0, 0〉+ |1, 1〉).
The density matrix is given by

ρab =
1
2

(|0, 0〉 〈0, 0|+ |0, 0〉 〈1, 1|+ |1, 1〉 〈0, 0|+ |1, 1〉 〈0, 0|+ |1, 1〉 〈1, 1|) (1.1)

Tracing over the first system we obtain

ρa =
1
2

(|0〉 〈0|+ |1〉 〈1|) (1.2)

which is already in diagonal form. The matrix has two degenerate eigenvalues
equal to 1/2. Therefore, the Von-Neumann entropy is S(ρa) = 2(1/2 log2(1/2)) =
1 which shows that the state is maximally entangled.

Mixed States

Quantifying entanglement in the mixed case is more involved since there is no
analog to the Schmidt decomposition in this case. However, it is possible to
define what a separable mixed state is. A mixed state is separable if we can
write its density matrix as

ρab =
∑
i

ωiρ
i
a ⊗ ρib

where
∑
i ωi = 1.
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To find out if a general mixed state is entangled or not it is convenient to
define the partial transpose of a density matrix. Consider the general mixed
state

ρab =
∑
ijkl

Cijkl|i〉a|j〉bb〈k|a〈l|. (1.3)

The partial transpose ρPTab of ρab is

ρPTab =
∑
ijkl

Cljki|i〉a|j〉bb〈k|a〈l|. (1.4)

or equivalentely
ρPTab =

∑
ijkl

Cikjl|i〉a|j〉bb〈k|a〈l|. (1.5)

Since the partial transpose of a separable state has positive eigenvalues it is
possible to construct a separability criterion.
Necessary Condition for Seperability (Peres): If the eigenvalues of ρPTab >
0 then ρab is separable.

However, this criterion is only sufficient for 2 × 2 and 2 × 3 systems. For
systems of higher dimension the criterion is only necessary meaning that there
are entangled states with positive partial transpose. Such states are known as
bound entangled states.

Adding up the negative eigenvalues gives an estimate of how entangled a
state is. Therefore, we will now define the negativity and logarithmic negativity
which are two entanglement monotones.

Definition 3 The negativity of a density matrix ρab is defined as the sum of
the negative eigenvalues of the partial transpose ρPTab

N(ρab) :=
‖ρPTab ‖ − 1

2

Where ‖ · ‖ denotes the trace norm ‖X‖ := Tr
[√

X†X
]
.

Definition 4 The logarithmic negativity of a density matrix ρab is defined as

EN (ρab) := log2 ‖ρPTab ‖

REFERENCES

• For a review on entanglement: Dagmar Bruss, J. Math. Phys., (43): 4237,
2002.

• On the negativity monotone: G. Vidal and R. F. Werner, Phys. Rev. A,
(65): 032314, 2002.
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Chapter 2

Technical tools in relativity

We are interested in understanding entanglement when the underlying spacetime
is considered in the description of states. In this lecture we will learn some
basic notions of spacetime which is a 4-dimentional manifold M (space) with
a Lorentizian metric. For our purpose it is enough to consider that M is a
collection of points which locally looks like R4. We will introduce the basic
mathematical structures we need to define a Lorentzian metric, a light cone and
a world line. We will start with the following (strong) remarks:

There is no time
There is no space
There are only cones.

2.1 Necessary mathematical structures

In order to clarify these remarks we will introduce the following mathematical
structures:

1. Coordinates are 4-functions χµ such that χµ : p ∈Ma → R where p is a
point in the regionMa of the manifoldM. Since µ = {0, 1, 2, 3}, the func-
tions χµ = (χ0, χ1, χ2, χ3). A choice of coordinates is not unique, there-
fore, it is possible to choose other coordinates inMa, χ̄µ = χ̄µ(χ0, χ1, χ2, χ3)
such that

dχ̄µ =
∂χ̄0

∂χ0
dχ0 +

∂χ̄1

∂χ1
dχ1 +

∂χ̄2

∂χ2
dχ2 +

∂χ̄3

∂χ3
dχ3

=
∂χ̄µ

∂χν
dχν

Note that we sum over the repeated indices (Einstein’s convention). The
transformation is well defined were the Jacobian is non-zero i.e.

det

(
∂χ̄µ

∂χν

)
6= 0

7
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2. Contravariant vectors are a set of quantities that transform according
to

χ̄µ =
∂χ̄µ

∂χν
χν (2.1)

where χ̄µ and χν are coordinates associated with the point p. In the
same fashion we define contravariant tensors as the set of quantities that
transform as

T̄µν =
∂χ̄µ

∂χα
∂χ̄ν

∂χβ
Tαβ (2.2)

3. Covariant tensors transform according to

T̄ab =
∂χc

∂χ̄a
∂χd

∂χ̄b
Tcd

We say that quantities with a single index are of rank 1 (vectors) and that
quantities that have two indices are of rank 2.

4. Metric tensors are rank 2 covariant tensors which are symmetric i.e.

gαβ = gβα

If det(g) 6= 0 then the metric is non-singular and we can define the inverse
metric tensor gαβ such that

gabg
bd = δ da .

2.2 Lorentzian metrics, light cones and world
lines

We are now in position to define the basic notions of spacetime.

1. A Lorentzian metric is a metric with signature {+ − −−}. That is if
at any given point in spacetime we can find coordinates such that

gab = ηab =


1
−1

−1
−1


Example 4 In flat spacetime the metric gab = ηab everywhere.

Metrics are used to define distances and length vectors.

2. A line element is the infinitesimal distance between two neighbouring
points χa and χa + dχa defined as

ds2 = gab(χ)dχadχb

.
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Example 5 In flat spacetime in (1 + 1)-dim the metric is ηab = {+−}
and so

ds2 = ηabdχ
adχb

= η00(dχ0)2 + η11(dχ1)2

= dt2 − dx2

3. The norm of a contravariant vector χa is defined as

g(χ, χ) := χ2

= gabχ
aχb

We can therefore define three types of vector as

(a) timelike gabχaχb > 0

(b) spacelike gabχaχb < 0

(c) null or lightlike gabχaχb = 0

4. Light cone The set of all null vectors at p define a light cone. ηabχaχb = 0
is the equation of a double light cone.

5. A timelike world line is a curve χµ(u) whose tangent vector is every-
where timelike. These are the tracks where particles and observers can
travel.

Using the definition of the line element we can derive the interval between
two spacetime points p1 and p2. Taking the line element and dividing by
du2 we see that (

ds

du

)2

= gab

(
dχa

du

)(
dχb

du

)
where u parametrizes the trajectory. Thus integrating over u we find the
proper distance between two points is

L[χ] :=
∫ √

gab

(
dχa

du

)(
dχb

du

)
du

REMARK This implies that there is no global time and no global space.
There is a well defined notion of time for each observer given by the length
L[χ] = ζ.

