

Wave-Particle Duality for Multi-Slit Interference

Tabish Qureshi

Centre for Theoretical Physics Jamia Millia Islamia New Delhi - 110025.

International School & Conference on Quantum Information-2016

ISCQI 2016 1 / 30

4 3 > 4 3

Tabish Qureshi (CTP, JMI) W

Outline

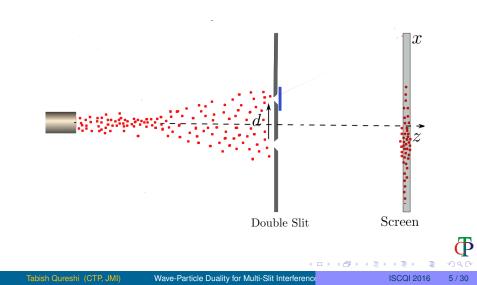
2 Three-Slit interference

Tabish Qureshi (CTP, JMI)

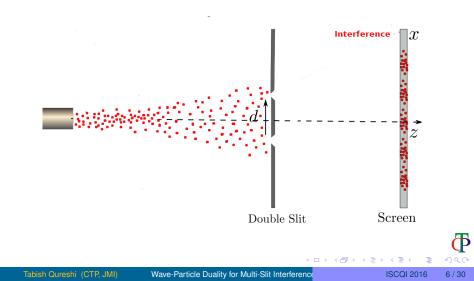
The Two-Slit Experiment.



The Two-Slit Experiment.



The Two-Slit Experiment. Both slits open



Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Tabish Qureshi (CTP, JMI)

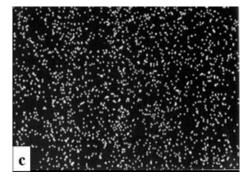
Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Tabish Qureshi (CTP, JMI) W

Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).



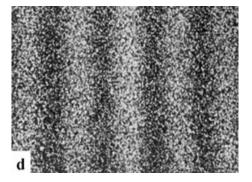
Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

< ロ > < 同 > < 回 > < 回 >

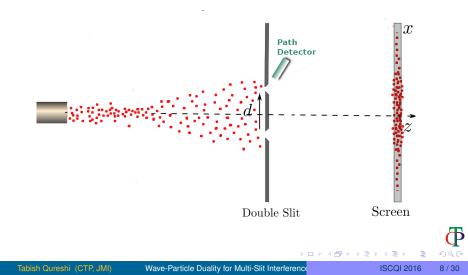
Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).



Which slit did the electron pass through?

Getting the "Welcher-Weg" (which-way) information



Bohr's Complementarity Principle.

Niels Bohr in 1928

Certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one....

- An experiment that illustrates the particle properties of light will not show any of the wave properties of light.
- an experiment that illustrates the wave properties of light will not show any of the particle nature of light.

In the two-slit experiment, the "**which-way**" information and the existence of **interference** pattern are mutually exclusive.

Bohr's Complementarity Principle.

Niels Bohr in 1928

Certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one....

- An experiment that illustrates the particle properties of light will not show any of the wave properties of light.
- an experiment that illustrates the wave properties of light will not show any of the particle nature of light.

In the two-slit experiment, the **"which-way"** information and the existence of **interference** pattern are mutually exclusive.

Either Wave Nature

Tabish Qureshi (CTP, JMI)

< ロ > < 同 > < 回 > < 回 >

Bohr's Complementarity Principle.

Niels Bohr in 1928

Certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one....

- An experiment that illustrates the particle properties of light will not show any of the wave properties of light.
- an experiment that illustrates the wave properties of light will not show any of the particle nature of light.

In the two-slit experiment, the "**which-way**" information and the existence of **interference** pattern are mutually exclusive.

Observing Wave & Particle nature simultaneously

What happens if one tries to observe both wave and particle nature at the same time?

PHYSICAL REVIEW D particles, fields, gravitation, and cosmology							
	Recent	Accepted		Referees			
							Access by Jar
Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle							
William K. Wootters and Wojciech H. Zurek Phys. Rev. D 19 , 473 – Published 15 January 1979							

Trying to observe particle nature, blurs the interference

Quantitative Wave-Particle Duality D.M. Greenberger, A. Yasin, *Phys. Lett. A* **128**, 391 (1988).

 $\psi = ae^{ikx} + be^{-ikx}$

Probability density on the screen

 $|\psi|^2 = |a|^2 + |b|^2 + 2|a||b|\cos(kx + \phi)$

- $\mathcal{V} \rightarrow \mathsf{V}$ isiblity of interference
- $\mathcal{P} \rightarrow \text{Predictability of the path}$

$$\mathcal{V} \equiv rac{I_{max} - I_{min}}{I_{max} + I_{min}} = rac{2|a||b|}{|a|^2 + |b|^2}$$
 $\mathcal{P} = rac{|a|^2 - |b|^2}{|a|^2 + |b|^2}$

$$P + V \ge 1$$

A quantitative statement of wave-particle duality Predictability and Visiblity cannot be 1 at

Refinement:

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

016 11/30

Quantitative Wave-Particle Duality D.M. Greenberger, A. Yasin, *Phys. Lett. A* **128**, 391 (1988).

 $\psi = ae^{ikx} + be^{-ikx}$

Probability density on the screen

 $|\psi|^2 = |a|^2 + |b|^2 + 2|a||b|\cos(kx + \phi)$

- $\mathcal{V} \rightarrow \mathsf{V}$ isiblity of interference
- $\mathcal{P} \rightarrow \mathsf{Predictability}$ of the path

$$\mathcal{V}\equivrac{I_{max}-I_{min}}{I_{max}+I_{min}}=rac{2|a||b|}{|a|^2+|b|^2}$$

 $\mathcal{P} = \frac{|a|^2 - |b|^2}{|a|^2 + |b|^2}$

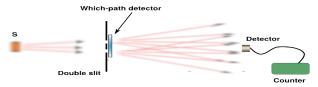
$$\mathcal{P}^2 + \mathcal{V}^2 \leq 1$$

A quantitative statement of wave-particle duality

Predictability and Visiblity cannot be 1 at the same time.

Refinement:

Detecting the particle path B-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).



