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Wigner Distributions on R

Consider a quantum system whose classical configuration
space Q = R is the real line R. Let { |q〉 | q ∈ R} denone the
coordinate basis in the corresponding Hilbert space H :

〈q|q′〉 = δ (q − q′) ,
∞∫

−∞

dq|q〉〈q| = I;

Given the coordinate basis, one defines a ‘momentum basis’
{ |p〉 | p ∈ R} related to it by Fourier transformation:

|p〉 =
1√
2π~

∞∫
−∞

dq eiqp/~|q > ;

〈p|p′〉 = δ (p− p′) ,
∞∫

−∞

dp|p〉〈p| = I;



We may arrange the values of q and p in the usual Cartesian
fashion and call it the ’classical phase space’ associated with
the quantum system. ( Note that this classical phase space is
not always the same as T ∗Q ).
In 1932, Wigner introduced a quantum analogue of the
classical phase space distribution which associates with any
quantum state ρ̂ a function Wbρ(q, p) as follows:

ρ̂ 7→ Wbρ(q, p) = Tr
{
ρ̂ Ŵ (q, p)

}
;

Ŵ (q, p) =
1

(2π~)

∞∫
−∞

dq′ |q +
1

2
q′〉〈q − 1

2
q′| ei pq′/~,

The operators Ŵ (q, p) will be referred to as phase point
operators



The Wigner distribution defined above has the following
properties

1. Reality : Wbρ(q, p) = Wbρ(q, p)∗.
2. Marginals property :Average of the Wigner distribution

along a line in phase space yields a probability
density

3. Traciality: Tr {ρ̂′ρ̂} =

1

(2π~)

∞∫
−∞

dq

∞∫
−∞

dp Wbρ′(q, p) Wbρ(q, p).
4. Wbρ(q, p) not necessarily positive for all ρ̂. For pure states
|ψ >∈ H the Wigner distribution is positive if and only if
the state is a Gaussian state. ( The Wigner distribution
for such states is itself a Gaussian ).



Correspondingly for the phase point operators

1. Hermiticity : Ŵ (q, p) = Ŵ †(q, p).

2. Marginals property :Average of the phase point operator
along a line in phase space yields a Projector

Wigner distributions have played an important role in semi
classical approximations, classical optics etc. Of late they
came into prominence in Quantum Information Theory largely
due to the work of R. Simon and also Duan et. al in the
context of continuous variable entanglement where necessary
and sufficient conditions for entanglement in two mode
Gaussian pure states were derived.



Two important operations at the level of the ‘classical phase
space’

1. Translations: (q, p) 7→ (q′, p′) = (q + q0, p+ p0). These
transform an (isotropic) line to another line parallel to it

2. Symplectic transformations SL(2,R):(
q
p

)
7→

(
q′

p′

)
=

(
a b
c d

) (
q
p

)
;

a, b, c, d ∈ R; ad− bc = 1

These change the orientation of the isotropic lines,

At the quantum level, these operations are implemented by the
operators D(q, p), the displacement operators, and by unitary
operators {U(S) | S ∈ SL(2,R)} respectively.



Dirac inspired ‘square root’ approach to Wigner

distributions

Consider Tr
{
ÂB̂

}
. It is easy to show that

Tr
{
ÂB̂

}
=

∫ ∫
dqdp〈q|Â|p〉〈p|B̂|q〉

= 2π~
∫ ∫

dqdpAl (q, p)Br (q, p)

= 2π~
∫ ∫

dqdpAr (q, p)Bl (q, p) .

where Al (q, p) = 〈q|Â|p〉〈p|q〉 and Ar (q, p) = 〈p|Â|q〉〈q|p〉.
Note that the RHS lacks the manifest symmetry of the LHS
under interchange of Â and B̂. This symmetry can be restored
by at the expense of introducing a kernel

Tr
{
ÂB̂

}
=

∫ ∫ ∫ ∫
dqdpdq′dp′Al (q, p)Kl (q, p; q

′, p′)Bl (q
′, p′) ,



where

Kl (q, p
′; q′, p) = (2π~)2 〈q|p′〉〈p′|q′〉〈q′|p〉〈p|q〉

= exp {i (q − q′) (p′ − p) /~}

The kernel Kl (q, p; q
′, p′) is explicitly symmetric under:

(q, p)←→ (q′, p′), so we have a classical phase-space

expression for Tr{ÂB̂} manifestly symmetric in Â and B̂. (
Here we have chosen to work with symbols carrying subscripts
`, One could, if one wishes, carry out a similar analysis with
symbols carrying subscripts r). A natural question to ask if
this kernel can in some sense be ‘transformed away’ while
maintaining manifest symmetry in Â and B̂. This can be done
if we can express it as the ‘square’ or the convolution of some
more elementary kernel, say in the form:

Kl (q, p; q
′, p′) =

∫ ∫
dq′′dp′′ξ (q′′, p′′; q, p) ξ (q′′, p′′; q′, p′) .