Example 6 We will find the line element ds2 of the (1 + 1)-dim flat spacetime
in the following coordinates
a) u = t− x and v = t+ x

b) x = eaξ

a cosh(aζ) and t = eaξ

a sinh(aζ) where a is a constant. These coordi-
nates are known as Rindler coordinates.
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a) The line element
ds2 = gab(X)dXadXb

in flat spacetime is given by ds2 = dt2 − dx2. Thus, to find the line element in
the new coordinates we need to calculate the derivatives

du = dt− dx
dv = dt+ dx

and thus

dt =
1
2

(du+ dx)

dx =
1
2

(du− dx)

therefore,

ds2 = dt2 − dx2

=
1
4

((du+ dv)2 − (du− dv)2)

=
1
4

((du2 + dv2 + 2dudv)− (du2 + dv2 − 2dudv))

= dudv

b) Given the coordiates x = 1
ae
aη sinh(aζ) and t = 1

ae
aη cosh(aζ), where a

is a constant, we find that

dt = dηeaη cosh(aζ) + dζeaη sinh aζ
dx = dηeaη sinh(aζ) + dζeaη cosh aζ

therefore,

ds2 = dt2 − dx2

= e2aη(cosh(aζ)dη + sinh(aζ)dζ)2 − e2aη(sinh(aζ)dη + cosh(aζ)dζ)2

= e2aη(cosh2(aζ)− sinh2(aζ))dη2 + e2aη(sinh2(aζ)− cosh2(aζ))dζ2

= e2aη(dη2 − dζ2)

Example 7 In a black hole spacetime the line element is given by

ds2 = (1− (2m/R))dT 2 − (1− (2m/R))−1dR2

where m is the mass of the black hole and R the radius. Note how, far from
the Schwarzschild radius R = 2m, spacetime is flat. As we come closer to the
Schwarzschild radius the light cones tilt. At the Schwarzschild radius the light
cones are tilted such that particles following world lines can fall into the black
hole but cannot escape.

REFERENCES

Introducing Einstein’s relativity by Ray d’Inverno. Published 1995 by Clarendon
Press, Oxford University Press in Oxford New York .



Chapter 3

Technical tools from
quantum field theory I

We are interested in understanding quantum information in a relativistic quan-
tum world. For this we must consider the most general situation: quantum field
theory in curved spacetime. The most important lesson we have learned from
quantum field theory is that fields are fundamental notions, and not particles.
As we will see, particles are derived notions (if at all possible). In this lecture
we will therefore consider fields on a spacetime. We will learn how to quantize
a field in curved spacetime and under what circumstances particles can be de-
fined. This is important for information theory in which all concepts are based
on the notions of subsystems (particles). Throught our lectures we will work in
natural units c = ~ = 1.

3.1 The Klein-Gordon equation

We will consider the simplest field which is the Klein-Gordon un-charged scalar
field φ. The field φ satisfies the Klein-Gordon equation (� + m2)φ = 0, where
the operator � is known as the d’Alambertian and is defined as

�φ :=
1√
−g

∂µ(
√
−ggµν∂νφ)

where g = det(gab) and ∂µ = ∂
∂χµ .

Example 8 In flat spacetime (1 + 1)-dim we have gνµ = ηνµ = {+−} and thus

�φ = ∂0(η00∂0) + ∂1(η1
1∂1)

= ∂2
t − ∂2

x

For m = 0 the solutions to �φ = 0 in 2-dim are plane waves of the form

uk =
1√
2πω

ei(kx−wt)

11
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with ω = |k| and −∞ < k <∞.

We would like to quantize this field. For this we note that the solutions of the
equation form a vector space over C. We can therefore, consider the following
(bad!) idea:

By supplying an inner product we can construct a Hilbert space and possibly
consider ûk as operators. However, the inner product must be Lorentz invariant.
The only possible choice is

(φ, ψ) = −i
∫

Σ

(ψ∗∂µφ− (∂µψ∗)φ)dΣµ

where Σ is a spacelike hypersurface.
We then note that (φ, ψ) can be negative! Therefore, we cannot define a

probability density. This means that it is not possible to construct a one-particle
relativistic quantum theory.

3.2 Time-like Killing vector fields

To understand the deeper reasons why this naive program does not work, let
us introduce the notion of a time-like Killing vector field. We are interested in
finding a transformation χa → χ̄a which leaves the metric gab(χ) invariant. That
means that the transformed metric ḡab(x̄) is the same function of its argument
χ̄a as the original metric gab(χ) is of its argument χa. Since the metric is a
covariant tensor it transforms according to

gab(χ) =
∂χ̄c

∂χa
∂χ̄d

∂χb
ḡcd(χ̄)

Therefore, the metric is invariant under the transformation χa → χ̄a if

gab(χ) =
∂χ̄c

∂χa
∂χ̄d

∂χb
gcd(χ̄).

This equation is complicated therefore, it is easier to consider the infinitesimal
transformation χa → χa + δuXa(χ) = χ̄a where δu is small and arbitrary and
X is a vector field. Therefore we ask that in the limit δu→ 0

lim
δu→0

gab(χ̄)− ḡab(χ̄)
δu

= 0.

Differentiating χ̄a = χa + δuXa(χ)

∂χ̄a

∂χc
= δac + δu∂cX

a

∂χ̄b

∂χd
= δbd + δu∂dX

b
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We find that in a Taylor expansion of gab(χ̄)

gab(χ̄) = gab(χe + δuXe) = gab(χ) + δuXe∂egab(χ) + ...) (3.1)

therefore,

gab(χ) = (δca + δu∂aX
c)(δdb + δu∂dX

b)(gcd(χe) +Xeδu∂egcd(χe) + ...)
= δcaδ

d
bgcd(χ) + δu

[
δca∂dX

bgcd(χ) + δdb∂aX
cgcd(χ) +Xe∂egcd(χ)

]
+ θ(du2)

= gab(χ) + δu
[
Xe∂egab(χ) + gad∂bX

d + gbd∂aX
d
]

+ θ(du2)

Working to first order in δu and subtracting gab(χ) on both sides, it follows that
the quantity in the bracket must vanish,[

Xe∂egab(χ) + gad∂bX
d + gbd∂aX

d
]

= 0

We identify the object inside the bracket with the Lie deriviative of the metric
tensor

LXgab = Xe∂egab(χ) + gad∂bX
d + gbd∂aX

d

Therefore, we say that X is a Killing vector field if the equation LXgab = 0 is
satisfied.

3.3 Quantizing the field and the definition of
particles

Having defined a Killing vector field X, let us choose a special basis for the
solutions of �φ = 0 such that

iLXuk = iXµ∂µuk

= ωuk

where we have considered the action of a Lie derivative on a function. Vectors
lying within the light cone at each point are called time-like. Therefore, if X is
a timelike vector field, the Lie deriviative corresponds to ∂t. This implies that
the eigenvalue equation above takes form of a Schrödinger-like equation where
we can identify ω > 0 with a frequency

i∂tuk = −iωuk
i∂tu

∗
k = iωu∗k

The solutions to the Klein-Gordon equation are therefore classified in the fol-
lowing way

uk → positive frequence solutions
u∗k → negative frequence solutions
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Interestingly, we observe that the inner product is positive for positive frequency
solutions and negative for negative frequency solutions

(uk, uk′) > 0
(u∗k, u

∗
k′) 6 0

We found the culprits! Negative frequency solutions give rise to negative prob-
abilities. However, the real problem with trying to construct a single-particle
quantum field theory is the following: we know from experiment that in field
theory there are multi-particle interactions.

