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Why to study?

Quantum nonlocality (!) is fascinating as:

It relates quantum theory with special relativity,

It is an invaluable resource in many of those information
processing tasks where quantum theory has got an edge over
classical theory.
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What we mean by Quantum nonlocality?

The standard Quantum Theory is essentially a statistical theory.
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What we mean by Quantum nonlocality?

The standard Quantum Theory is essentially a statistical theory.

It gives accurate predictions for statistical distributions of outcomes
obtained in a real experiment. However, it does not tell which
outcome will be observed in a particular measurement-experiment
unless the state undergoing the measurement is an eigenstate of the
observable being measured.
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What we mean by Quantum nonlocality?

Like any other theory, quantum theory too has some postulates
(The List is not complete) :

Associated with every quantum mechanical system S , there is a Hilbert
space HS , whose dimension depends on the nature of the degree of
freedom being considered for the system.

State of a system: Unit Vectors |ψ〉 ∈ HS

An observable Â for the system S is associated with a
self-adjoint operator, acting on HS

Â =
∑

i ai |αi〉〈αi |

Possible measurement results of Â are the eigenvalues of Â

Outcome probability: p(ai) = |〈ψ|αi 〉|
2 (Born’s rule)
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What we mean by · · ·

Consider a spin-1/2 system (H ≡ C
2)
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What we mean by · · ·

Consider a spin-1/2 system (H ≡ C
2)

System is prepared in the state: 1√
2
[|0〉 + |1〉],

|0〉 =

(

1
0

)

and |1〉 =

(

0
1

)

are eigenstates of σz with

eigenvalues +1(up) and -1(down) respectively.
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(

0
1

)

are eigenstates of σz with

eigenvalues +1(up) and -1(down) respectively.

We measure Spin in Z -direction, i.e. σz on this state

Possible results of measurement are ‘up’ with probability 1
2 and

‘down’ with probability 1
2 .

Sujit K Choudhary (IOP, Bhubaneswar) IOP, Bhubaneswar Feb 09, 2016 5 / 29



What we mean by · · ·

Consider a spin-1/2 system (H ≡ C
2)

System is prepared in the state: 1√
2
[|0〉 + |1〉],

|0〉 =

(

1
0

)

and |1〉 =

(

0
1

)

are eigenstates of σz with

eigenvalues +1(up) and -1(down) respectively.

We measure Spin in Z -direction, i.e. σz on this state

Possible results of measurement are ‘up’ with probability 1
2 and

‘down’ with probability 1
2 .

But, in a particular run, what would be the result of
measurement; quantum theory cannot predict.
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What we · · · Hidden Variable Theory (Ontological Models)

Though quantum theory is a statistical theory, but it also does not
disallow for a finer theory where the outcome of an individual
measurement may be determined with the help of some hypothetical
variables outside the domain of definition of quantum theory. The
statistical distributions of quantum theory would then be averages
over these hidden variables.
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What we · · · Hidden Variable Theory (Ontological Models)

Though quantum theory is a statistical theory, but it also does not
disallow for a finer theory where the outcome of an individual
measurement may be determined with the help of some hypothetical
variables outside the domain of definition of quantum theory. The
statistical distributions of quantum theory would then be averages
over these hidden variables.

Such models indeed exist for any experiment involving
measurements on a single quantum system.

Bell, J.S. Physics 1, 195 (1964).
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What we · · · Hidden Variable Theory (Ontological Models)

Though quantum theory is a statistical theory, but it also does not
disallow for a finer theory where the outcome of an individual
measurement may be determined with the help of some hypothetical
variables outside the domain of definition of quantum theory. The
statistical distributions of quantum theory would then be averages
over these hidden variables.

Such models indeed exist for any experiment involving
measurements on a single quantum system.

Bell, J.S. Physics 1, 195 (1964).