Particle goes through upper slit \rightarrow Path-detector state $|d_1\rangle$

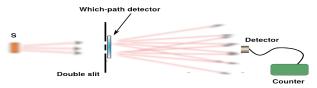
Particle goes through lower slit \rightarrow Path-detector state $|d_2\rangle$

- $\mathcal{V} \rightarrow \text{Visiblity of interference}$
- $\mathcal{D} \rightarrow \text{Distinguishability of the two paths}$

$$\mathcal{V} \equiv rac{I_{max} - I_{min}}{I_{max} + I_{min}} = |\langle d_1 | d_2 \rangle|$$

$$\mathcal{D}=\sqrt{1-|\langle \textbf{\textit{d}}_1|\textbf{\textit{d}}_2\rangle|^2}$$

Detecting the particle path B-G. Englert, *Phys. Rev. Lett.* **77**, 2154 (1996).



Particle goes through upper slit \rightarrow Path-detector state $|d_1\rangle$

Particle goes through lower slit \rightarrow Path-detector state $|d_2\rangle$

- $\mathcal{V} \rightarrow \text{Visiblity of interference}$ $\mathcal{V} \equiv \frac{I_{max} I_{min}}{I_{max} + I_{min}} = |\langle d_1 | d_2 \rangle|$
- $\mathcal{D}
 ightarrow$ Distinguishability of the two paths

$$\mathcal{D}^2 + \mathcal{V}^2 \leq 1$$

Duality relation How much of wave and particle natures can be seen simultaneously

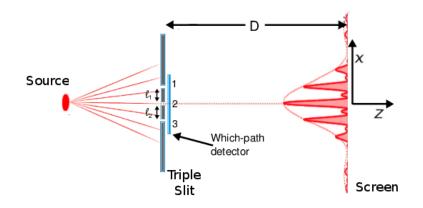
 $\mathcal{D} = \sqrt{1 - |\langle d_1 | d_2 \rangle|^2}$

A (1) > A (2) > A

ISCQI 2016

Tabish Qureshi (CTP, JMI)

Triple-slit interference



Tabish Qureshi (CTP, JMI)

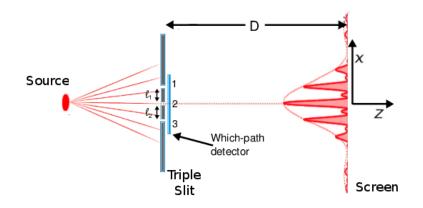
Wave-Particle Duality for Multi-Slit Interference

э **ISCQI 2016** 14/30

ъ

▲ 同 ▶ | ▲ 三 ▶

Triple-slit interference



Duality relation for 3-slit interference?

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

SCQI 2016 14 / 30

Attempts to find duality relation for 3-slit interference

- G. Jaeger, A. Shimony, L. Vaidman, "Two interferometric complementarities," Phys. Rev. A 51, 54 (1995).
- S. Dürr, "Quantitative wave-particle duality in multibeam in terferometers," Phys. Rev. A 64, 042113 (2001).
- G. Bimonte, R. Musto, "Comment on 'Quantitative wave-particle duality in multibeam interferometers'," Phys. Rev. A 67, 066101 (2003).
- G. Bimonte, R. Musto, "On interferometric duality in multibeam experiments" J. Phys. A: Math. Gen. 36, 11481 (2003).
 (2003).
- B-G. Englert et al., "Wave-particle duality in multi-path interferometers: General concepts and three-path interferometers," Int. J. Quantum Inform. 6, 129 (2008).
- M. Zawisky, M. Baron, R. Loidl, "Three-beam interference and which-way information in neutron interferometry," Phys. Rev. A 66, 063608 (2002).
- Alfredo Luis, Phys. Rev. A 78, 025802 (2008).
- D. Kaszlikowski, L.C. Kwek, M. Zukowski, B-G. Englert, Phys. Rev. Lett. 91, 037901 (2003).

Other recent works on 3-slit interference

- U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, "Ruling Out Multi-Order Interference in Quantum Mechanics", Science 329, 418-421 (2010).
- H.D. Raedt, K. Michielsen, K. Hess, "Analysis of multipath interference in three-slit experiments", Phys. Rev. A 85, 012101 (2012).
- R. Sawant, J. Samuel, A. Sinha, S. Sinha, U. Sinha, "Nonclassical paths in quantum interference experiments," *Phys. Rev. Lett.* 113, 120406 (2014).

Finding which way the particle went

State of the particle emerging from the triple slit

$$|\Psi
angle = rac{1}{\sqrt{3}}(|\psi_1
angle|d_1
angle + |\psi_2
angle|d_2
angle + |\psi_3
angle|d_3
angle)$$

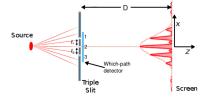
 $| \textit{d}_1
angle, | \textit{d}_2
angle, | \textit{d}_3
angle
ightarrow$ states of path-detector

- $|d_3\rangle \Rightarrow$ Particle went through slit 3
- $|d_2\rangle \Rightarrow$ Particle went through slit 2
- $|d_1\rangle \Rightarrow$ Particle went through slit 1

Problem of finding out which-slit the particle went through

 \downarrow reduces to

Problem of distinguishing between $|d_1
angle, |d_2
angle, |d_3
angle$



16/30

Finding which way the particle went

State of the particle emerging from the triple slit

$$|\Psi
angle = rac{1}{\sqrt{3}}(|\psi_1
angle|d_1
angle + |\psi_2
angle|d_2
angle + |\psi_3
angle|d_3
angle)$$

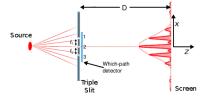
 $| \textit{d}_1
angle, | \textit{d}_2
angle, | \textit{d}_3
angle
ightarrow$ states of path-detector

- $|\mathbf{d}_3
 angle \Rightarrow$ Particle went through slit 3
- $|d_2
 angle \Rightarrow$ Particle went through slit 2
- $|d_1\rangle \Rightarrow$ Particle went through slit 1

Problem of finding out which-slit the particle went through

\downarrow reduces to

Problem of distinguishing between $|d_1\rangle, |d_2\rangle, |d_3\rangle$



If two states $|d_1\rangle$, $|d_2\rangle$ are orthogonal An operator exists:

 $oldsymbol{A}|oldsymbol{d}_1
angle=a_1|oldsymbol{d}_1
angle,oldsymbol{A}|oldsymbol{d}_2
angle=a_2|oldsymbol{d}_2
angle$

By measuring **A** one can tell if the state is $|d_1\rangle$ or $|d_2\rangle$

If $|d_1\rangle$, $|d_2\rangle$ are not orthogonal: no such operator exists

One cannot distinguish between two non-orthogonal states 100% There will always be some error

Unambiguous Quantum State Discrimination

Yields two kinds of measurement results, at random:

1. One can distinguish 100% between the two states

2. One cannot distinguish between the two states at all

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

SCQI 2016 17 / 30

If two states $|d_1\rangle$, $|d_2\rangle$ are orthogonal An operator exists:

 $oldsymbol{A}|oldsymbol{d}_1
angle=a_1|oldsymbol{d}_1
angle,oldsymbol{A}|oldsymbol{d}_2
angle=a_2|oldsymbol{d}_2
angle$

By measuring **A** one can tell if the state is $|d_1\rangle$ or $|d_2\rangle$

If $|d_1\rangle$, $|d_2\rangle$ are not orthogonal: no such operator exists

One cannot distinguish between two non-orthogonal states 100% There will always be some error

Unambiguous Quantum State Discrimination

Yields two kinds of measurement results, at random:

1. One can distinguish 100% between the two states

2. One cannot distinguish between the two states at all

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

ISCQI 2016 17 / 30

If two states $|d_1\rangle$, $|d_2\rangle$ are orthogonal An operator exists:

 $oldsymbol{A}|oldsymbol{d}_1
angle=a_1|oldsymbol{d}_1
angle,oldsymbol{A}|oldsymbol{d}_2
angle=a_2|oldsymbol{d}_2
angle$

By measuring **A** one can tell if the state is $|d_1\rangle$ or $|d_2\rangle$

If $|d_1\rangle$, $|d_2\rangle$ are not orthogonal: no such operator exists

One cannot distinguish between two non-orthogonal states 100% There will always be some error

Unambiguous Quantum State Discrimination

Yields two kinds of measurement results, at random:

1. One can distinguish 100% between the two states

2. One cannot distinguish between the two states at all

Tabish Qureshi (CTP, JMI)

Let an ancilla system interact with the d-system

 $\begin{array}{lcl} \mathbf{U}_{a}|d_{1}\rangle|a_{0}\rangle &=& \alpha|p_{1}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \\ \mathbf{U}_{a}|d_{2}\rangle|a_{0}\rangle &=& \alpha|p_{2}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \end{array}$

 $\langle \boldsymbol{\rho}_1 | \boldsymbol{\rho}_2 \rangle = 0 \qquad \langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle = 0 \qquad \qquad |\boldsymbol{\beta}|^2 = |\langle \boldsymbol{d}_1 | \boldsymbol{d}_2 \rangle|, \quad |\boldsymbol{\alpha}|^2 = 1 - |\langle \boldsymbol{d}_1 | \boldsymbol{d}_2 \rangle|$

It can be shown that such an interaction always exists.

Probability of failure = $|\beta|^2 = |\langle d_1 | d_2 \rangle|$

Probability of success = $|\alpha|^2 = 1 - |\langle d_1 | d_2 \rangle|$

 $|d_1\rangle, |d_1\rangle$ can be distinguished without error with a maximum probability

 $P = 1 - |\langle d_1 | d_2 \rangle|$

This should be a natural definition of distinguishability,

Let an ancilla system interact with the d-system

$$\begin{array}{lll} \mathbf{U}_{a}|d_{1}\rangle|a_{0}\rangle &=& \alpha|p_{1}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \\ \mathbf{U}_{a}|d_{2}\rangle|a_{0}\rangle &=& \alpha|p_{2}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \end{array}$$

 $\langle \boldsymbol{\rho}_1 | \boldsymbol{\rho}_2 \rangle = 0 \qquad \langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle = 0 \qquad \qquad |\boldsymbol{\beta}|^2 = |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|, \quad |\boldsymbol{\alpha}|^2 = 1 - |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|$

It can be shown that such an interaction always exists.

Probability of failure = $|\beta|^2 = |\langle d_1 | d_2 \rangle|$

Probability of success = $|\alpha|^2 = 1 - |\langle d_1 | d_2 \rangle|$

 $|d_1\rangle, |d_1\rangle$ can be distinguished without error with a maximum probability

 $P = 1 - |\langle d_1 | d_2 \rangle|$

This should be a natural definition of distinguishability!

Let an ancilla system interact with the d-system

$$\begin{array}{lcl} \mathbf{U}_{a}|d_{1}\rangle|a_{0}\rangle &=& \alpha|p_{1}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \\ \mathbf{U}_{a}|d_{2}\rangle|a_{0}\rangle &=& \alpha|p_{2}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \end{array}$$

 $\langle \boldsymbol{\rho}_1 | \boldsymbol{\rho}_2 \rangle = 0 \qquad \langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle = 0 \qquad \qquad |\boldsymbol{\beta}|^2 = |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|, \quad |\boldsymbol{\alpha}|^2 = 1 - |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|$

It can be shown that such an interaction always exists.

Probability of failure = $|\beta|^2 = |\langle d_1 | d_2 \rangle|$

Probability of success = $|\alpha|^2 = 1 - |\langle d_1 | d_2 \rangle|$

 $|d_1\rangle, |d_1\rangle$ can be distinguished without error with a maximum probability

 $P = 1 - |\langle d_1 | d_2 \rangle|$

This should be a natural definition of distinguishability!

Let an ancilla system interact with the d-system

$$\begin{array}{lll} \mathbf{U}_{a}|d_{1}\rangle|a_{0}\rangle &=& \alpha|p_{1}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \\ \mathbf{U}_{a}|d_{2}\rangle|a_{0}\rangle &=& \alpha|p_{2}\rangle|a_{1}\rangle + \beta|q\rangle|a_{2}\rangle \end{array}$$

 $\langle \boldsymbol{\rho}_1 | \boldsymbol{\rho}_2 \rangle = 0 \qquad \langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle = 0 \qquad \qquad |\boldsymbol{\beta}|^2 = |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|, \quad |\boldsymbol{\alpha}|^2 = 1 - |\langle \boldsymbol{a}_1 | \boldsymbol{a}_2 \rangle|$

It can be shown that such an interaction always exists.