We would then have

Tr
{
ÂB̂

}
=

1

2π~

∫ ∫
dqdpA (q, p)B (q, p) ,

where A (q, p) arises from Al (q, p) via:

A (q, p) =
√

2π~
∫ ∫

dq′dp′ξ (q, p; q′, p′)Al (q
′, p′) .

What properties do we demand of ξ (q, p; q′, p′) other than?
Naturally, the same as those of Kl (q, p; q

′, p′) viz, Symmetry,
essential Unitarity, translational invariance, marginals property.
For K` given above, its square root ξ satisfying the above
properties is easily found to be

ξ (q, p; q′, p′) =

√
2

π~
exp {2i (q − q′) (p− p′) /~} ,

and it is easy to check that the symbol A(q, p) defined above

is indeed the Wigner symbol of Â.



Wigner Distribution for finite state quantum

systems: Q = ZN

Consider a quantum system described by a (complex) Hilbert
space of dimension N . We designate q ∈ ZN as the
‘coordinates’ and {|q〉 | q ∈ ZN} as the ‘coordinate basis“.
(ZN = {0, 1, · · · , N − 1} denotes the ring of integers with
addition and multiplication modulo N)

〈q|q′〉 = δq,q′ ,
N−1∑
q=0

|q〉〈q| = I;

The ‘momentum basis’ {|p〉 | p ∈ ZN} is then obtained by a
discrete Fourier transform

|p〉 =
1√
N

∑
q∈ZN

ωqp|q >; p ∈ ZN , ω = e2πi/N



〈p|p′〉 = δp,p′ ,
∑
p∈ZN

|p〉〈p| = I;

We can think of the phase space, Γ0 = ZN × ZN , a discrete
N ×N lattice. The analogues of the operations on the phase
space for the continuum case now are

1. Translations: (q, p) 7→ (q′, p′) = (q + q0, p+ p0). These
transform a line to another line parallel to it

2. Symplectic transformations SL(2,ZN): These take an
isotropic line to another.

(
q
p

)
7→

(
q′

p′

)
=

(
a b
c d

) (
q
p

)
;

a, b, c, d ∈ ZN ; ad− bc = 1mod N



The kernel Kl (q, p
′; q′, p) is now given by

Kl (q, p
′; q′, p) = N2〈q|p′〉〈p′|q′〉〈q′|p〉〈p|q〉

= ω(q−q′)(p′−p).

Choosing σ = (q, p) to label rows and columns, we have here
a N2 ×N2 matrix Kl (σ; , σ′). Setting up the Wigner
distributions amounts to finding the square root ξ (σ; , σ′) of
this matrix ( satisfying Symmetry, essential Unitarity,
translational invariance, marginals property). This can
explicitly be done:

ξ(σ;σ′) =
1

N3/2

∑
σ′′∈Γ0

τ q′′p′′S(σ′′)ω〈σ,σ′′〉−〈σ′,σ′′〉



where τ = −eiπ/N ; τ 2 = ω and S(σ) take values ±. For the
phase point operators we then have

σ ∈ Γ0 : Ŵ (σ) =
1

N

∑
σ′∈Γ0

ω〈σ,σ′〉S(σ′)D(σ′)

where D(σ) denote the unitary displacement operators obeying

D†(σ) = D(−σ)

D(σ)D(σ′) = τ 〈σ,σ′〉D(σ + σ′)

D(σ +Nσ0) = D(σ) if N odd

= (−1)〈σ,σ0〉D(σ) if N even

Hermiticity of Ŵ (σ) requires S(σ) to obey

S(σ) = S([N − σ]) if N odd

and for N even

S(σ) = S([N − σ]) if q or p = 0

= (−1)(q+p)S([N − σ]) otherwise



Trace orthogonality of D(σ) leads to

Tr(Ŵ (σ′)Ŵ (σ)) = Nδσ′,σ

Also
Tr(Ŵ (σ)) = 1,

Requiring standard q − p marginals conditions

S(q, 0) = S(0, p) = 1



Isotropic line conditions

The conditions so far on S(σ) reduce the number of
undetermined signs to about half. To generate more
conditions, we consider more marginals conditions, based on
isotropic lines.
An isotropic line λ is a maximal set of N distinct points in Γ0,
a subset of Γ0, including σ = (0, 0) and obeying:

σ′, σ ∈ λ⇒ 〈σ′, σ〉 = 0 mod N.