But the situation becomes subtler when we consider different
measurements on two (or more) correlated quantum systems.
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What we · · · Ontological Models · · · The Bell Scenario

Bell scenario

A typical Bell experiment involves two spatially separated observers,
Alice and Bob, who share a physical system consisting of two
subsystems. They can perform measurements on the subsystems in
their possessions and collect statistics to calculate the joint
probabilities p(a, b|AB ,P). Here A and B denotes the observables
chosen respectively by Alice and Bob; a and b are the corresponding
outcomes. Each pair of subsystems is prepared by an agreed-upon
reproducible procedure P (which in quantum mechanics is
represented by quantum state for the pair of subsystems).
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What we · · ·

Ontological models for this experiment

An ontological model for this experiment consists of

ontic variables λ belonging to the set Λ (ontic state space),
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Ontological models for this experiment

An ontological model for this experiment consists of

ontic variables λ belonging to the set Λ (ontic state space),

a probability distribution pP(λ) for every preparation procedure P

(Knowing the preparation P may not be enough to deduce precisely
which λ. Hence the probability distribution.),
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ontic variables λ belonging to the set Λ (ontic state space),
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(Knowing the preparation P may not be enough to deduce precisely
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and a specification of the conditional probability p(a, b|A,B ,P , λ).
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What we · · ·

Ontological models for this experiment

An ontological model for this experiment consists of

ontic variables λ belonging to the set Λ (ontic state space),

a probability distribution pP(λ) for every preparation procedure P

(Knowing the preparation P may not be enough to deduce precisely
which λ. Hence the probability distribution.),

and a specification of the conditional probability p(a, b|A,B ,P , λ).

The prediction for the observed joint probability by this model
∫

Λ
p(a, b|A,B ,P , λ)pP(λ) dλ = Prob(a, b|A,B ,P)(say). (1)

R W Spekkens Phys. Rev. A 71, 052108 (2005)
E G Cavalcanti, H M Wiseman Found. Phys. 42, 1329 (2012)
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Local-deterministic models

Deterministic Models: A model is said to be deterministic iff
p(a, b|A,B ,P , λ) ∈ {0, 1} ∀a, b,A,B .
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Local-deterministic models

Deterministic Models: A model is said to be deterministic iff
p(a, b|A,B ,P , λ) ∈ {0, 1} ∀a, b,A,B .

This implies that the outcome of Bob’s measurement (and similarly
also of Alice’s measurement) is determined by A, B , P and λ only.
Thus, for a deterministic ontological model

p(b|A, a,B ,P , λ) = p(b|A,B ,P , λ). (2)
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Local-deterministic models

Deterministic Models: A model is said to be deterministic iff
p(a, b|A,B ,P , λ) ∈ {0, 1} ∀a, b,A,B .

This implies that the outcome of Bob’s measurement (and similarly
also of Alice’s measurement) is determined by A, B , P and λ only.
Thus, for a deterministic ontological model

p(b|A, a,B ,P , λ) = p(b|A,B ,P , λ). (2)

A model is said to satisfy locality iff

p(a|A,B ,P , λ) = p(a|A,P , λ) ∀ a,A,B ,

p(b|A,B ,P , λ) = p(b|B ,P , λ) ∀ b,A,B . (3)

H M Wiseman, J. Phys. A: Math. Theor. 47 424001 (31pp) (2014)
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Local-deterministic· · ·

By Baye’s theorem of conditional probability:

p(a, b|A,B ,P , λ) = p(a|A,B ,P , λ) p(b|A, a,B ,P , λ). (4)
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Local-deterministic· · ·

By Baye’s theorem of conditional probability:

p(a, b|A,B ,P , λ) = p(a|A,B ,P , λ) p(b|A, a,B ,P , λ). (4)

Using Eqs. (2) and (3) in Eq. (4), we get

p(a, b|A,B ,P , λ) = p(a|A,P , λ)p(b|B ,P , λ). (5)
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Local-deterministic· · ·

By Baye’s theorem of conditional probability:

p(a, b|A,B ,P , λ) = p(a|A,B ,P , λ) p(b|A, a,B ,P , λ). (4)

Using Eqs. (2) and (3) in Eq. (4), we get

p(a, b|A,B ,P , λ) = p(a|A,P , λ)p(b|B ,P , λ). (5)

Thus in a local-deterministic model, Eq. (1), takes the following
form

Prob(a, b|A,B ,P) =

∫

Λ
p(a|A,P , λ) p(b|B ,P , λ)pP(λ) dλ. (6)