Probability of failure = $|\beta|^2 = |\langle d_1 | d_2 \rangle|$

Probability of success = $|\alpha|^2 = 1 - |\langle d_1 | d_2 \rangle|$

 $|d_1\rangle, |d_1\rangle$ can be distinguished without error with a maximum probability

 $P = 1 - |\langle d_1 | d_2 \rangle|$

This should be a natural definition of distinguishability!

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

18/30

A new definition of distinguishability

Which slit a particle went through in a two-slit interference experiment can be determined with the same probability with which one can distinguish between $|d_1\rangle$, $|d_2\rangle$.

New distinguishability

 $\mathcal{D}_{\mathcal{Q}} = 1 - |\langle d_1 | d_2 \rangle|$

Contrast this with Englert's distinguishability $\mathcal{D} = \sqrt{1 - |\langle d_1 | d_2 \rangle|^2}$

UQSD has been generalized to N non-orthogonal states $|d_1\rangle, |d_2\rangle, |d_3\rangle, \dots |d_N\rangle$ $|d_k\rangle$ occurs with a probability p_k

Probability to unambiguously tell which of the N states is a given state

$$P_N \leq 1 - rac{1}{N-1} \sum_{i \neq i} \sqrt{p_i p_j} |\langle d_i | d_j \rangle|$$

A new definition of distinguishability

Which slit a particle went through in a two-slit interference experiment can be determined with the same probability with which one can distinguish between $|d_1\rangle$, $|d_2\rangle$.

New distinguishability

 $\mathcal{D}_{\mathcal{Q}} = 1 - |\langle \textit{d}_1 | \textit{d}_2 \rangle|$

Contrast this with Englert's distinguishability $\mathcal{D} = \sqrt{1 - |\langle d_1 | d_2 \rangle|^2}$

UQSD has been generalized to N non-orthogonal states $|d_1\rangle, |d_2\rangle, |d_3\rangle, \dots |d_N\rangle$ $|d_k\rangle$ occurs with a probability p_k

Probability to unambiguously tell which of the N states is a given state

$$P_N \leq 1 - rac{1}{N-1} \sum_{i \neq i} \sqrt{p_i p_j} |\langle d_i | d_j \rangle|$$

イロト イポト イヨト イヨト 二日

A new definition of distinguishability

Which slit a particle went through in a two-slit interference experiment can be determined with the same probability with which one can distinguish between $|d_1\rangle$, $|d_2\rangle$.

New distinguishability

 $\mathcal{D}_{\mathcal{Q}} = \mathbf{1} - |\langle \mathbf{d}_1 | \mathbf{d}_2 \rangle|$

Contrast this with Englert's distinguishability $\mathcal{D} = \sqrt{1 - |\langle d_1 | d_2 \rangle|^2}$

UQSD has been generalized to N non-orthogonal states $|d_1\rangle, |d_2\rangle, |d_3\rangle, \dots |d_N\rangle$ $|d_k\rangle$ occurs with a probability p_k

Probability to unambiguously tell which of the N states is a given state

$$m{P}_{m{N}} \leq 1 - rac{1}{N-1}\sum_{i
eq j} \sqrt{m{p}_im{p}_j} |\langle m{d}_i |m{d}_j
angle|$$

Distinguishability for 3-slit interference

Probability to unambiguously tell which of the 3 states, $|d_1\rangle$, $|d_2\rangle$, $|d_3\rangle$ is a given state

 $P_3 \leq 1 - (\sqrt{p_1 p_2} |\langle \textbf{d}_1 | \textbf{d}_2 \rangle| + \sqrt{p_2 p_3} |\langle \textbf{d}_2 | \textbf{d}_3 \rangle| + \sqrt{p_1 p_3} |\langle \textbf{d}_1 | \textbf{d}_3 \rangle|)$

Define a new distinguishability for 3-slit interference

 $\mathcal{D}_Q \equiv 1 - (\sqrt{p_1 p_2} |\langle \boldsymbol{d}_1 | \boldsymbol{d}_2 \rangle| + \sqrt{p_2 p_3} |\langle \boldsymbol{d}_2 | \boldsymbol{d}_3 \rangle| + \sqrt{p_1 p_3} |\langle \boldsymbol{d}_1 | \boldsymbol{d}_3 \rangle|)$

 \mathcal{D}_Q is an upper bound on the probability with which one distinguish between $|d_1\rangle$, $|d_2\rangle$, $|d_3\rangle$, and hence between the three paths.

・ロト ・四ト ・ヨト ・ヨト

Distinguishability for 3-slit interference

Probability to unambiguously tell which of the 3 states, $|d_1\rangle$, $|d_2\rangle$, $|d_3\rangle$ is a given state

 $P_3 \leq 1 - (\sqrt{p_1 p_2} |\langle \boldsymbol{d}_1 | \boldsymbol{d}_2 \rangle| + \sqrt{p_2 p_3} |\langle \boldsymbol{d}_2 | \boldsymbol{d}_3 \rangle| + \sqrt{p_1 p_3} |\langle \boldsymbol{d}_1 | \boldsymbol{d}_3 \rangle|)$

Define a new distinguishability for 3-slit interference

 $\mathcal{D}_Q \equiv 1 - (\sqrt{p_1 p_2} |\langle \mathbf{d}_1 | \mathbf{d}_2 \rangle| + \sqrt{p_2 p_3} |\langle \mathbf{d}_2 | \mathbf{d}_3 \rangle| + \sqrt{p_1 p_3} |\langle \mathbf{d}_1 | \mathbf{d}_3 \rangle|)$

 \mathcal{D}_Q is an upper bound on the probability with which one distinguish between $|d_1\rangle$, $|d_2\rangle$, $|d_3\rangle$, and hence between the three paths.