Each point σ ∈ Γ0 belongs to at least one isotropic line. (
Further details later) We now require that the operator Pλ

obtained by averaging Ŵ ’s over an isotropic line:

Pλ =
1

N

∑
σ∈λ

Ŵ (σ) =
1

N2

∑
σ∈λ

∑
σ′∈Γ0

ω〈σ,σ′〉S(σ′)D(σ′)

=
1

N

∑
σ∈λ

S(σ)D(σ)



be a rank one projector

P 2
λ = Pλ,Tr(Pλ) = 1

This yields

S(σ)S(σ′) = τ 〈σ
′,σ〉ε(σ′, σ)S([σ + σ′]),

for all σ′, σ ∈ λ. Here

ε(σ′, σ) = ε(σ, σ′) = (−1)((q′+q)[p′+p]−[q′+q](p′+p))/N



N odd case

In the case when N is odd, the isotropic line conditions have a
remarkably simple solution

S(σ) = 1

and results by using the fact that every σ on a given isotropic
line can be uniquely written as 2σ′ where σ′ also lies on λ.
(Group theoreticaly : every element of a group of odd
order,abelian or non abelian, can be uniquely written as the
square of another group element). Thus in the odd case,
marginals conditions fix all the signs leading to a unique
Wigner distribution. No detailed properties of the isotropic
lines or how they go into each other under SL(2,ZN) are ever
required. The Wigner distribution thus obtained has all the
properties of the Wigner distribution in the continuum. In
particular,

Ŵ (0, 0) = Parity Operator



N even : special case N = 4

Here we have seven lines, six generated by
(1, 0), (1, 1), (1, 2), (1, 3), (0, 1), (2, 1) and one generated by
(2, 0) and (0, 2). Applying the isotropic line conditions to
these lines one finds S(2, 2) must both be +1 as well as −1
implying that it is impossible to satisfy marginals property on
all the isotropic lines. Given this circumstance, can we at least
consistently satisfy marginals property on a subset if not on all
the isotropic lines? This forces us to examine detailed
structure isotropic lines in the even case, in particular, how
they divide themselves up in to orbits under SL(2,ZN).



Isotropic Lines and orbits under SL(2, ZN)

[Albouy J. Phys. 42 072001 (2009)] Towards handling the
case of general N (essentially even N) we may note the
following. Any N can be uniquely written as product of
(increasing) primes in the form :

N = N1N2 · · ·Nk =
k∏

j=1

Nj

Nj = p
nj

j , pj = jth prime : p1 = 2, p2 = 3, p3 = 5, · · · ,
pj = odd j ≥ 2; and nj = 0 or 1 or 2 · · ·

If n1 = 0: then N is odd , previous results are in hand.
Something new arise only if n1 ≥ 1.
We may thus treat first the case:

N = pn = power of a single prime,



Isotropic Lines and orbits under SL(2,ZN) for

N = pn

1. The number of isotropic lines is (pn+1 − 1)/(p− 1)

2. The number of isotropic lines passing through a point
σ ∈ ZN × ZN is given by (pt+1 − 1)/(p− 1) , where t is
the p-valuation of σ. [By p–valuation one means the
following ; Every element a of ZN can be uniquely written
as a0p

0 + a1p
1 + · · · an−1p

n−1 with
ai ∈ {0, 1, · · · , pj − 1}. The p–valuation of a is then the
smallest i for which ai is non zero. The p– valuation of 0
is taken to be nj. For σ = (q, p) , p–valuation is defined
to be the minimum of the p-valuations of q and p ]. Thus
for (0, 0), t = p and for a σ such that either q or p is a
unit., we have t = 1, i.e only one line passes through it.



