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Uncertainty

Uncertainty principle encapsulates the impossibility of
simultaneous measurement of two incompatible physical
observables.

The Robertson version of the uncertainty relation

∆A2∆B2 ≥ 1
2 |〈ψ|[A,B]|ψ〉|2,

where ∆A2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.

These uncertainty relations may happen to be trivial even
if the observables are incompatible on the state of system.
Stronger uncertainty relations by Maccone and Pati
capture the concept of incompatible observables.
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These uncertainty relations differ from the original
uncertainty principle in a crucial way as these are relations
concerning intrinsic quantum fluctuations for observables
of a quantum system.

In a realistic measurement scenario, we must couple the
system to a probe through an interaction and read the
result from the measuring apparatus.

Arthurs and Kelly derived an expression akin to the
Robertson uncertainty relation for error εA in measurement
of observable A and corresponding disturbance ηB on
observable B

εAηB ≥ 1
2 |〈ψ|[A,B]|ψ〉|
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Measurement Process

System and apparatus are initially non-entangled and in
states |ψ〉s and |φ〉p.

The Physical observables of the system to be measured
Ain = A⊗ I, Bin = B ⊗ I.

Fix an operator M (after measurement) to read off and
estimate of the value of A.
Min = I⊗M

Aout = U† (A⊗ I) U, Bout = U† (B ⊗ I) U,
Mout = U† (I⊗M) U

Noise εA =
√
〈Ψ| (Mout − Ain)2 |Ψ〉,

Disturbance ηB =
√
〈Ψ| (Bout − Bin)2 |Ψ〉,

where |Ψ〉 = |ψ〉s ⊗ |φ〉p.
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Error-Disturbance Relations

Ozawa proved, for error-disturbance and intrinsic quantum
fluctuations for two incompatible observables

εAηB + εA∆B + ∆AηB ≥ |CAB |,

where |CAB | = 1
2 |〈ψ|[A,B]|ψ〉|.

Hall’s error-disturbance relation

εAηB + εA∆Bout + ∆MoutηB ≥ |CAB |

Weston et al. formulated a new error-disturbance relation

εA(∆B + ∆Bout) + ηB(∆A + ∆Mout) ≥ 2|CAB |

.

M. Ozawa, Phys. Rev. A 67, 042105 (2003)
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Branciard’s error-disturbance relation

ε2
A∆B2 + η2

B∆A2 + 2εAηB

√
∆A2∆B2 − C2

AB ≥ C
2
AB

For dichotomic set of observables A, B with eigenvalues
±1 and the states with 〈A〉 = 〈B〉 = 0,

ε2
A

(
1−

ε2
A

4

)
+ η2

B

(
1−

η2
B

4

)

+ 2
√

1− C2
ABεAηB

√
1−

ε2
A

4

√
1−

η2
B

4
≥ C2

AB

This gives strictly stronger bound than Branciard or
Ozawa Bound and signifies maximum Bell non-locality
among all well known error-disturbance relations.

C. Branciard, Proc. Natl. Acad. Sci. 110, 6742 (2013)
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New Error-Disturbance Relations

Theorem

For the noise operator NA = Mout − Ain and corresponding
disturbance operator DB = Bout − Bin, if the system and the
probe are in joint state |Ψ〉 = |ψ〉s ⊗ |φ〉p , the following
inequality holds:

ε2
A + η2

B ≥ ±i〈ψ|[A,B]|ψ〉 ∓ i〈Ψ|[Mout ,Bin]|Ψ〉
∓i〈Ψ|[Ain,Bout ]|Ψ〉+ |〈Ψ|NA ± iDB |Ψ⊥〉|2,

where the sign is chosen such that ±i〈ψ|[A,B]|ψ〉 is positive
and |Ψ⊥〉 is orthogonal to |Ψ〉.

L. Maccone and A. K. Pati, Phys. Rev. Lett. 113, 260401 (2014)
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Example:Qubit System

System, probe, observables and estimator

|ψ〉s = α|0〉+ β|1〉 = u|0〉, |φ〉p = |1〉

Ain = σ′x ⊗ I, Bin = σ′y ⊗ I, Min = I⊗ σx

u =

(
α −β∗
β α

)
,

σ′x = uσxu†, σ′y = uσyu†

where α = cos θ, β = sin θ e iφ.

