Pre-Quantum Information Theory

Goutam Paul

Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata

February 9, 2016

Lecture at International School and Conference on Quantum Information, Institute of Physics (IOP), Bhubaneswar (Feb 9-18, 2016).

Outline

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption
- 2 Measures of Information Flow
 - Channel Capacity
 - Code
 - Noisy Coding

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Roadmap

Measures of Information Uncertainty

- Compressibility
- Randomness
- Encryption

2 Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Uncertainty Compressibility Randomness Encryption

Information and Probability

Goutam Paul

Pre-Quantum Information Theory

Slide 5 of 34

Uncertainty Compressibility Randomness Encryption

Information and Probability

For an event with probability p, let I(p) be the information contained in it.

Goutam Paul

Pre-Quantum Information Theory

Slide 5 of 34

Uncertainty Compressibility Randomness Encryption

Information and Probability

For an event with probability p, let I(p) be the information contained in it.

•
$$p \downarrow \Rightarrow I(p) \uparrow \text{ and } p \uparrow \Rightarrow I(p) \downarrow$$

Uncertainty Compressibility Randomness Encryption

Information and Probability

For an event with probability p, let I(p) be the information contained in it.

- $p \downarrow \Rightarrow I(p) \uparrow$ and $p \uparrow \Rightarrow I(p) \downarrow$
- For two independent events with probabilities p_1 and p_2 , $l(p_1p_2) \propto l(p_1) + l(p_2)$.

Uncertainty Compressibility Randomness Encryption

Information and Probability

For an event with probability p, let I(p) be the information contained in it.

- $p \downarrow \Rightarrow I(p) \uparrow \text{ and } p \uparrow \Rightarrow I(p) \downarrow$
- For two independent events with probabilities p_1 and p_2 , $I(p_1p_2) \propto I(p_1) + I(p_2)$.

Thus, a natural definition is

$$l(p) \triangleq \log\left(\frac{1}{p}\right) = -\log p.$$

Uncertainty Compressibility Randomness Encryption

Relation to Uncertainty / Surprise / Knowledge Gain

Amount of information contained in an event

Goutam Paul

Pre-Quantum Information Theory

Slide 6 of 34

Uncertainty Compressibility Randomness Encryption

Relation to Uncertainty / Surprise / Knowledge Gain

Amount of information contained in an event

= Amount of uncertainty before the event happens

Uncertainty Compressibility Randomness Encryption

Relation to Uncertainty / Surprise / Knowledge Gain

Amount of information contained in an event

- = Amount of uncertainty before the event happens
- = Amount of surprise when the event happens

Uncertainty Compressibility Randomness Encryption

Relation to Uncertainty / Surprise / Knowledge Gain

Amount of information contained in an event

- = Amount of uncertainty before the event happens
- = Amount of surprise when the event happens
- = Amount of knowledge gain after the event happens

Uncertainty Compressibility Randomness Encryption

Average Information

Let X denote a random variable taking values from a discrete set (may denote a set of events or a source of symbols) with probabilities p(x) = Prob(X = x).

Uncertainty Compressibility Randomness Encryption

Average Information

Let X denote a random variable taking values from a discrete set (may denote a set of events or a source of symbols) with probabilities p(x) = Prob(X = x).

Average information in X (or of the corresponding set / source)

$$H(X) \triangleq E[I(p(X))]$$

Uncertainty Compressibility Randomness Encryption

Average Information

Let X denote a random variable taking values from a discrete set (may denote a set of events or a source of symbols) with probabilities p(x) = Prob(X = x).

Average information in X (or of the corresponding set / source)

$$\begin{aligned} H(X) &\triangleq E[I(p(X))] \\ &= E[-\log p(X)] \end{aligned}$$

Uncertainty Compressibility Randomness Encryption

Average Information

Let X denote a random variable taking values from a discrete set (may denote a set of events or a source of symbols) with probabilities p(x) = Prob(X = x).

Average information in X (or of the corresponding set / source)

$$H(X) \triangleq E[I(p(X))]$$

= $E[-\log p(X)]$
= $-\sum_{x \in X} p(x) \log p(x)$

Uncertainty Compressibility Randomness Encryption

Average Information

Let X denote a random variable taking values from a discrete set (may denote a set of events or a source of symbols) with probabilities p(x) = Prob(X = x).