Wave-packet dynamics

State of the particle when it comes out of triple-slit

$$\begin{split} \Psi(x,0) &= A\left(\sqrt{p_{1}}|d_{1}\rangle e^{-\frac{(x-\ell_{1})^{2}}{4\epsilon^{2}}} + \sqrt{p_{2}}|d_{2}\rangle e^{-\frac{x^{2}}{4\epsilon^{2}}} + \sqrt{p_{3}}|d_{3}\rangle e^{-\frac{(x+\ell_{2})^{2}}{4\epsilon^{2}}}\right) \\ \Psi(x,0) \xrightarrow{\text{Time evolution}} \frac{H = \frac{px^{2}}{2m}}{M} \Psi(x,t) \quad \text{Particle reaches screen} \\ |\Psi(x,t)|^{2} &= |A|^{2} \left(e^{-\frac{x^{2}}{2\sigma^{2}}} \left(p_{1}e^{-\frac{\ell_{1}^{2}-2\kappa\ell_{1}}{2\sigma^{2}}} + p_{2} + p_{3}e^{-\frac{\ell_{2}^{2}+2\kappa\epsilon_{2}}{2\sigma^{2}}} \right) \\ &+ 2\sqrt{p_{1}p_{2}}|(d_{1}|d_{2})|e^{-\frac{2\kappa^{2}+\ell_{1}^{2}+2\kappa\epsilon_{2}}{4\sigma^{2}}} \cos\left(\frac{x\ell_{1}\hbar t}{4m\Omega^{2}}\right) + 2\sqrt{p_{2}p_{3}}|(d_{2}|d_{3})|e^{-\frac{2\kappa^{2}+\ell_{2}^{2}+2\kappa\epsilon_{2}}{4\sigma^{2}}} \cos\left(\frac{x(\ell_{1}+\ell_{2})\hbar t}{4m\Omega^{2}}\right) \right), \end{split}$$

51 -61

Wave-packet dynamics

State of the particle when it comes out of triple-slit

$$\begin{split} \Psi(x,0) &= A\left(\sqrt{p_1} |d_1\rangle e^{-\frac{(x-\ell_1)^2}{4\epsilon^2}} + \sqrt{p_2} |d_2\rangle e^{-\frac{x^2}{4\epsilon^2}} + \sqrt{p_3} |d_3\rangle e^{-\frac{(x+\ell_2)^2}{4\epsilon^2}}\right) \\ \Psi(x,0) \xrightarrow{\text{Time evolution}} \stackrel{H=\frac{px^2}{2m}}{\longrightarrow} \Psi(x,t) \quad \text{Particle reaches screen} \\ |\Psi(x,t)|^2 &= |A|^2 \left(e^{-\frac{x^2}{2\sigma^2}} \left(p_1 e^{-\frac{\ell_1^2 - 2x\ell_1}{2\sigma^2}} + p_2 + p_3 e^{-\frac{\ell_2^2 + 2x\ell_2}{2\sigma^2}} \right) \\ &+ 2\sqrt{p_1p_2} |d_1|d_2\rangle |e^{-\frac{2x^2 + \ell_1^2 - 2x\ell_1}{4\sigma^2}} \cos\left(\frac{x\ell_1\hbar t}{4m\Omega^2}\right) + 2\sqrt{p_2p_3} |d_2|d_3\rangle |e^{-\frac{2x^2 + \ell_2^2 + 2x\ell_2}{4\sigma^2}} \cos\left(\frac{x\ell_2\hbar t}{4m\Omega^2}\right) \\ &+ 2\sqrt{p_1p_3} |d_1|d_3\rangle |e^{-\frac{2x^2 + \ell_1^2 + \ell_2^2 + 2x(\ell_2 - \ell_1)}{4\sigma^2}} \cos\left(\frac{x(\ell_1 + \ell_2)\hbar t}{4m\Omega^2}\right) \right), \end{split}$$

51 -61

Wave-packet dynamics

State of the particle when it comes out of triple-slit

$$\begin{split} \Psi(x,0) &= A\left(\sqrt{p_{1}}|d_{1}\rangle e^{-\frac{(x-\ell_{1})^{2}}{4\epsilon^{2}}} + \sqrt{p_{2}}|d_{2}\rangle e^{-\frac{x^{2}}{4\epsilon^{2}}} + \sqrt{p_{3}}|d_{3}\rangle e^{-\frac{(x+\ell_{2})^{2}}{4\epsilon^{2}}}\right) \\ \Psi(x,0) \xrightarrow{\text{Time evolution}} \underbrace{H = \frac{px^{2}}{2m}}_{|Q_{2}|} \Psi(x,t) \quad \text{Particle reaches screen} \\ |\Psi(x,t)|^{2} &= |A|^{2} \left(e^{-\frac{x^{2}}{2\sigma^{2}}} \left(p_{1}e^{-\frac{\ell_{1}^{2}-2x\ell_{1}}{2\sigma^{2}}} + p_{2} + p_{3}e^{-\frac{\ell_{2}^{2}+2x\ell_{2}}{2\sigma^{2}}} \right) \right) \\ &+ 2\sqrt{p_{1}p_{2}}|\langle d_{1}|d_{2}\rangle| e^{-\frac{2x^{2}+\ell_{1}^{2}-2x\ell_{1}}{4\sigma^{2}}} \cos\left(\frac{x\ell_{1}ht}{4m\Omega^{2}}\right) + 2\sqrt{p_{2}p_{3}}|\langle d_{2}|d_{3}\rangle| e^{-\frac{2x^{2}+\ell_{2}^{2}+2x\ell_{2}}{4\sigma^{2}}} \cos\left(\frac{x\ell_{2}ht}{4m\Omega^{2}}\right) \\ &+ 2\sqrt{p_{1}p_{3}}|\langle d_{1}|d_{3}\rangle| e^{-\frac{2x^{2}+\ell_{1}^{2}+2x(\ell_{2}-\ell_{1})}{4\sigma^{2}}} \cos\left(\frac{x(\ell_{1}+\ell_{2})ht}{4m\Omega^{2}}\right) \right), \end{split}$$

51 -61

ISCQI 2016

21/30

.