As to the action of the group SL(2, ZN) on the isotropic lines
one finds that

1. The isotropic lines, (pn+1 − 1)/(p− 1) in number, divide
themselves into Int[n/2] + 1 orbits under SL(2, ZN). The
orbits denoted by Ok(p

n), k = 0, 1, · · · , Int[n/2] contain
pn−2k−1(p+ 1) isotropic lines if k < Int[n/2] and a
singleton if k = Int[n/2]. In, particular the largest orbit,
corresponding to k = 0, contains pn−1(p+ 1) lines.

2. Only the largest orbit has the property that it covers all
points in ZN × ZN . The pn−1(p+ 1) isotropic lines in
this orbit are all generated by single generators of order N
which may be taken to be (1, α), µ ∈ {0, 1, · · · , N − 1}
and (α, 1), α ∈ {non units in ZN}.



Isotropic Lines and orbits in the general case

Turning now to the case of a general N we note that ring ZN

can be factored as

ZN = ZN1 × ZN2 × · · · × ZNk

The explicit correspondence between elements of ZN and
those of the rings ZNj

is provided by the chinese remainder
theorem which tells us that an element q ∈ ZN can be
uniquely decomposed as

q =
k∑

j=1

qj · νj · µj

where qj = [q mod Nj] ∈ ZNj
, νj = N/Nj and µj denotes the

(multiplicative) inverse of νj in ZNj
. Thus each element

q ∈ ZN can uniquely represented as an array

q ←→ {q1, q2, · · · , qk}, qi ∈ ZNi



In particular the elements 0 and 1 are represented by

0←→ {0, 0, · · · , 0}; 1←→ {1, 1, · · · , 1}

Further, this correspondence has the nice property that

q + q′ ←→ {q1 + q′1, q2 + q′2, · · · , qk + q′k}, qi ∈ ZNi

qq′ ←→ {q1q′1, q2q′2, · · · , qkq′k}, qi ∈ ZNi

In view of this we have the following results:

1. A point σ ∈ ZN × ZN can be represented as

σ ←→ {σ1, σ2, · · · , σk}, σi ∈ ZNi
× ZNi

2. The symplectic product of 〈σ, σ′〉 vanishes if and only if
each of the components 〈σi, σ

′
i〉 vanish.

3. The group SL(2, ZN) also factorises as

SL(2, ZN) = SL(2, ZN1)× SL(2, ZN2)× SL(2, ZNk
)



Isotropic lines in N = 2n case

From the above it is evident that the isotropic lines in
σ ∈ ZN × ZN and SL(2, ZN) action are completely
determined by those in each of the factors ZNj

×ZNj
. Further,

having disposed off the odd case we need to examine only the
N = 2n case. Specialising the earlier results to this we have

1. There are 2n+1 − 1 isotropic lines in Z2n × Z2n

2. These can be divided into two categories, (a) those in the
largest orbit, 3.2n−1 in number and generated by single
generators. (b) and the rest which involve two generators
of orders 2r and 2s where r + s = n.

3. The isotropic lines in the category a cover all the phase
points in Z2n × Z2n . Further, only the even points appear
on more than one line.

4. The isotropic lines in the category (b) are 2n−1 − 1 in
number. These cover all the even phase points in
Z2n × Z2n only.



It turns out that it is impossible to satisfy isotropic line
conditions on all the isotropic lines and that they can be
consistently implemented orbit by orbit. It is therefore sensible
to demand marginals property restricting oneself to the largest
orbit as it is the only one whose lines cover all phase points.
These conditions relate or fix the signs for points on the
isotropic lines in the largest orbit. The number of unfixed signs
equals 3.2n−1 − 2. Thus, for N = 2 and 4 respectively, the
unfixed signs are shown below:

1 S(1.1)
1 1

1 S(1, 3) −S(1, 2)1 S(1, 1
1 S(2, 1) 1 −S(2, 1)
1 S(1, 1) S(1, 2) S(1, 3)
1 1 1 1

and we have 2, 24 different choices for Wigner distributions



Spectra of phase point operators

We now examine the dependence of the eigenvalues of the
phase point operators as a function of the signs that remain
unfixed. For this purpose it is sufficient to look at the
eigenvalues of Ŵ (0, 0).
For N = 2 there is only one unfixed sign S(1, 1) and the

spectrum of Ŵ (0, 0) is the same for S(1, 1) = ±1
For N = 4 one finds that there are three distinct spectra for
Ŵ (0, 0) depending on the values of the four free signs
S(1, 1) ≡ a, S(1, 2) ≡ b, S(1, 3) ≡ c, S(2, 1) ≡ d. They are

I ((1 +
√

6)/2, (1−
√

6)/2,−1/2, 1/2) .