The single-particle Hilbert space in not big enough nor appropriate to con-
struct a quantum field theory. We need a bigger space. The right mathematical
structure is given by a Fock space. The Fock space is constructed in the follow-
ing way: we consider a zero-particle sector which contains the vacuum state |0〉.
Then a single particle Hilbert space is constructed as proposed before. We use
the vector field of solutions of the equation and impose the Lorentz invariant
inner product. We now allow for multi-particle sectors which are constructed
using the tensor product structure. For example, the Hilbert space for a 2-
particle sector is given by H2 = H ⊗ H. The Fock space therefore takes the
form

C⊕H⊗H⊕H⊗H⊗H⊕H⊗H⊗H⊗H⊗ ...
It is then possible to define creation and annihilation operators a†k and ak

which, in the case of bosonic fields, satisfy the commutation relations [a†k, ak′ ] =
δk,k′ . Creation operators a†k take us from the n-particle sector to the (n+1)-
particle sector by creating a particle of momentum k. Annihilation operators
ak take us from the n-particle sector to the (n-1)-particle sector by annihilating a
particle with momentum k. Having defined creation and annihilation operators,
we can define the following operator value function being careful to treat the
positive and negative solutions of the Klein-Gordon equation in a different way

φ̂ =
∫

(ukak + u∗ka
†
k)dk.

Notice that positive frequency solutions are associated with annihilation opera-
tors and negative frequency solutions with creation operators. Amazingly, this
operator value function satisfies the Klein-Gordon equation �φ̂ = 0. This is in
fact, the right way to quantize a field. Now, we can properly define particles as
the action of creation operators on the vacuum state

|n1, ..., n
′
k〉 = a†n1 ...a†n

′

k |0〉

and such states have positive norm.

REMARKS When there exists a global time-like Killing vector field it is mean-
ingful to define particles. Observers flowing along timelike Killing vector fields
are those who can properly describe particle states. This has important conse-
quences to relativistic quantum information since the notion of particles (and
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therefore, subsystems) are indispensable to store information and thus, to define
entanglement.

REFERENCES
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Chapter 4

Technical tools in quantum
field theory II

In the last lecture we learned that only observers flowing along timelike Killing
vector fields can meaningfully describe particles. However, in the most general
case, curved spacetimes do not admit such structures. There are in fact different
kind of spacetimes

1. Spacetimes with global Killing vector fields

2. Spacetimes with no Killing vector fields

3. Spacetimes with regions which admit Killing vector fields

In this lecture we will see that in the case that the spacetime admist a
timelike global Killing vector field, the vector field is not necessarily unique. A
consequence of this is that the particle content of the field is observer-dependent.
In the following lectures we will analyze the consequences of this for entangle-
ment in spacetime. As an example of the observer-dependent property of the
field, we will consider observers in flat-spacetime and derive the Unruh effect.

4.1 Killing observers and Bogolubov transfor-
mations

When a spacetime admits a timelike Killing vector field ∂t it is possible to clas-
sify solutions to the Klein-Gordon equation {uk, u∗k} into positive and negative
frequency solutions. The field is therefore quantized as

φ̂ =
∫

(ukak + u∗ka
†
k)dk.

However, when such is the case, ∂t is not generally unique. It is possible to
find another time-like Killing vector field ∂t̂ and therefore find another basis

17
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for the solutions to the Klein-Gordon equation {ūk, ū∗k} such that classification
into positive and frequency solutions is possible. The field then is equivalently
quantized in this basis as

φ̂ =
∫

(ūk′ āk′ + ū∗k′ ā
†
k′)dk

′.

and therefore,

φ̂ =
∫

(ukak + u∗ka
†
k)dk =

∫
(ūk′ āk′ + ū∗k′ ā

†
k′)dk

′.

Using the inner product, it is then possible to find a transformation between
them the creation and annihilation operators

ak =
∑
k′

(α∗kk′ āk′ − β∗kk′ ā
†
k′)

where αkk′ = (uk, ūk′) and βkk′ = −(uk, ū∗k′) are called Bogolubov coefficients.
Since the vacua states are defined as

ak|0〉 = āk ¯|0〉 = 0

it is possible to find a transformation between the states in the two basis. We
note that as long as one of the Bogoluvob coefficients βkk′ is non-zero, while the
un-barred state is the vacuum state, the state in the bared basis is populated
with particles.

REMARK Different Killing observers observe a different particle content in
the field. Therefore, particles are observer-dependent quantities. As an example
we will analyze observers in flat spacetime.

4.2 Example 1: Observers in flat spacetime

Consider the scalar field φ(t, x) defined in all points of Minkowski spacetime in
1 + 1 dimensions. The line element is given by ds2 = dt2 − dx2. The Killing
vector fields in this spacetime are given by the equation

LXηab = 0

which in components takes the form

Xe∂eηab + ηad∂bX
d + ηbd∂aX

d = 0.

In flat spacetime there are three independent Killing vector fields corresponding
to

1. Time translationss

2. Space translation
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3. Observers moving on hyperbolas

To show this we use the Killing equation shown above finding that

∂tX
0 = ∂xX

1 ⇒ Xµ = α

(
t
x

)
where α is a constant. The condition for this Killing vector field to be timelike
is

0 6 ηabXaXb ⇒ 0 6 α2(t2 − x2).

Possible solutions correspond to the case where t and x are constants giving rise
to

Xµ = αt

(
1
0

)
+ αx

(
0
1

)
where the first summand corresponds to time translations and the second to
space translations. Therefore, from time and space translations we obtain
straight lines corresponding to inertial observers. Another possible solution are
hyperbolas t2−x2 = const. In what follows we will show that observers moving
along these trajectories correspond to observers in uniform acceleration.

In relativity acceleration is uniform if, at each instant, the acceleration in
an inertial frame travelling with the same velocity as the particle has the same
value. We therefore consider two observers: the first with coordinates (t, x) and
the second, who is inertial, with coordinates (t̃, x̃) moving with constant velocity
v with respect to the first . Using the Lorentz transformations

t̃ = γ
(
t− vx

c2

)
, x̃ = γ (x− vt)

where γ = (1− v2

c2 )−1 is the Lorentz factor, we aim at finding the transformation
between the accelerations in the two reference frames

a = ẍ =
d2x

dt2
, ã = ˜̈x =

d2x̃

dt̃2
.

In our notation dot represents differentiation with respect to the time coordi-
nate. Since dx̃ and dt̃ are given by

dx̃ = γ(dx− vdt), c2dt̃ = γ(c2dt− vdx)

we obtain the following transformation between the velocities

˜̇x
c2

=
1
c2
dx̃

dt̃
=

γ(dx− vdt)
γ(c2dt− vdx)

=
(dx− vdt)

(c2dt− vdx)
=

(ẋ− v)
(c2 − vẋ)

.

Denoting ˜̇x ≡ ũ and ẋ ≡ u and differentiating yields

c−2dũ = d[u− v](c2 − vu)−1 + (u− v)d[c2 − vu]−1

= du(c2 − vu)−1 + v(u− v)(c2 − vu)−2du

= (c2 − vu)−2[c2 − vu+ v(u− v)]du
= (c2 − vu)−2(c2 − v2)du.
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Hence

dũ

dt̃
= c4

(c2 − vu)−2(c2 − v2)
γ(c2 − vu)

du

dt

ã = c3(c2 − vu)−3(c2 − vu)
3
2 a

which yields the transformation between accelerations we were looking for

ã =
(

1− uv

c2

)−3
(

1− v2

c2

) 3
2

a.