Average information in X (or of the corresponding set / source)

$$H(X) \triangleq E[I(p(X))]$$

= $E[-\log p(X)]$
= $-\sum_{x \in X} p(x) \log p(x)$

This is called the entropy of the variable X (or of the set / source).

Goutam Paul

Pre-Quantum Information Theory

Uncertainty Compressibility Randomness Encryption

Joint and Conditional Entropy

Goutam Paul

Pre-Quantum Information Theory

Slide 8 of 34

Uncertainty Compressibility Randomness Encryption

Joint and Conditional Entropy

$$H(X, Y) \triangleq -\sum_{x} \sum_{y} p(x, y) \log p(x, y).$$

Goutam Paul

Pre-Quantum Information Theory

Slide 8 of 34

Uncertainty Compressibility Randomness Encryption

Joint and Conditional Entropy

$$H(X, Y) \triangleq -\sum_{x} \sum_{y} p(x, y) \log p(x, y).$$

$$H(Y \mid X) \triangleq \sum_{x} p(x)H(Y \mid X = x)$$

Uncertainty Compressibility Randomness Encryption

Joint and Conditional Entropy

$$H(X, Y) \triangleq -\sum_{x} \sum_{y} p(x, y) \log p(x, y).$$

$$H(Y \mid X) \triangleq \sum_{x} p(x)H(Y \mid X = x)$$
$$= \sum_{x} p(x) \left(-\sum_{y} p(y|x) \log p(y|x)\right)$$

Uncertainty Compressibility Randomness Encryption

Joint and Conditional Entropy

$$H(X, Y) \triangleq -\sum_{x} \sum_{y} p(x, y) \log p(x, y).$$

$$H(Y \mid X) \triangleq \sum_{x} p(x)H(Y \mid X = x)$$

=
$$\sum_{x} p(x) \left(-\sum_{y} p(y|x) \log p(y|x) \right)$$

=
$$-\sum_{x} \sum_{y} p(x, y) \log p(y|x)$$

1

Uncertainty Compressibility Randomness Encryption

Important Results Related to Entropy

Goutam Paul

Pre-Quantum Information Theory

Slide 9 of 34

Uncertainty Compressibility Randomness Encryption

Important Results Related to Entropy

Chain Rule: H(X, Y) = H(X) + H(Y|X)

Goutam Paul

Pre-Quantum Information Theory

Slide 9 of 34

Uncertainty Compressibility Randomness Encryption

Important Results Related to Entropy

Chain Rule:
$$H(X, Y) = H(X) + H(Y|X)$$

$H(X, Y) \leq H(X) + H(Y)$

Goutam Paul

Pre-Quantum Information Theory

Slide 9 of 34

Uncertainty Compressibility Randomness Encryption

Important Results Related to Entropy

Chain Rule:
$$H(X, Y) = H(X) + H(Y|X)$$

$H(X, Y) \leq H(X) + H(Y)$

$H(Y \mid X) \leq H(Y)$

Uncertainty Compressibility Randomness Encryption

Mutual Information

 $I(X; Y) \triangleq \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$

Goutam Paul

Pre-Quantum Information Theory

Slide 10 of 34

Uncertainty Compressibility Randomness Encryption

Mutual Information

$$I(X; Y) \triangleq \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
$$= H(X) - H(X|Y)$$

Goutam Paul

Pre-Quantum Information Theory

Slide 10 of 34

Uncertainty Compressibility Randomness Encryption

Mutual Information

$$I(X; Y) \triangleq \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$

Uncertainty Compressibility Randomness Encryption

Mutual Information

$$H(X; Y) \triangleq \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
$$= H(X) - H(X|Y)$$
$$= H(Y) - H(Y|X)$$
$$= H(X) + H(Y) - H(X, Y)$$

Roadmap

- Encryption
- 2 Measures of Information Flow
 - Channel Capacity
 - Code
 - Noisy Coding

Uncertainty Compressibility Randomness Encryption

Information and Codeword Length

Kraft Inequality: The necessary and sufficient conditions for the existence of an instantaneous code over an *r*-ary alphabet with codeword lengths $\ell_1, \ell_2, \ldots, \ell_n$ satisfy

$$\sum_{i=1} r^{-\ell_i} \leq 1.$$

Uncertainty Compressibility Randomness Encryption

Information and Codeword Length

Kraft Inequality: The necessary and sufficient conditions for the existence of an instantaneous code over an *r*-ary alphabet with codeword lengths $\ell_1, \ell_2, \ldots, \ell_n$ satisfy

$$\sum_{i=1} r^{-\ell_i} \leq 1.$$

An Engineering Optimization:

Minimize
$$L = \sum_{i=1}^{n} p_i \ell_i$$
 s.t. $\sum_{i=1}^{n} r^{-\ell_i} \le 1$ gives $\ell_i^* = -\log_r p_i$
and $L^* = \sum_{i=1}^{n} p_i \ell_i^* = H(X)$.