I ((1 + 2
√

2)/2,−1/2, (1−
√

2)/2, (1−
√

2)/2)

I ((1 +
√

2)/2, (1 +
√

2)/2, (1− 2
√

2)/2,−1/2)



ForN = 8, one has 4 and N = 16, one has 15 distinct spectra.
Thus, although the number of different Wigner distributions
base on choices for the signs for N = 2, 22, 23, 24 is
2, 24, 210, 222, those which have distinct spectra are only
1, 3, 4, 15 in number. ( It seems that the number of distinct
spectra for N = 2n equals 2n−1 if n even and 2n − 1 if n odd)
This motivates us to examine the action of the Clifford group
on the families of Wigner distributions (quantum nets)
obtained so far.



Clifford Group

Here by Clifford group we mean the set of all unitaries that
take the generalised Pauli group – the set {eiξD(σ)} into
itself. The structure of this group has been examined in great
detail by Appleby in connection with SICPOVMS. The set of
unitaries that are relevant here consists of matrices:

VF =
1√
N

N−1∑
r,s=1

τβ−1(αs2−2rs+δr2)|r >< s|

labelled by

F =

(
α β
γ δ

)
∈ SL(2, Z2N)

and act on the displacement operators as follows:

VFD(σ)V †
F = D(Fσ)

and thus take the displacement operators to displacement
operators upto a sign.



As a result they take a phase point operators Ŵ (σ, s) to

Ŵ (σ, s′). We have analysed the orbits of Ŵ (σ, s) under the
conjugate action of {VF} and found that they permit us to
classify the Wigner distributions into 1, 3, 4 families for
N = 2, 4, 8 consistent with that obtained by spectral
considerations.



Wigner distributions on Fpn

Consider a quantum system described by a (complex) Hilbert
space of dimension N = pn. We designate q ∈ FN as the
‘coordinates’ and {|q〉 | q ∈ FN} as the ‘coordinate basis“.
(FN denotes the finite field of order N = pn)

〈q|q′〉 = δq,q′ ,
∑
q∈FN

|q〉〈q| = I;

The ‘momentum basis’ {|p〉 | p ∈ FN} is then obtained by a
discrete Fourier transform

|p〉 =
1√
N

∑
q∈FN

ωtr[qp]|q >; p ∈ FN , ω = e2πi/p



〈p|p′〉 = δp,p′ ,
∑
p∈FN

|p〉〈p| = I;

We can think of the phase space, Γ0 = FN × FN , a discrete
N ×N lattice. The analogues of the operations on the phase
space for the continuum case now are

1. Translations: (q, p) 7→ (q′, p′) = (q + q0, p+ p0). These
transform a line to another line parallel to it

2. Symplectic transformations SL(2,FN): These take an
isotropic line to another.(

q
p

)
7→

(
q′

p′

)
=

(
a b
c d

) (
q
p

)
;

a, b, c, d ∈ FN ; ad− bc = 1



The kernel Kl (q, p
′; q′, p) is now given by

Kl (q, p
′; q′, p) = N2〈q|p′〉〈p′|q′〉〈q′|p〉〈p|q〉

= ωtr[(q−q′)(p′−p)].

For the phase point operators we then have

σ ∈ Γ0 : Ŵ (σ) =
1

N

∑
σ′∈Γ0

ω〈σ,σ′〉S(σ′)D(σ′)

and hence
Pλ =

∑
σ∈λ

S(σ)D(σ)

Requiring Pλ to be rank one projectors gives

S(σ)S(σ′)τ−tr[pq]−tr[p′q′]+tr[(p+p′)(q+q′)]ω(qp′) = S(σ + σ′)



The structure of the isotropic lines here is rather simple –there
are exactly N + 1 isotropic lines which constitute a single orbit
under SL(2,FN).
When p is odd, the marginals condition have a simple
solution—S(q, p) = (−1)tr[qp]

When p=2, one recovers the results of Wootters et al obtained
using a geometric approach.



Conclusions

I We have a developed a unified approach to setting up
Wigner distributions which works for Q = R, ZN , Fpn

I In the ring case there is no need to double the number of
coordinates for N = even.

I For N = 2n many definitions possible, all consistent with
the restricted marginals property

I Number of spectrally distinct Wigner distributions is
much smaller than that that suggested by the residual
freedom in the choice of signs

I In the finite field case one recovers the results of
Wootters et al purely algebraically square root approach.