Tabish Qureshi (CTP, JMI)

Visibility of interference

$$\mathcal{V} = rac{I_{max} - I_{min}}{I_{max} + I_{min}},$$
 Visibility

From our expression for interference, we get

$$\mathcal{V} \leq \frac{3\left(\sqrt{p_1p_2}|\langle d_1|d_2\rangle| + \sqrt{p_1p_3}|\langle d_1|d_3\rangle| + \sqrt{p_2p_3}|\langle d_2|d_3\rangle|\right)}{2 + \sqrt{p_1p_2}|\langle d_1|d_2\rangle| + \sqrt{p_1p_3}|\langle d_1|d_3\rangle| + \sqrt{p_2p_3}|\langle d_2|d_3\rangle|}.$$

Using $\mathcal{D}_Q \equiv 1 - (\sqrt{p_1 p_2} |\langle d_1 | d_2 \rangle| + \sqrt{p_2 p_3} |\langle d_2 | d_3 \rangle| + \sqrt{p_1 p_3} |\langle d_1 | d_3 \rangle|)$ we get

$$\mathcal{V} + \frac{2\mathcal{D}_Q}{3-\mathcal{D}_Q} \le 1$$
 or $\mathcal{D}_Q + \frac{2\mathcal{V}}{3-\mathcal{V}} \le 1$

A new duality relation for 3-slit interference ¹

 M.A. Siddiqui, T. Qureshi, Prog. Theor. Exp. Phys. 2015, 083A02 (2015)
 < □ > < ⊡ > < ⊡ > < ⊡ > < ≥ > < ≥ > ≥

 Tabish Qureshi (CTP, JMI)
 Wave-Particle Duality for Multi-Slit Interference
 ISCQI 2016

Visibility of interference

$$\mathcal{V} = rac{I_{max} - I_{min}}{I_{max} + I_{min}},$$
 Visibility

From our expression for interference, we get

$$\mathcal{V} \leq \frac{3\left(\sqrt{p_1p_2}|\langle d_1|d_2\rangle| + \sqrt{p_1p_3}|\langle d_1|d_3\rangle| + \sqrt{p_2p_3}|\langle d_2|d_3\rangle|\right)}{2 + \sqrt{p_1p_2}|\langle d_1|d_2\rangle| + \sqrt{p_1p_3}|\langle d_1|d_3\rangle| + \sqrt{p_2p_3}|\langle d_2|d_3\rangle|}.$$

Using $\mathcal{D}_Q \equiv 1 - (\sqrt{p_1 p_2} |\langle d_1 | d_2 \rangle| + \sqrt{p_2 p_3} |\langle d_2 | d_3 \rangle| + \sqrt{p_1 p_3} |\langle d_1 | d_3 \rangle|)$ we get

$$\mathcal{V} + rac{2\mathcal{D}_Q}{3-\mathcal{D}_Q} \leq 1 \quad \text{ or } \quad \mathcal{D}_Q + rac{2\mathcal{V}}{3-\mathcal{V}} \leq 1$$

A new duality relation for 3-slit interference ¹

¹M.A. Siddiqui, T. Qureshi, Prog. Theor. Exp. Phys. 2015, 083A02 (2015)

Tabish Qureshi (CTP, JMI)

Two-Slit Experiment and Complementarity

2 Three-Slit interference

A .

Tabish Qureshi (CTP, JMI)

in the presence of a path-detector

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability for N-path interference

$$\mathcal{D}_Q \equiv 1 - rac{1}{N-1} \sum_{j \neq k} \sqrt{p_j p_k} |\langle d_j | d_k \rangle|$$

 $\sum_{j,k=1}^{N}$ Two-slit interference from j'th and k'th slits \rightarrow N-slit interference

Calculation of visibility difficult

Density matrix

 $\rho\equiv |\Psi\rangle\langle\Psi|$

Reduced density matrix of the particle

in the presence of a path-detector

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability for N-path interference

$$\mathcal{D}_Q \equiv 1 - rac{1}{N-1} \sum_{j
eq k} \sqrt{p_j p_k} |\langle d_j | d_k
angle|$$

 $\sum_{j,k=1}^{N}$ Two-slit interference from j'th and k'th slits \rightarrow N-slit interference

Calculation of visibility difficult

Jensity matrix

 $\rho\equiv |\Psi\rangle\langle\Psi|$

Reduced density matrix of the particle

 $\rho_{s} \equiv Tr_{path-detector} |\Psi\rangle \langle \Psi |$

in the presence of a path-detector

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability for N-path interference

$$\mathcal{D}_Q \equiv 1 - rac{1}{N-1} \sum_{j
eq k} \sqrt{
ho_j
ho_k} |\langle d_j | d_k
angle|$$

 $\sum_{j,k=1}^{N} \text{Two-slit interference from j'th and k'th slits} \rightarrow \text{N-slit interference}$

Calculation of visibility difficult

Density matrix

 $ho \equiv |\Psi
angle\langle\Psi|$

Reduced density matrix of the particle

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

in the presence of a path-detector

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability for N-path interference

$$\mathcal{D}_Q \equiv 1 - rac{1}{N-1} \sum_{j
eq k} \sqrt{
ho_j
ho_k} |\langle d_j | d_k
angle|$$

 $\sum_{j,k=1}^{N}$ Two-slit interference from j'th and k'th slits \rightarrow N-slit interference

Calculation of visibility difficult Density matrix

$$ho \equiv |\Psi\rangle\langle\Psi|$$

Reduced density matrix of the particle

$$ho_{s} \equiv \mathit{Tr}_{\mathit{path-detector}} |\Psi\rangle\langle\Psi|$$

Measure of Coherence

Reduced density matrix of the particle

$$\rho_{s} \equiv \mathit{Tr}_{path-detector} |\Psi\rangle\langle\Psi| = \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k}^{*} \langle \mathbf{d}_{k} | \mathbf{d}_{j} \rangle |\psi_{j}\rangle\langle\psi_{k} |$$

 I_1 -norm of coherence:

$$C_{l_1}(
ho) = \sum_{j
eq k} |
ho_{jk}|$$

Shown to be a good measure of coherence

Minimum value is zero. Maximum value not fixed.