Uncertainty Compressibility Randomness Encryption

Entropy and Data Compression

For integer choice of codeword lengths,

 $H(X) \leq L^* < H(X) + 1.$

Uncertainty Compressibility Randomness Encryption

Entropy and Data Compression

For integer choice of codeword lengths,

$$H(X) \leq L^* < H(X) + 1.$$

For supersymbols with *n*-symbols at a time,

$$H(X) \leq L_n^* < H(X) + \frac{1}{n}$$

and $L_n^* = H(X)$ is achievable for stationary distribution.

Uncertainty Compressibility Randomness Encryption

Entropy and Data Compression

For integer choice of codeword lengths,

$$H(X) \leq L^* < H(X) + 1.$$

For supersymbols with *n*-symbols at a time,

$$H(X) \leq L_n^* < H(X) + \frac{1}{n}$$

and $L_n^* = H(X)$ is achievable for stationary distribution. This is Shannon's Source/Noiseless Coding Theorem.

Roadmap

- Uncertainty
- Compressibility
- Randomness
- Encryption
- 2 Measures of Information Flow
 - Channel Capacity
 - Code
 - Noisy Coding

Uncertainty Compressibility Randomness Encryption

Entropy as a Measure of Randomness

Goutam Paul

Pre-Quantum Information Theory

Slide 15 of 34

Uncertainty Compressibility Randomness Encryption

Entropy as a Measure of Randomness

```
Suppose p_i \ge 0, for 1 \le i \le n.
```


Goutam Paul

Pre-Quantum Information Theory

Slide 15 of 34

Uncertainty Compressibility Randomness Encryption

Entropy as a Measure of Randomness

Suppose
$$p_i \ge 0$$
, for $1 \le i \le n$.

Maximize
$$\left(-\sum_{i} p_{i} log p_{i}\right)$$
 s.t. $\sum_{i} p_{i} = 1$ gives

Uncertainty Compressibility Randomness Encryption

Entropy as a Measure of Randomness

Suppose
$$p_i \ge 0$$
, for $1 \le i \le n$.

Maximize
$$\left(-\sum_{i} p_{i} log p_{i}\right)$$
 s.t. $\sum_{i} p_{i} = 1$ gives

$$p_1 = p_2 = \cdots = p_n$$
.

Roadmap

- Uncertainty
- Compressibility
- Randomness
- Encryption

Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Uncertainty Compressibility Randomness Encryption

Encryption increases Entropy

Goutam Paul

Pre-Quantum Information Theory

Slide 17 of 34

Uncertainty Compressibility Randomness Encryption

Encryption increases Entropy

The goal of encryption is to make the transmitted message look random.

Goutam Paul

Pre-Quantum Information Theory

Slide 17 of 34

Uncertainty Compressibility Randomness Encryption

Encryption increases Entropy

The goal of encryption is to make the transmitted message look random.

Typically, H(C) > H(P).

Uncertainty Compressibility Randomness Encryption

```
Encryption increases Entropy
```

The goal of encryption is to make the transmitted message look random.

```
Typically, H(C) > H(P).
```

```
But, H(P | C) may be < H(P)
```


Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy

Given

Goutam Paul

Pre-Quantum Information Theory

Slide 18 of 34

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy

Given

Three possible plaintexts: a, b, c, with probabilities 0.5, 0.3, 0.2.

Goutam Paul

Pre-Quantum Information Theory

Slide 18 of 34

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy

Given

Three possible plaintexts: a, b, c, with probabilities 0.5, 0.3, 0.2.

Three possible ciphertexts: *U*, *V*, *W*.

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy

Given

Three possible plaintexts: a, b, c, with probabilities 0.5, 0.3, 0.2.

Three possible ciphertexts: U, V, W.

