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SCHMIDT DECOMPOSITION

Theorem 1. Given |W) € Hi ® Ha, there is an orthonormal basis
[1), ..., |tm) of H1 and an orthonormal basis |¢1),...,|¢s) of
Ho) such that

W) =" Ailgi)[en) (if m < n)
i-1

where A1,..., A, are real and non-negative.



ENTROPY OF A PROBABILITY DISTRIBUTION

Suppose a source is emitting messages, i.e. strings of symbols ;,
where the probability of x; is p;i (i =1,...,n). In a message of
length N, we expect that y; will occur Np; times. Such a message
has probability pflplpévm e pLVP". Ignoring the rare untypical
sequences, this probability must (since it is the same for all
messages) be 1/M where M is the number of typical messages.
Hence the number of bits required to identify such a message is

logy M = —szi log, pi

1

and the average information per symbol is

S(p) =~ _ pilog, pi

This is the entropy of the probability distribution (p1, ..., pn).



GENERALISED SCHMIDT DECOMPOSITION

Given |V) € H1 ® - -+ ® Hp, there are bases of Hi,...,H, such
that the expansion

W) = ciiplit) -+ lin)

has the minimum number of terms, with coefficients satisfying:

L Gi.i=cji.i==¢.;j=0if1<i<;j<d,
2. Cjd.d, Cdjd--d>---»Cd-.dj are real and non-negative;
3. ‘C,'...,'| > ‘le"'jn’ ifi<j,r=1,...,n

Three qubits
|W) = a|000) + b|011) + c|101) + d[110) + f|111)

a,b,c,dreal, a>b>c>d>0.



LOCAL INVARIANTS OF THREE QUBITS

W) => " ciulj)k) € Ha®@Hp @ He = C? @ C*® C?

iik

h = cjc™ = (W|w) (¥ = cj)
Iy = Cijsky Ciple €2 = ()

ls = Ciyjuky Cipjoky C 2K IR = tr(p)

ls = Cijuky Cijoho €I CHRRE = tr(p3)

e e i
Civjuky Cinjaka Cijshks € W23 €341 B2 = tr [(pa @ pg)pas) — tr (pa) — tr (pB)
(the Kempe invariant, symmetric in A,B,C)

lo = |e2eB3in iz I3 ckiks ckaka Cirjr ks

Ciojoks Cizjzks Cigjaka

— |hyperdeterminant of cjj|? (the 3-tangle)



FULLY ENTANGLED STATES

An n-party state is fully entangled if every m-party reduced
state, with m < n/2, is maximally mixed.

Two qubits The Bell states
(W4) =[00) £ 11),  |®4) = [01) £ [10)
are fully entangled. Thus there is a basis of fully entangled states.

Three qubits

The GHZ state |000) + |111) is fully entangled. It is equivalent to
the tetrahedral state

W, ) = |000) + |011) + |101) + |110)

There is a basis of fully entangled states.



BELL BASIS FOR THREE QUBITS

Three qubits

There is a basis of fully entangled states

W, ) = |000) + |011) + |101) + |011)
W, _) = [000) + [011) — |101) — |011)
[W_,) = [000) — [011) + |101) — |011)
[W.4) = [000) — |011) — [101) + [011),
b4y ) = |111) + |100) + [010) + |111)
b, _) = |111) + |100) — [010) — |111)
|d_4) = |111) — |100) + [010) — |111)
|d__) = |111) — |100) — [010) + |111)



QUADRIPARTITE STATES
Four qubits

There is no fully entangled state of four qubits.
The maximally entangled state is
|Mg) = [0011) + |1100) + w(|1010) +[0101)) 4+ w?(]1001) + [0110))

where w = e2™/3

Four qudits

There is a fully entangled state of four qudits for all d except
d = 2 and (possibly) d = 6.



MANY-QUBIT STATES

Five qubits
There is a fully entangled 5-qubit state (Brown et al.)

1000)|W.y) + [011)[d_) + |101)[W_) + [110)|d_)
Six qubits
There is a fully entangled 6-qubit state (Borras et al.)

000} W4 + (011}, ) + [101)[W_) + [110)[w__)
H111)]®. 1) + [100) [0, ) +[010)|®_) + [001)[>_ )

Seven qubits
Is there a fully entangled 7-qubit state?

Eight qubits
There is no fully entangled n-qubit state for n > 8 (Scott).