The inverse transformation yields,

a = ã

(
1− v2

c2

) 3
2
(

1 +
ũv

c2

)−3

.

To consider an observer moving in uniform acceleration we set ã = α where α
is a constant. We also must consider that the inertial observer moves at each
time with the same velocity as the first observer. Therefore, ũ = 0 and v = u
which results in

d2x

dt2
= α

(
1− 1

c2

(
dx

dt

)) 3
2

.

To find the trajectory of the observer in uniform acceleration we integrate the
above equation

du(
1− u2

c2

) 3
2

= αdt

and assuming the particle starts from rest at time t = t0, we find

u(
1− u2

c2

) 1
2

= α(t− t0)

and integrating once more we obtain,

(x− x0) =
c

α
[c2 + α2(t− t0)2]

1
2 − c2

α

or equivalently,
(x− x0 + c2/α)2

(c2/α)
− (ct− ct0)2

(c2/α)
= 1.

Setting x0 − (c2/α) = t0 = 0, we obtain x2 − c2t2 = c2/α. Therefore, we have
found that an observer in uniform acceleration moves along hyperbolas. In the
next lecture we will investigate how the field looks like from the perspective of
an observer in uniform acceleration given that the field is in the vacuum from
the inertial perspective.
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Chapter 5

The Unruh effect

In this lecture we continue with our example of observers in flat spacetime. We
have shown that in flat spacetime there are two kinds of observers who can
meaningfully descibe particles: inertial observers who’s trajectories correspond
to straight lines and observers in uniform acceleration who follow hyperbolas.
We have learned that, in principle, the particle content of the field can be
different when described from the perspective of different observers. Therefore,
we will quantize the field from the perspective of inertial observers and then
describe it from the perspective of observers in uniform acceleration.

Minkowski coordinates (t, x) are a convenient choice of coordinates for iner-
tial observers. We saw in our last lecture that their trajectories follow straight
lines. In this coordinates the Klein-Gordon equation takes the following form

(∂2
t − ∂2

x)φ = 0.

The solutions to this equation are plane waves

uk =
1√
2πω

ei(kx−ωt)

u∗k =
1√
2πω

e−i(kx−ωt)

with ω = |k| and −∞ < k < ∞. The spacetime admits global timelike Killing
vector fields. In this case, the timelike Killing vector field corresponds to ∂t.
With respect to this field, we can classify the above solutions in positive and
negative frequency solutions. Since

i∂tuk = −iωuk
i∂tu

∗
k = iωu∗k

we identify uk as positive and u∗k as negative frequency solutions. Since these
solutions form a complete set of orthonormal functions in Minkowski spacetime

23
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the quantized field can be expressed as

φ̂ =
∫

(ukak + u∗ka
†
k)dk

were the creation and annihilation operators follow the appropriate commu-
tation relations [a†k, ak′ ] = δk,k′ . The vacuum state from this perspective is
therefore defined as ak |0〉M = 0. The state can be written as |0〉M =

∏
k |0k〉

M

where |0k〉M is the vacuum state of mode k.
Now we want to describe the field from the perspective of an observer moving

with uniform acceleration. The trajectory of such observer follows a hyperbola.
We will parametrize the trajectory in the following way

x =
eaχ

a
cosh(aη)

t =
eaχ

a
sinh(aη)

such that x2 − t2 = eaχ

a . Here a is an arbitrary reference acceleration. The ob-
server’s proper acceleration is given by ae−aχ. This suggests that appropriate
coordinates for accelerated observers are (η, χ) which are know as Rindler co-
ordinates. The temporal coordinates η = cte correspond to straight lines going
through the origin and the spacial coordinates χ = cte are hyperbolas. Note
that in the limit that χ → −∞ we have x2 = t2 which corresponds to lines at
45 degrees. The transformation is defined in the region |x| ≥ t which defines a
wedge known as Rindler wedge I. When η →∞ then

x

t
= tanh(aη)→ 1⇒ x = t

Observers uniformly accelerated asymptotically approach the speed of light and
are constrained to move in wedge I. Since the transformation does not cover the
whole Minkowski space, we must define a second region called Rindler wedge II
by considering the coordinate transformation

x =
−eaχ

a
cosh(aη)

t =
−eaχ

a
sinh(aη)

which differ from the first set of transformations by a sign in both coordinates.
Rindler regions I and II are causally disconnected and the lines at 45 degrees
define the Rindler horizon. No information can flow between these regions.

In Lecture 2 we found that metric in Rindler coordinates takes the form

ds2 = e2aχ(dη2 − dχ2)

The factor e2aχ is known as the conformal factor. A part from this factor,
the metric has the same form as metric in Rindler coordinates. Therefore, the
Klein-Gordon equation takes the form

(∂2
η − ∂2

χ)φ = 0
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Figure 5.1: Rindler space-time diagram: lines of constant position χ = const.
are hyperbolae and all curves of constant η are straight lines that pass through
the origin. An uniformly accelerated observer Rob travels along a hyperbola
constrained to either region I or region II.

The solutions are again plane waves

ūIk =
1

2πω
ei(kχ−ωη)

ū∗Ik =
1

2πω
e−i(kχ−ωη)

with ω = |k| and −∞ < k < ∞. These solutions only have support in region I
and therefore, are not a complete set of solutions. The solutions ūIk and ū∗Ik are
identified as positive and negative frequency solutions, respectively, with respect
to the timelike Killing vector field ∂η. The transformation which defines Rindler
region II also gives rise to the spacetime ds2 = e2aχ(dη2 − dχ2). However, in
this case as t grows η becomes small. The timelike Killing vector field in this
case is −∂η and the solutions are

uIIk =
1√
2πω

ei(kχ+ωη)

u∗IIk =
1√
2πω

e−i(kχ+ωη)

with support in region II. The solutions of region I together with the solutions in
region II form a complete set of orthonormal solutions. Therefore we can quan-
tize the field in this basis. We thus, obtain that the field in Rindler coordinates
is given by

φ̂ =
∫

(uIka
I
k + uIIk a

II
k + h.c.)dk
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The vacuum state in the Rindler basis is |0〉R = |0〉I ⊗ |0〉II where aIk |0〉
I = 0

and aIIk |0〉
II = 0.

We would now like to express the Minkowski vacuum |0〉M in terms of
Rindler states. For this we make use of the inner product and find the Bo-
goliubov coefficents, obtaining

ak =
∫

((uk, uIk′)a
I
k + (uk, u∗Ik′ )a

†I
k + (uk, uIIk′ )a

II
k + (uk, u∗IIk′ )a†IIk )dk

where, for example, (uk, uIk) =
∫

(uk∂tu
I†
k′ − ∂tuku

I†
k′ )dx . This calculation is

quiet involved. The Minkowski creation and annihilation operators result in
a infinite sum of Rindler operators. However, by introducing an alternative
basis for the inertial observers, the Unruh basis, the problem is significantly
simplified. The Unruh solutions correspond to

uUk = cosh ruIk + sinh ruII∗k ,

where sech2(r) = 1 − e
2πω
a . An similar procedure to the one followed above

must be carried out between Unruh solutions and Minkowski solutions. We then
find that the Unruh annihilation operators result in an intergal of Minkowski
annihilation operators of the form

Ak =
∫
Ck′ak′dk

′.