Two possible keys: k_1, k_2 , equally likely.

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy

Given

Three possible plaintexts: a, b, c, with probabilities 0.5, 0.3, 0.2.

Three possible ciphertexts: U, V, W.

Two possible keys: k_1, k_2 , equally likely.

Encryption under k_1 : U, V, W. Encryption under k_2 : U, W, V.

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

One can calculate

Goutam Paul

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

One can calculate p(U) = 0.5, p(V) = p(W) = 0.25.

Goutam Paul

Pre-Quantum Information Theory

Slide 19 of 34

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

One can calculate p(U) = 0.5, p(V) = p(W) = 0.25. $p(a \mid V) = 0$ $p(b \mid V) = 0.6$

$$p(c \mid V) = 0.4$$

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

One can calculate p(U) = 0.5, p(V) = p(W) = 0.25. $p(a \mid V) = 0$

$$p(b \mid V) = 0.6$$

$$p(c \mid V) = 0.4$$

Similarly, one can calculate probabilities of a, b, c given W.

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

Thus,

Goutam Paul

Pre-Quantum Information Theory

Slide 20 of 34

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

Thus,

$$\begin{array}{rcl} {\cal H}({\cal P}) & = & - \left(0.5 \log_2(0.5) + 0.3 \log_2(0.3) + 0.2 \log_2(0.2) \right) \\ & = & 1.485 \end{array}$$

Uncertainty Compressibility Randomness Encryption

Example: Plaintext Entropy (... contd)

Thus,

$$\begin{array}{rcl} {\cal H}({\cal P}) & = & - \left(0.5 \log_2(0.5) + 0.3 \log_2(0.3) + 0.2 \log_2(0.2) \right) \\ & = & 1.485 \end{array}$$

$$H(P \mid C) = -\sum_{x \in \{U, V, W\}} \sum_{y \in \{a, b, c\}} p(x) p(y|x) \log_2 p(y|x)$$

= 0.485

Uncertainty Compressibility Randomness Encryption

Perfect Secrecy

Goutam Paul

Pre-Quantum Information Theory

Slide 21 of 34

Uncertainty Compressibility Randomness Encryption

Perfect Secrecy

Information Theoretic Security:

Goutam Paul

Pre-Quantum Information Theory

Slide 21 of 34

Uncertainty Compressibility Randomness Encryption

Perfect Secrecy

Information Theoretic Security:

$H(P \mid C) = H(P)$

Goutam Paul

Pre-Quantum Information Theory

Slide 21 of 34

Uncertainty Compressibility Randomness Encryption

Perfect Secrecy

Information Theoretic Security:

 $H(P \mid C) = H(P)$

Or, equivalently,

$$Prob(P \mid C) = Prob(P).$$

Uncertainty Compressibility Randomness Encryption

Perfect Secrecy

Information Theoretic Security:

 $H(P \mid C) = H(P)$

Or, equivalently,

$$Prob(P \mid C) = Prob(P).$$

A necessary condition for this is

 $H(K) \geq H(P).$

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

2 Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

2 Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Channel Capacity Code Noisy Coding

Discrete Channel

- Input alphabet X.
- Output alphabet Y.
- Probability Transition Matrix p(y|x).

Informational Channel Capacity $C = \max_{p(x)} I(X; Y)$.

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

2 Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Channel Capacity Code Noisy Coding

An (M, n) Code

Goutam Paul

Pre-Quantum Information Theory

Slide 26 of 34

Channel Capacity Code Noisy Coding

An (M, n) Code

• An index set {1, 2, ..., *M*}.

Goutam Paul

Pre-Quantum Information Theory

Slide 26 of 34

Channel Capacity Code Noisy Coding

An (*M*, *n*) Code

- An index set {1, 2, ..., *M*}.
- An encoding function $C : \{1, 2, \dots, M\} \to X^n$.

Goutam Paul

Pre-Quantum Information Theory

Slide 26 of 34

Channel Capacity Code Noisy Coding

An (*M*, *n*) Code

- An index set {1, 2, ..., *M*}.
- An encoding function $C : \{1, 2, \dots, M\} \to X^n$.
- A decoding function $D: Y^n \rightarrow \{1, 2, \dots, M\}$.