Tabish Qureshi (CTP, JMI)

Coherence as a measure of wave-nature

We introduce a quantity Coherence

$$\mathcal{C}(\rho) \equiv \frac{1}{N-1} \sum_{j \neq k} |\rho_{jk}|$$

(is basis dependent)

Coherence values: $0 \leq C \leq 1$.

For a maximally coherent state $|\Psi\rangle = \frac{1}{\sqrt{N}} (|\psi_1\rangle + |\psi_2\rangle + |\psi_3\rangle + \dots + |\psi_N\rangle)$ C = 1

For a completely diagonal density matrix

 $\mathcal{C} =$

Coherence can be a good measure of wave-nature

< 回 > < 三 > < 三 >

Coherence as a measure of wave-nature

We introduce a quantity Coherence

$$\mathcal{C}(\rho) \equiv rac{1}{N-1} \sum_{j
eq k} |
ho_{jk}|$$

(is basis dependent)

Coherence values: 0 $\leq \mathcal{C} \leq$ 1.

For a maximally coherent state $|\Psi\rangle = \frac{1}{\sqrt{N}} (|\psi_1\rangle + |\psi_2\rangle + |\psi_3\rangle + \dots + |\psi_N\rangle)$ C = 1

For a completely diagonal density matrix

 $\mathcal{C} =$

Coherence can be a good measure of wave-nature

< 回 > < 回 > < 回 >

Coherence as a measure of wave-nature

We introduce a quantity Coherence

$$\mathcal{C}(\rho) \equiv rac{1}{N-1} \sum_{j
eq k} |
ho_{jk}|$$

(is basis dependent)

Coherence values: $0 \leq C \leq 1$.

For a maximally coherent state $|\Psi\rangle = \frac{1}{\sqrt{N}} (|\psi_1\rangle + |\psi_2\rangle + |\psi_3\rangle + \dots + |\psi_N\rangle)$ C = 1

For a completely diagonal density matrix

$$\mathcal{C} = \mathbf{0}$$

Coherence can be a good measure of wave-nature

Initial state

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability

$$\mathcal{D}_Q = 1 - \frac{1}{N-1} \sum_{j \neq k} |c_j c_k| |\langle d_j | d_k \rangle|$$

Coherence

$$C = \frac{1}{N-1} \sum_{j \neq k} |\langle \psi_j | \rho_s | \psi_k \rangle| = \frac{1}{N-1} \sum_{j \neq k} |c_j| |c_k| |\langle d_k | d_j \rangle|$$

$$C + D_Q = 1$$

First ever duality relation for N-slit interference ²

 M.N. Bera, T. Oureshi, M.A. Siddiqui, A.K. Pati, Phys. Rev. A 92, 012118 (2015)
 □ ▶ < ♂ ▶ < ≥ ▶</td>

 Tabish Qureshi (CTP, JMI)
 Wave-Particle Duality for Multi-Slit Interference

Initial state

$$|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$$

Distinguishability

$$\mathcal{D}_Q = 1 - rac{1}{N-1} \sum_{j \neq k} |c_j c_k| |\langle d_j | d_k \rangle|$$

Coherence

$$C = \frac{1}{N-1} \sum_{j \neq k} |\langle \psi_j | \rho_s | \psi_k \rangle| = \frac{1}{N-1} \sum_{j \neq k} |c_j| |c_k| |\langle d_k | d_j \rangle|$$

$$C + D_Q = 1$$

First ever duality relation for N-slit interference ²

² M.N. Bera, T. Qureshi, M.A. Siddiqui, A.K. Pati, Phys. Rev. A 92, 012118 (2015)4 🖬 🕨 🖌 🗃 🕨 🤞 📱

Tabish Qureshi (CTP, JMI)

Initial state

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability

$$\mathcal{D}_Q = 1 - rac{1}{N-1} \sum_{j
eq k} |c_j c_k| |\langle d_j | d_k
angle|$$

Coherence

$$C = \frac{1}{N-1} \sum_{j \neq k} |\langle \psi_j | \rho_s | \psi_k \rangle| = \frac{1}{N-1} \sum_{j \neq k} |c_j| |c_k| |\langle d_k | d_j \rangle|$$

$$C + D_Q = 1$$

First ever duality relation for N-slit interference ²

2 M.N. Bera, T. Qureshi, M.A. Siddiqui, A.K. Pati, Phys. Rev. A 92, 012118 (2015): 🖬 🕨 🛪 🗗 🕨 🤘 🖹

Tabish Qureshi (CTP, JMI)

Initial state

 $|\Psi\rangle = c_1 |\psi_1\rangle |d_1\rangle + c_2 |\psi_2\rangle |d_2\rangle + c_3 |\psi_3\rangle |d_3\rangle + \dots + c_N |\psi_N\rangle |d_N\rangle$

Distinguishability

$$\mathcal{D}_Q = 1 - rac{1}{N-1} \sum_{j
eq k} |c_j c_k| |\langle d_j | d_k
angle|$$

Coherence

$$\mathcal{C} = \frac{1}{N-1} \sum_{j \neq k} |\langle \psi_j | \rho_s | \psi_k \rangle| = \frac{1}{N-1} \sum_{j \neq k} |c_j| |c_k| |\langle d_k | d_j \rangle|$$

 $\mathcal{C} + \mathcal{D}_Q = 1$

First ever duality relation for N-slit interference²

²M.N. Bera, T. Qureshi, M.A. Siddiqui, A.K. Pati, Phys. Rev. A 92, 012118 (2015) C + 4 (2015)

Tabish Qureshi (CTP, JMI)

N=3 (Three-slit interference) Path-distinguishability becomes $\mathcal{D}_Q = 1 - (|c_1 c_2||\langle d_1 | d_2 \rangle| + |c_2 c_3||\langle d_2 | d_3 \rangle| + |c_1 c_3||\langle d_1 | d_3 \rangle|)$ Coherence reduces to

 $\mathcal{C} = |c_1 c_2||\langle d_1 | d_2 \rangle| + |c_2 c_3||\langle d_2 | d_3 \rangle| + |c_1 c_3||\langle d_1 | d_3 \rangle|$

Relation between coherence and ideal interference visibility by

$$\mathcal{C} = rac{2\mathcal{V}}{3-\mathcal{V}}.$$

The duality relation $\mathcal{D}_{Q} + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \frac{2\mathcal{V}}{3-\mathcal{V}} = 1$$