Therefore, the Unruh vacuum and the Minkowski vacuum coincide, i.e. Ak |0〉M =
0. The transformation between Unruh and Rindler operators yields

Ak = cosh(r)aIk − sinh(r)aII†k

This transformation is much simpler since it involves a single Unruh and Rindler
frequency. Considering the Ansatz

|0k〉M =
∑
n

An |nk〉I |nk〉II

we can find the Minkowski vacuum in terms of Rindler states by solving the
equation

0 = Ak |0k〉M = (cosh(r)aIk − sinh(r)aII†k )
∑
n

An |nk〉I |nk〉II

this yields

0 =
∑

An cosh(r)
√
n |(n− 1)k〉I |nk〉II −

∑
An sinh(r)

√
n+ 1 |nk〉I |(n+ 1)k〉II

=
∑

An+1 cosh(r)
√
n+ 1 |nk〉I |(n+ 1)k〉II −

∑
An sinh(r)

√
n+ 1 |nk〉I |(n+ 1)k〉II

We obtain the following recurrence relation

An+1 =
sinh(r)
cosh(r)

An ⇒ An = tanhn(r)A0
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and therefore,
|0k〉M =

∑
A0 tanhn(r) |nk〉I |nk〉II

From the normalization condition for the vacuum state we obtain

|A0|2
∑
n

tanh2n(r) = 1.

Since

|A0|2
∑
n

tanh2n(r) = |A0|2
1

1− tanh2(r)

= |A0|2 cosh2(r)

we finally find

|0k〉M =
1

cosh(r)

∑
n

tanhn(r) |nk〉I |nk〉II

The state in the Rindler basis corresponds to a two mode squeezed state. Here
tanh r = e−

2πω
a . Since the accelerated observer is constrained to move in region

I we must trace over the states in region II. We will carry out this calculation
in the next lecture. The result will be that in the Rindler wedge I the state is a
thermal state. This is the well known Unruh effect: while inertial observers de-
scribe the state of the field to be the vacuum, observers in uniform acceleration
observe a thermal state.

REMARK Therefore, the particle content of a field is observer dependent.
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Chapter 6

Entanglement in flat
spacetime

In the last lecture we learned that while an inertial observer detects the field
to be in the vacuum state, the state in the Rindler basis corresponds to a two
mode squeezed state. In this lecture we will show that from the perspective
of observers in uniform acceleration constrained to move in Rindler region I,
the field is in a thermal state with temperature. We will analyze the effects
of this on entanglement. For this, we will consider an entangled state between
two modes of the field and show that while for inertial observers the state is
maximally entangled, the entanglement degrades when considering observers in
uniform acceleration. We found that the inertial vacuum state corresponds to
a two mode squeezed state in the Rindler basis

|0k〉M =
1

cosh(r)

∑
n

tanhn(r) |nk〉I |nk〉II

The density matrix of this state is given by ρ0 = |0k〉 〈0k|M. Given that we
are working with a single mode we will, for now, drop the frequency index k.
Since an observer constrained to move in region I has no access to information
in region II, he must trace over the states in region II. Therefore, the state in
region I corresponds to the following reduced density matrix

ρI = TrII

(
1

cosh2(r)

∑
n,m

tanhn+m(r) |n〉I |n〉II 〈m|I 〈m|II
)

=
1

cosh2(r)

∑
n,m

tanhn+m(r) 〈m|n〉I |n〉II 〈m|II

=
1

cosh2(r)

∑
n,m

tanhn+m(r)δmn |n〉II 〈m|II

=
1

cosh2(r)

∑
n

tanh2n(r) |n〉II 〈n|II .

29
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Since tanh r = e−
2πω
a and sech2(r) = 1 − e 2πω

a , the density matrix corresponds
to a canonical thermal state

ρI = (e−
2πω
a − 1)

∑
n

(e−
2πω
a )n |n〉II 〈n|II .

with temperature TU = a
2πkB

(where kB is the Boltzman constant) propor-
tional to the observer’s acceleration. The temperature is known as the Unruh
temperature.

We now analyze the effects of this on the entanglement between two field
modes of the field. In the canonical scenario considered in the study of entangle-
ment in non-inertial frames the field, from the inertial perspective, is considered
to be in a state where all modes are in the vacuum state except for two of them
which are in a two-mode entangled state. For example, the Bell state

|Ψ〉U =
1√
2

(
|0k〉U |0k′〉U + |1k〉U |1k′〉U

)
, (6.1)

where U labels Unruh states and k, k′ are two Unruh frequencies. Two inertial
observers, Alice and Bob, each carrying a monocromatic detector sensitive to
frequencies k and k′ respectively, would find maximal correlations in their mea-
surements since the Bell state is maximally entangled. It is then interesting to
investigate to what degree the state is entangled when described by observers in
uniform acceleration. In the simplest scenario, Alice is again considered to be
inertial and an uniformly accelerated observer Rob is introduced, who carries a
monocromatic detector sensitive to mode k′. To study this situation, the states
corresponding to Rob must be transformed into the appropriate basis, in this
case, the Rindler basis. Note that, from the inertial perspective, we employ the
Unruh basis, which is an alternative basis for inertial observers, since the trans-
formation into the Rindler basis is very simple. We have already calculated the
transformation for the vacuum state, and with that in hand, we can calculate
the single particle state |1k′〉U = A†k′ |0k′〉

U . This calculation will be left as an
exercise. The resulting state must be

A†k′ |0k′〉
U = |1k′〉U =

1
cosh(r)

∑
n

tanhn(r)
√
n+ 1 |(n+ 1)k′〉I |nk′〉II .

Thus, the maximally entangled state from the perspective of inertial Alice and
accelerated Rob is

|Ψ〉U =
1√
2
|0k〉 ⊗

1
cosh(r)

∑
n

tanhn(r) |nk′〉I |nk′〉II

+
1√
2
|1k〉 ⊗

1
cosh(r)

∑
n

tanhn(r)
√
n+ 1 |(n+ 1)k′〉I |nk′〉II .

Since Rob is causally disconnected from region II we must take the trace over
region II. The density matrix for the Alice-Rob subsystem is

ρAR =
1

cosh2(r)

∞∑
n=0

tanh2n(r)ρn
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where

ρn = |0k, nk′〉 〈0k, nk′ |+
√
n+ 1

cosh(r)
(|0k, nk′〉 〈1k, (n+ 1)k′ |+ |1k, (n+ 1)k′〉 〈0k, nk′ |)

+
n+ 1

cosh2(r)
|1k, (n+ 1)k′〉 〈1k, (n+ 1)k′ |

We calculate the entanglement between the modes detected by Alice and
Rob using the logarithmic negativity

EN (ρAR) = log2 ‖ρPTAR‖

where ||ρPTAR|| is the trace norm of the partial transpose of the density matrix
for Alice and Rob. Recall that the trace norm is equivalent to summing over
the negative eigenvalues of the matrix. Therefore, we must find the eigenvalues
of the partial transpose of the Alice-Rob density matrix. The partial transpose
is found by exchanging the states corresponding to Alice

ρPTAR =
1

cosh2(r)