Channel Capacity Code Noisy Coding

Error probability

Goutam Paul

Pre-Quantum Information Theory

Slide 27 of 34

Channel Capacity Code Noisy Coding

Error probability

• Conditional error probability given index *i* was sent: $\epsilon_i = \Pr(D(Y^n) \neq i | X^n = C(i)) = \sum_{D(y^n) \neq i} p(y^n | c(i)).$

Goutam Paul

Pre-Quantum Information Theory

Slide 27 of 34

Channel Capacity Code Noisy Coding

Error probability

- Conditional error probability given index *i* was sent: $\epsilon_i = \Pr(D(Y^n) \neq i | X^n = C(i)) = \sum_{D(y^n) \neq i} p(y^n | c(i)).$
- Maximum error probability $\epsilon_{max} = \max_{i \in \{1,2,\dots,M\}} \epsilon_i$.

Channel Capacity Code Noisy Coding

Error probability

- Conditional error probability given index *i* was sent: $\epsilon_i = \Pr(D(Y^n) \neq i | X^n = C(i)) = \sum_{D(y^n) \neq i} p(y^n | c(i)).$
- Maximum error probability $\epsilon_{max} = \max_{i \in \{1,2,\dots,M\}} \epsilon_i$.
- Average error probability $\epsilon_{avg} = \frac{1}{M} \sum_{i=1}^{M} \epsilon_i$.

Channel Capacity Code Noisy Coding

Rate

•
$$R = \frac{\log_2 M}{n}$$
 bits per transmission.

Channel Capacity Code Noisy Coding

Rate

- $R = \frac{\log_2 M}{n}$ bits per transmission.
- A rate *R* is said to be achievable if there exists a sequence of ([2^{nR}], n) codes such that e_{max} → 0 as n → ∞.

Channel Capacity Code Noisy Coding

Rate

- $R = \frac{\log_2 M}{n}$ bits per transmission.
- A rate *R* is said to be achievable if there exists a sequence of ([2^{nR}], n) codes such that e_{max} → 0 as n → ∞.
- Operational channel capacity is the supremum of all achievable rates.

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

2 Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

Channel Capacity Code Noisy Coding

Shannon's Noisy Channel Coding Theorem

Goutam Paul

Pre-Quantum Information Theory

Slide 30 of 34

Channel Capacity Code Noisy Coding

Shannon's Noisy Channel Coding Theorem

• All rates below capacity are achievable.

Goutam Paul

Pre-Quantum Information Theory

Slide 30 of 34

Channel Capacity Code Noisy Coding

Shannon's Noisy Channel Coding Theorem

- All rates below capacity are achievable.
- ∀*R* < *C*, ∃ a sequence of codes such that *ϵ_{max}* → 0 as *n* → ∞.

Channel Capacity Code Noisy Coding

Shannon's Noisy Channel Coding Theorem

- All rates below capacity are achievable.
- ∀*R* < *C*, ∃ a sequence of codes such that *ϵ_{max}* → 0 as *n* → ∞.
- Informational capacity = operational capacity.

Channel Capacity Code Noisy Coding

Band Limited Gaussian Channel

$$C = W \log \left(1 + rac{P}{N_0 W}
ight)$$

bits per second, where $\frac{N_0}{2}$ watts/Hz is the noise spectral density and *P* is the signal power.

Roadmap

Measures of Information

- Uncertainty
- Compressibility
- Randomness
- Encryption

Measures of Information Flow

- Channel Capacity
- Code
- Noisy Coding

From Pre-Quantum to Quantum

Goutam Paul

Pre-Quantum Information Theory

Slide 33 of 34

From Pre-Quantum to Quantum

von Neumann entropy.

Goutam Paul

Pre-Quantum Information Theory

Slide 33 of 34

From Pre-Quantum to Quantum

- von Neumann entropy.
- Schumacher's quantum noiseless coding theorem.

Goutam Paul

Pre-Quantum Information Theory

Slide 33 of 34

From Pre-Quantum to Quantum

- von Neumann entropy.
- Schumacher's quantum noiseless coding theorem.
- Holevo bound: upper bound of accessible information.

From Pre-Quantum to Quantum

- von Neumann entropy.
- Schumacher's quantum noiseless coding theorem.
- Holevo bound: upper bound of accessible information.
- Classical capacity and quantum capacity of quantum channels.

THANK YOU

Questions / Comments ?

Homepage: http://www.goutampaul.com
Email: goutam.k.paul@gmail.com