Coupling through CNOT interaction

U = P0 ⊗ I + P1 ⊗ σx ,

P0 = |0〉〈0| and P1 = |1〉〈1|.
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Branciard’s EDR

ε2
A + η2

B ≥ 1

New EDR

ε2
A + η2

B ≥ 2− 8 cos2 θ sin2 θ sin2 φ

+16 cos4 θ sin4 θ sin2 φ

For φ = π/2

ε2
A + η2

B ≥ 1 + cos4(2θ)
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|Ψ⊥〉 can be generated by projecting any state |r〉 to the
orthogonal subspace of |Ψ〉.

(6)

(7)

(8)

0.0 0.5 1.0 1.5 2.0
Ε A

0.5

1.0

1.5

2.0

ΗB

Figure : Error-disturbance relations for the fixed values of observables
and state such that |CAB | = 1.
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Example:Qubit System

Define the following,

LOzawa = εAηB + εA∆B + ∆AηB

LBranciard

=

√
ε2
A∆B2 + η2

B∆A2 + 2εAηB

√
∆A2∆B2 − C2

AB

L
(1)
New =

1

2

[
ε2
A + η2

B ± i〈Ψ|[Mout ,Bin]|Ψ〉

±i〈Ψ|[Ain,Bout ]|Ψ〉 − |〈Ψ|NA ± iDB |Ψ⊥〉|2
]
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|ψ〉s = cosθ|0〉+ sinθ|1〉, |φ〉p = |1〉

Ain = σx ⊗ I, Bin = σy ⊗ I, Min = I⊗ σx

U = P0 ⊗ I + P1 ⊗ σx

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 π 2π

θ

LOzawa

LBranciard

L
(1)

New

|C
AB
|

Figure : 25% of states, show tighter bound for qubit initial states.
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Example:Qutrit System

|ψ〉s = sinθcosφ|0〉+ sinθsinφ|1〉+ cosθ|2〉, |φ〉p = |1〉

Ain = Sx ⊗ I
Bin = Sy ⊗ I
Min = I⊗ Sx

Sx ,Sy ,Sz being
spin matrices for
spin 1.

Qutrit CNOT

U =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



0

π/2

π 0

π

2π

 0

 1

 2

 3

 4

 5

 6

LOzawa

LBranciard

L
(1)

New

|C
AB
|

θ φ

Figure : 47.1% of states, show
tighter bound for qutrit initial

states.
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Theorem

For Noise operator NA and corresponding Disturbance operator
DB defined as, NA = Mout − Ain and DB = Bout − Bin, if the
system and the probe are in joint state |Ψ〉 = |ψ〉s ⊗ |φ〉p, the
following inequality holds:

εAηB + ηB∆A + εA∆B − 1
2
|〈Ψ|NA∆DB±iDB∆NA|Ψ⊥〉|2

εAηB

−1
2
|〈Ψ|A∆DB±iDB∆A|Ψ⊥〉|2

∆AηB
− 1

2
|〈Ψ|NA∆B±iB∆NA|Ψ⊥〉|2

εA∆B ≥ |CAB |

where CAB is defined previously and the sign is chosen such
that ±i〈ψ|[A,B]|ψ〉 is positive.
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Qubit System

|ψ〉s = cosθ|0〉+ sinθ|1〉,
|φ〉p = |1〉
Ain = λ (σx ⊗ I), Bin =
σy ⊗ I, Min = I⊗ σx
with λ = 0.01.

U = P0 ⊗ I + P1 ⊗ σx

L
(2)
New
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2
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2
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2
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Figure : 1.5% of states, show tighter bound for qubit initial states.
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Conclusions

Formulation of a new inherent fluctuation free
error-disturbance relation.

Achieved better bounds than Branciard for some initial
states and specific measurement settings.

Modification of Ozawa’s error-disturbance relation for
product of variances.

Better bounds than Ozawa and Branciard for some given
states.
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