∞∑
n=0

tanh2n(r)ρPTn

with

ρPTn = |0k, nk′〉 〈0k, nk′ |+
√
n+ 1

cosh(r)
(|1k, nk′〉 〈0k, (n+ 1)k′ |+ |0k, (n+ 1)k′〉 〈1k, nk′ |)

+
n+ 1

cosh2(r)
|1k, (n+ 1)k′〉 〈1k, (n+ 1)k′ |

This matrix is infinite dimensional, however it has a block diagonal form which
allows us to diagonalize the matrix block by block. Considering the density
matrix for the (n, n+ 1) sector, each block takes the form

ρPTn =
1

cosh2(r)


tanh2n(r) 0 0 0

0 n
cosh(r) tanh2(n−1)(r)

√
n+1

cosh(r) tanh2n(r) 0

0
√
n+1

cosh(r) tanh2n(r) tanh2(n+1)(r) 0
0 0 0 n+1

cosh2(r)
tanh2n(r)


were we have used the basis {|0k, nk′〉 , |0k, (n+ 1)k′〉 , |1k, nk′〉 , |1k, (n+ 1)k′〉}.
We are looking for the negative eigenvalues of this matrix. We can see that the
eigenvalues corresponding to the first and last diagonal entries of the matrix are
always positive. Therefore, we must simply diagonalize the 2x2 matrix

1
cosh2(r)

(
n

cosh(r) tanh2(n−1)(r)
√
n+1

cosh(r) tanh2n(r)
√
n+1

cosh(r) tanh2n(r) tanh2(n+1)(r).

)
The eigenvalues of the density matrix are

λ± =
tanhn(r)
4 cosh2(r)

(
n

sinh2(r)
+ tanh2(r)± Zn

)
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with

Zn =
(

n

sinh2(r)
+ tanh2(r)

)2

+
4

cosh2(r)
.

Since one of the eigenvalues is always negative for finite r, the state is always
entangled. To calculate the logarithmic negativity we sum over all negative
eigenvalues and find N (ρAR) = log2((1/2 cosh2(r)) + Σ) where

Σ =
∑
n

tanh2n(r)
2 cosh2(r)

√(
n

sinh2(r)
+ tanh2(r)

)2

+
4

cosh2(r)

We conclude that entanglement is degraded when one of the observers moves in
uniform acceleration. This means that entanglement is observer dependent. In
the flat case, one can conclude that this is an effect of Rob’s acceleration. Rob
must be in a spaceship to be accelerated and energy must be supplied into the
system. One can argue that, in the flat case, inertial observers play a special
role and that therefore, a well defined notion of entanglement corresponds to
the entanglement described from the inertial perspective. However, in curved
spacetime different inertial observers describe a different particle content in the
field which results in different degrees of entanglement in the field. In that case,
there is no well-defined notion of entanglement.

REFERENCES
I. Fuentes-Schuller and R.B. Mann, Phys. Rev. Lett., (95): 120404, 2005.



Chapter 7

Particle creation in an
expanding universe

In this lecture we will consider an example of a curved spacetime which does
not admit a global timelike Killing vector field. However, the spacetime has two
assymthoticaly flat regions in which timelike Killing vector fields can be found
and therefore positive and negative solutions to the Klein-Gordon equations can
be distinguished. We will consider a (1 + 1)-dim expanding Robertson-Walker
universe which is asymptotically flat in the future and past infinity. Since in
the past infinity spacetime is flat, particles states can be defined. In this region,
we will consider the field to be in the vacuum state. We will then analyze the
state from the perspective of observers in the future infinity. We will show that
in the future infinity there has been particle creation.

The spacetime of a Robertson-Walker Universe in (1 + 1)-dim is given by

ds2 = dt2 − a2(t)dχ2

where the spatial sections of the space time are expanding (or contracting) uni-
formly according to the function a2(t). Considering the infintesimal coordinate
transformation

dη =
dt

a(t)

the metric is written as ds2 = a2(t)(dη2 − dχ2). Defining a2(t) = c2(η) we
obtain the metric

ds2 = c2(η)(dη2 − dχ2)

We now suppose that c(η) = 1 + ε(1 + tanh(ση)) where ε and σ are constants.
This describes a toy model of a universe undergoing a period of smooth expan-
sion. The parameter ε is known as the expansion volume and σ is the expansion
rate. In the limit η → −∞ the metric is ds2 = (dη2 − dχ2) and in the limit
η → −∞ then ds2 = (1 + 2ε)(dη2 − dχ2). Therefore, the metric is flat in these
regions and the vector field ∂η has Killing properties in these regions.
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We now consider the massive Klein-Gordon equation (� + m)φ = 0 in the
Robertson-Walker spacetime described above. Here m is the mass of the field.
Since the d’Alambertian in a curved spacetime is defined by

�φ :=
1√
−g

∂µ(
√
−ggµν∂νφ)

in this spacetime the metric tensor gab has components

gab = c(η)
(

1 0
0 −1

)
therefore g = det(gab) = −c2(η) and the contravariant metric is given by

gab =
1
c(η)

(
1 0
0 −1

)
.

Hence

�φ =
1
c(η)

∂µ(c(η)gµν∂νφ)

=
1
c(η)

[∂0c(η)g00∂0 + ∂1c(η)g11∂1]φ

=
1
c(η)

[∂ηc(η)
1
c(η)

∂η + ∂χc(η)
1
c(η)

∂χ]φ

=
1
c(η)

[∂2
η − ∂2

χ]φ

Therefore, the Klein-Gordon equation takes the form

((∂2
η − ∂2

χ) + c(η)m)φ = 0

Exploiting the resulting spacial translational invariance we separate the solu-
tions into

uk =
1√
2πω

eikχξk(η).

The equation then becomes

(
1√
2πω

eikχ∂2
ηξk(η) +

k2

√
2πω

eikχξk(η) + c(η)m
1√
2πω

eikχξk(η)) = 0

and therefore,
∂2
ηξk(η) + (k2 + c(η)m2)ξk(η) = 0.

This equation can be solved for the whole spacetime in terms of two hypergeo-
metric functions. We find two types of solutions

u
(1)
k (η, χ) =

1√
4πωin

e
ikχ−iω+η

“
iω−
σ

”
ln 2 cosh(ση)

2F2(α, β, γ1, δ)

u
(2)
k (η, χ) =

1√
4πωout

e
ikχ−iω+η

“
iω−
σ

”
ln 2 cosh(ση)

2F1(α, β, γ2, δ)
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where the constants above are defined as

α = 1 +
iω−
ρ
, β =

iω−
ρ
, γ1 = 1− iωin

ρ
, γ2 = 1 +

iωout
ρ

δ =
1
2

(1− tanh(ρη))

and the frequencies

ωin = [k2 +m2]
1
2

ωout = [k2 +m2(1 + 2ε)]
1
2

ω± =
1
2

(ωout ± ωin).

We note that in the limit η → −∞ the first solution becomes

u
(1)
k →

1√
4πωin

eikχ−iωinη

And in the case η → +∞ the second solution is

u
(2)
k →

1√
4πωout

eikχ−iωoutη

One can see that in these limits the asymptotic solutions u(1)
k and u

(2)
k to the

Klein-Gordon equation are plane waves which can then be associated with pos-
itive mode solutions. The negative mode solutions correspond to u1∗

k and u2∗
k .