Exactly the same as the duality relation derived for the 3-slit interference

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

N=3 (Three-slit interference) Path-distinguishability becomes $\mathcal{D}_Q = 1 - (|c_1 c_2||\langle d_1 | d_2 \rangle| + |c_2 c_3||\langle d_2 | d_3 \rangle| + |c_1 c_3||\langle d_1 | d_3 \rangle|)$ Coherence reduces to

$$\mathcal{C} = |\mathbf{c_1}\mathbf{c_2}||\langle \mathbf{d_1}|\mathbf{d_2}\rangle| + |\mathbf{c_2}\mathbf{c_3}||\langle \mathbf{d_2}|\mathbf{d_3}\rangle| + |\mathbf{c_1}\mathbf{c_3}||\langle \mathbf{d_1}|\mathbf{d_3}\rangle|$$

Relation between coherence and ideal interference visibility by

$$\mathcal{C} = rac{2\mathcal{V}}{3-\mathcal{V}}.$$

The duality relation $\mathcal{D}_Q + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \frac{2\mathcal{V}}{3-\mathcal{V}} = 1$$

Exactly the same as the duality relation derived for the 3-slit interference

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

N=3 (Three-slit interference) Path-distinguishability becomes $\mathcal{D}_Q = 1 - (|c_1 c_2||\langle d_1 | d_2 \rangle| + |c_2 c_3||\langle d_2 | d_3 \rangle| + |c_1 c_3||\langle d_1 | d_3 \rangle|)$ Coherence reduces to

$$\mathcal{C} = |\mathbf{c_1}\mathbf{c_2}||\langle \mathbf{d_1}|\mathbf{d_2}\rangle| + |\mathbf{c_2}\mathbf{c_3}||\langle \mathbf{d_2}|\mathbf{d_3}\rangle| + |\mathbf{c_1}\mathbf{c_3}||\langle \mathbf{d_1}|\mathbf{d_3}\rangle|$$

Relation between coherence and ideal interference visibility by

$$\mathcal{C} = rac{2\mathcal{V}}{3-\mathcal{V}}.$$

The duality relation $\mathcal{D}_Q + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \frac{2\mathcal{V}}{3-\mathcal{V}} = 1$$

Exactly the same as the duality relation derived for the 3-slit interference

Tabish Qureshi (CTP, JMI)

Wave-Particle Duality for Multi-Slit Interference

N=2 (Double-slit interference) Path-distinguishability becomes

$$\mathcal{D}_Q = 1 - 2|c_1c_2||\langle d_1|d_2
angle|$$

Coherence reduces to

 $\mathcal{C}=2|c_1c_2||\langle d_1|d_2
angle|$

But $|c_1 c_2||\langle d_1|d_2\rangle|$ is also equal to the visibility! The duality relation $\mathcal{D}_Q + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \mathcal{V} = 1$$

A new duality relation for two-slit interference

• For $c_1 = c_2 = \frac{1}{\sqrt{2}}$, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{D}^2 + \mathcal{V}^2 = 1$ Englert's relation

• For $|\langle d_1 | d_2 \rangle| = 1$, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{P}^2 + \mathcal{V}^2 \leq 1$ Greenberger's relations of the second second

• • • • • • • • • • • •

N=2 (Double-slit interference) Path-distinguishability becomes

$$\mathcal{D}_Q = 1 - 2|c_1c_2||\langle d_1|d_2\rangle|$$

Coherence reduces to

$$\mathcal{C} = 2|c_1c_2||\langle d_1|d_2\rangle|$$

But $|c_1 c_2| |\langle d_1 | d_2 \rangle|$ is also equal to the visibility! The duality relation $\mathcal{D}_Q + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \mathcal{V} = 1$$

A new duality relation for two-slit interference

• For $c_1 = c_2 = \frac{1}{\sqrt{2}}$, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{D}^2 + \mathcal{V}^2 = 1$ Englert's relation

• For $|\langle d_1 | d_2 \rangle| = 1$, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{P}^2 + \mathcal{V}^2 \leq 1$ Greenberger's relations

N=2 (Double-slit interference) Path-distinguishability becomes

$$\mathcal{D}_Q = 1 - 2|c_1c_2||\langle d_1|d_2\rangle|$$

Coherence reduces to

$$\mathcal{C} = 2|c_1c_2||\langle d_1|d_2\rangle|$$

But $|c_1 c_2| |\langle d_1 | d_2 \rangle|$ is also equal to the visibility! The duality relation $\mathcal{D}_Q + \mathcal{C} = 1$ reduces to

$$\mathcal{D}_Q + \mathcal{V} = 1$$

A new duality relation for two-slit interference

• For
$$c_1 = c_2 = \frac{1}{\sqrt{2}}$$
, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{D}^2 + \mathcal{V}^2 = 1$ Englert's relation

• For $|\langle d_1 | d_2 \rangle| = 1$, $\mathcal{D}_Q + \mathcal{V} = 1$ reduces to $\mathcal{P}^2 + \mathcal{V}^2 \leq 1$ Greenberger's relation

Conclusions

- Wave-nature and particle nature can be seen at the same time, although to a limited degree
- For 3-slit interference, fringe visibility and path distinguishablity obey a new duality relation $\mathcal{V} + \frac{2\mathcal{D}_Q}{3-\mathcal{D}_Q} \leq 1$
- For N-slit interference, wave-nature is quantified by quantum coherence C. The duality relation is the simplest C + D_Q = 1

Three slit interference: A duality relation M.A. Siddiqui, T. Qureshi, Prog. Theor. Exp. Phys. <u>2015</u>, 083A02 (2015).

Duality of quantum coherence and path distinguishability M.N. Bera, T. Qureshi, M.A. Siddiqui, A.K. Pati, Phys. Rev. A <u>92</u>, 012118 (2015).

Understanding Quantitative Wave-Particle Duality T. Qureshi, arXiv:1501.02195 [quant-ph]

Quantum twist to complementarity: A duality relation T. Qureshi, Prog. Theor. Exp. Phys. (Letters) 2013, 041A01 (2013).