Since u1
k is associated with a plan wave at η → −∞ (past infinity) we call these

solutions in-waves u(1)
k ≡ u

(in)
k . The solutions u(2)

k ≡ u
(out)
k which are associated

with plane waves at η → +∞ (future infinity) will be called out-waves.
Using the linear transformation properties of hypergeometric functions we

can write u(in)
k in terms of u(out)

k . This is easier than caluclating the Bogolubov
coefficients using the inner product. We then obtain

u
(in)
k (η, χ) = αku

(out)
k (η, χ) + βku

(out∗)
k (η, χ)

where

αk =
(
ωout
ωin

) 1
2 Γ

(
1− iωin

σ

)
Γ
(
− iωoutσ

)
Γ
(
− iω+

σ

)
Γ
(

1− iω+
σ

)
βk =

(
ωout
ωin

) 1
2 Γ

(
1− iωin

σ

)
Γ
(
− iωoutσ

)
Γ
(
− iω−σ

)
Γ
(

1− iω−
σ

)
Here Γ are Gamma functions. From the above expressions we can read off
the Bogolubov coefficients αkk′ = αkδkk′ and βkk′ = βkδ−kk′ . Therefore the
transformation between annihilation operators yields

aink = α∗ka
out
k − β∗ka

out†
−k .
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We now consider that the state of the field in the past infinity is the vacuum
state (no entanglement)

|0〉in =
∞⊗

k=−∞

|0〉k
in

and use the expression for the in-mode annihilation operator to calculate the
state in the future infinity. Since the transformation between in and out an-
nihilation operators only mixes modes of frequency k and −k, we consider the
following Ansatz for the state in the future infinity

|0〉in =
∑
n

An |n〉outk |n〉out−k

Given that the vacuum state is defined as aink |0〉
in = 0 we obtain the equation

aink |0〉
in = α∗k

∑
n

An
√
n |n− 1〉outk |n〉out−k − β

∗
k

∑
n

An
√
n |n〉outk |n− 1〉out−k

= α∗k
∑
n

An+1

√
n+ 1 |n〉outk |n+ 1〉out−k − β

∗
k

∑
n

An+1

√
n+ 1 |n+ 1〉outk |n〉out−k .

We then obtain the following recurrence relation

An+1 =
β∗k
α∗k
An =⇒ An =

(
β∗k
α∗k

)n
A0.

The vacuum state from the perspective of observers in the past infinity becomes

|0〉in = A0

∑
n

(
β∗k
α∗k

)n
|n〉outk |n〉out−k

for observers in the future infinity. Employing the normalization condition

〈0|0〉in = 1 and defing γ =
∣∣∣ βkαk ∣∣∣2 we obtain

|A0|2 = 1− γ

and therefore,
|0〉in =

√
1− γ

∑
n

γn |n〉outk |n〉out−k .

In terms of the explicit Bobolubov coefficients

γ =
sinh2(πω−/σ)
sinh2(πω+/σ)

.

REMARKS The vacuum state from the perspective of observers in the remote
past has particles in the remote future. Due to the expansion of the universe
there has been particle creation.

REFERENCES
Quantum Field Theory in Curved Spacetime by N.D. Birrell and P.C.W. Davies,
CUP (1982).



Chapter 8

Entanglement in curved
spacetime

In the last lecture we considered an example of curved spacetime where particles
can be defined in two asymptotically flat regions regions. We found that while in
the remote past the field was in the vacuum state, in the remote future particles
have been created. We recall however, that in the interim region, where the
universe is undergoing expansion, no sensible notion of particles exist. In this
lecture we will continue with this example and show that in the future infinity
entanglement has been created between field modes. Interestingly, it is possible
to learn about the expansion parameters of the Universe from the entanglement
generated. As a last example, we will consider the entanglement between two
field modes in the spacetime of an eternal black hole. We will see that while
two observers falling into the black hole describe the state of the field to be in
a maximally entangled state, the entanglement in the state becomes degraded
from the perspective of an inertial observer, Alice, who falls into a black hole
and an non-inertial observer, Rob, escaping the black hole.

8.1 Entanglement in an expanding universe

We found that the state corresponding to the vacuum state in the past infinity
corresponds to the following two mode state in the future infinity

|0〉in =
√

1− γ
∑
n

γn |n〉outk |n〉out−k .

Since the state is pure, we can employ the Von-Neuman entropy to quantify the
entanglement generated the field modes k and −k. In order to do this we need
to compute the reduced density matrix for one of the modes. The densitity
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matrix for the state is

ρ0 = |0〉in 〈0|in

= (1− γ)
∑
n,m

γ(n+m) |n〉outk |n〉out−k 〈m|
out
k 〈m|out−k .

The reduced density matrix for mode k is obtained by tracing over mode −k

ρk = tr−k[ρ0]

= (1− γ)
∑
n,m

γ(n+m)δnm |n〉outk 〈m|outk

= (1− γ)
∑
n,m

γ2n |n〉outk 〈n|outk

Since the reduced denstiy matrix is already in diagonal form with eigenvalues
λn = (1− γ)γ2n, it is straight forward to compute the Von-Neumann entropy

S(ρk) = −Tr (ρk log2 ρk)

= −(1− γ)
∑
n

γ2n log2((1− γ)γ2n)

= (γ − 1)
∑
n

(2nγ2n log2 γ + γ2n log2(1− γ))

= 2(γ − 1) log2 γ
∑
n

nγ2n + (γ − 1) log2(1− γ)
∑
n

γ2n

= (γ − 1) log2 γ
∑
n

2nγ2n + (γ − 1) log2(1− γ)
1

1− γ

= (γ − 1) log2 γ
∂

∂γ
(1− γ)−1 − log2(1− γ)

which yields

S(ρk) = log2

[
γ

γ
γ−1

1− γ

]
Entanglement has been created in the remote future due to the expansion of
the universe. The entanglement depends on the cosmological constants since
the coefficient γ depends on the expansion rate σ, the expansion volume ε and
the frequency of the modes involved through

γ =
sinh2(πω−/σ)
sinh2(πω+/σ)

with

ω± =
1
2

(ωout ± ωin)

ωin = [k2 +m2]
1
2

ωout = [k2 +m2(1 + 2ε)]
1
2 .
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In the case of light particles, the equations can be inverted and we can show
that we can estimate the expansion parameters from the entanglement.

REMARK Entanglement has been created between field modes due to the
expansion of the universe. It is possible to learn from the past history of the
universe from the entanglement in the modes.

8.2 Alice falls into a black hole

The Schwarzchild spacetime of an eternal black hole describes the geometry of
a spherical non-rotating mass m. Considering only the radial component, the
metric is

ds2 = (1− (2m/R))dT 2 − (1− (2m/R))−1dR2.

The spacetime is curved and admits no global timelike Killing vector fields.
However, close to the horizon of the black hole defined by R = 2m, the space
time is approximately flat. To see this, we consider the following coordinate
change R− 2m = x2/8m, such that

1− (2m/R) = x2/8mR =
(x2/8m)

(x2/8m+ 2m)
=

(Ax)2

(1 + (Ax)2)
≈ (Ax)2

when x ≈ 0 with A = 1/4m. This means that dR2 = (Ax2)dx2. Therefore, very
close to the horizon R ≈ 2m the Schwarzschild spacetime can be approximated
by Rindler space

ds2 = −(Ax)2dT 2 + dx2.

where the acceleration parameter a = A−1. This means that, very close to the
horizon of the black hole, we can consider Alice being inertial and falling into
the black hole while Rob escapes the fall by being accelerated. If Alice claims
that the state of the field is the vacuum state, then Rob detects a thermal state
since the state has the form

|0k〉M =
1

cosh(r)

∑
n

tanhn(r) |nk〉in |nk〉out .

were r is a function of the mass of the black hole. Here in and out denote
the modes inside and outside the black hole. |0k〉M is the state detected by
Alice. If we then consider that the field, from Alice’s perspective is a maximally
entangled state of two modes, Rob will detect less entanglement between the
modes due to the Hawking effect.

8.3 Final remarks

The phenomenon of entanglement has been extensively studied in non-relativistic
settings. Much of the interest on this quantum property has stemmed from its
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relevance in quantum information theory. However, relatively little is known
about relativistic effects on entanglement despite the fact that many of the sys-
tems used in the implementation of quantum information involve relativistic
systems such as photons. The vast majority of investigations on entanglement
assume that the world is flat and non-relativistic. Understanding entangle-
ment in spacetime is ultimately necessary because the world is fundamentally
relativistic. Moreover, entanglement plays a prominent role in black hole ther-
modynamics and in the information loss problem.

The question of understanding entanglement in non-inertial frames has been
central to the development of the emerging field of relativistic quantum informa-
tion. The main aim of this field is to incorporate relativistic effects to improve
quantum information tasks (such as quantum teleportation) and to understand
how such protocols would take place in curved space-times. In most quantum
information protocols entanglement plays a prominent role. Therefore, it is of a
great interest to understand how it can be degraded or created by the presence
of horizons or spacetime dynamics.

In this series of lectures we showed that studies on relativistic entanglement
show that conceptually important qualitative differences to a non-relativistic
treatment arise. For instance, entanglement was found to be an observer-
dependent property that is degraded from the perspective of accelerated ob-
servers moving in flat spacetime. These results suggest that entanglement in
curved spacetime might not be an invariant concept.

REFERENCES
J. Ball, I. Fuentes-Schuller, and F. P. Schuller, Phys. Lett. A, (359): 550, 2006.



Chapter 9

Problems

Entanglement of Dirac Fields in non-inertial frames

In a parallel analysis to the bosonic case, we consider a Dirac field φ satisfying
the equation {iγµ(∂µ − Γµ) + m}φ = 0 where γµ are the Dirac-Pauli matrices
and Γµ are spinorial affine connections. The field expansion in terms of the
Minkowski solutions of the Dirac equation is

φ = NM

∫ (
ck,M u+

k,M + d†k,M u−k,M

)
dk, (9.1)

Where NM is a normalisation constant and the label ± denotes respectively
positive and negative energy solutions (particles/antiparticles) with respect to
the Minkowskian Killing vector field ∂t. The label k is a multilabel including
energy and spin k = {Eω, s} where s is the component of the spin on the
quantisation direction. ck and dk are the particle/antiparticle operators that
satisfy the usual anticommutation rule

{ck,M, c†k′,M} = {dk,M, d†k′,M} = δkk′ , (9.2)

and all other anticommutators vanishing.
The Dirac field operator in terms of Rindler modes is given by

φ= NR

∫ (
cj,Iu

+
j,I + d†j,Iu

−
j,I + cj,IIu

+
j,II + d†j,IIu

−
j,II

)
dj, (9.3)

Where NR is, again, a normalisation constant. cj,Σ, dj,Σ with Σ = I, II represent
Rindler particle/antiparticle operators. The usual anticommutation rules again
apply. Note that operators in different regions Σ = I, II do not commute but
anticommute. j = {EΩ, s

′} is again a multi-label including all the degrees of
freedom. Here u±k,I and u±k,II are the positive/negative frequency solutions of
the Dirac equation in Rindler coordinates with respect to the Rindler timelike
Killing vector field in region I and II, respectively. The modes u±k,I, u

±
k,II do not

have support outside the right, left Rindler wedge. The annihilation operators
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ck,M, dk,M define the Minkowski vacuum |0〉M which must satisfy

ck,M |0〉M = dk,M |0〉M = 0, ∀k. (9.4)

In the same fashion cj,Σ, dj,Σ, define the Rindler vacua in regions Σ = I, II

cj,R |0〉Σ = dj,R |0〉Σ = 0, ∀j, Σ = I, II. (9.5)

As in the bosonic case, we will work with Unruh modes for the inertial
observers, where the transformation between Unruh and Rindler operators is
given by and the operators

Ck ≡
(

cos rk ck,I − sin rk d
†
k,II

)
.

It can be shown that for a massless Dirac field the Unruh operators have the
same form as Eq. (9.6) however in this case tan rk = e−πΩa/a. In this case,
to find the Minkowski vacuum in the Rindler basis we consider the following
ansatz

|0〉M =
⊗

Ω

|0Ω〉M , (9.6)

were

|0Ω〉M =
∑
n,s

(
Fn,Ω,s |nΩ,s〉+I |nΩ,−s〉−II

)
(9.7)

where the label ± denotes particle/antiparticle modes and s labels the spin.
The minus signs on the spin label in region II show explicitly that spin, as all
the magnitudes which change under time reversal, is opposite in region I with
respect to region II.

Due to the anticommutation relations we must introduce the following sign
conventions

|1Ω〉+I |1Ω〉−II = d†Ω,IV c
†
Ω,I|0Ω〉+I |0Ω〉−II ,

= −c†Ω,Id
†
Ω,II|0Ω〉+I |0Ω〉−II ,

|1Ω〉−I |1Ω〉+II = c†Ω,IV d
†
Ω,I|0Ω〉−I |0Ω〉+II ,

= −d†Ω,Ic
†
Ω,II|0Ω〉−I |0Ω〉+II . (9.8)

We will now consider the simplest case that preserves the fundamental Dirac
characteristics which corresponds to Grassman scalars. In this case the Pauli
exclusion principle limits the sums to n = 0, 1 and there is no spin. For conve-
nience, is it suitable to introduce the following notation,

|nn′n′′n′′′〉Ω ≡ |nΩ〉+I |n
′
Ω〉
−
II |n

′′
Ω〉
−
I |n

′′′
Ω 〉

+
II . (9.9)

• Considering Grassman scalars, obtain the form of the coefficients Fn,Ω for
the vacuum by imposing that the Minkowski vacuum is annihilated by
the particle annihilator Ck for all frequencies and values for the spin third
component, ie. CΩ |0Ω〉R = 0.
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• Obtain the Unruh one particle state by applying the creation operator to
the vacuum state |1j〉U = C†Ω |0j〉M.

• Consider the following fermionic maximally entangled state

|Ψ〉 =
1√
2

(
|0ω〉M |0Ω〉U + |1ω〉+M |1Ω〉+U

)
, (9.10)

which is the fermionic analog to the bosonic maximally entangled state
studied in our lectures. Compute Alice-Rob partial density matrix by
tracing over region II .

• Obtain the partial transpose of density matrix and find its negative eigen-
values. Note that the matrix is block diagonal and only two blocks con-
tribute.

• Compute the negativity.

• Compare results with the bosonic case.
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