Sujit K Choudhary (IOP, Bhubaneswar) IOP, Bhubaneswar Feb 09, 2016 10 / 29



Bell’s nonlocality argument

Consider a physical system consisting of two subsystems shared between Alice and
Bob. The two observers (Alice and Bob) have access to one subsystem each. For
each pair of subsystems, the choices of observables and their respective outcomes
occur in regions which are space-like separated from each other. Assume that Alice
can run the experiments of measuring any one (freely chosen) of the two

{+1,−1}-valued random variables A and A
′

corresponding to her subsystem
whereas Bob can run the experiments of measuring any one (chosen freely) of the

two {+1,−1}-valued random variables B and B
′

corresponding to the subsystem in
his possession.
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Bell’s nonlocality argument

Assignment1: Show that in a local-deterministic (local-realistic)
model

|〈AB〉 + 〈AB ′〉 + 〈A′B〉 − 〈A′B ′〉|LRT ≤ 2

This inequality is famously known as Bell’s inequality.
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|〈AB〉 + 〈AB ′〉 + 〈A′B〉 − 〈A′B ′〉|LRT ≤ 2

This inequality is famously known as Bell’s inequality.
Hint

Use the factorizability relation

You will also need to assume

p(λ|A,B ,P) = p(λ)

This is called assumption of “free will” (or measurement
independence)
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Bell’s nonlocality argument

Assignment1: Show that in a local-deterministic (local-realistic)
model

|〈AB〉 + 〈AB ′〉 + 〈A′B〉 − 〈A′B ′〉|LRT ≤ 2

This inequality is famously known as Bell’s inequality.
Hint

Use the factorizability relation

You will also need to assume

p(λ|A,B ,P) = p(λ)

This is called assumption of “free will” (or measurement
independence)

In case of difficulty, please go through Rev. Mod. Phys. 86, 839
(2014) (page 3, para 2 of its arxiv version: arXiv 1303.2849v2)

Sujit K Choudhary (IOP, Bhubaneswar) IOP, Bhubaneswar Feb 09, 2016 12 / 29



The assumption of free will

Measurement independence is the property that the distribution of
the underlying variable is independent of the measurement settings,
i.e.,

p(λ|AB) = p(λ|A′B ′) = p(λ) for any joint settings
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The assumption of free will

Measurement independence is the property that the distribution of
the underlying variable is independent of the measurement settings,
i.e.,

p(λ|AB) = p(λ|A′B ′) = p(λ) for any joint settings

From Baye’s theorem

p(AB |λ) =
p(λ|AB)p(AB)

p(λ)

Hence the postulate of measurement independence is equivalent to

p(AB |λ) = p(AB)

i.e., the measurement settings can be chosen freely (independent of the
underlying variable λ)

M J W Hall Phys. Rev. Lett. 105, 250404 (2010)
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QM violates BI

For the purpose of showing that the above inequality may get violated in quantum
mechanics, consider a system of two spin-1/2 particles in the state:

|Ψ〉 =
1√
2
(|Ψz 〉A ⊗ |Ψ−z〉B − |Ψ−z〉A ⊗ |Ψz 〉B)

The observables A and A’ for particle 1 and B and B’ for particle 2 are chosen as spin
observables in the following way

It can be shown that (please show):

〈Ψ|σ.ni ⊗ σ.njσ.ni ⊗ σ.njσ.ni ⊗ σ.nj |Ψ〉 = −ni .njni .njni .nj

Thus
|〈AB〉 + 〈AB

′〉 + 〈A′
B〉 − 〈A′

B
′〉|QM = 2

√
2

Sujit K Choudhary (IOP, Bhubaneswar) IOP, Bhubaneswar Feb 09, 2016 14 / 29



Hence the Bell’s Theorem

Quantum theory is not compatible with the notion of
local-realism.
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Hence the Bell’s Theorem

Quantum theory is not compatible with the notion of
local-realism.

A deterministic theory is bound to be nonlocal if it has to explain
certain correlations predicted by quantum theory.

Bell in ‘Speakable and Unspeakable in Quantum Mechanics’

In a theory in which parameters are added to quantum mechanics to
determine the results of individual measurements, without changing
the statistical predictions, there must be a mechanism whereby the
setting of one measuring device can influence the reading of another
instrument, however remote.
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Hence the Bell’s Theorem

Quantum theory is not compatible with the notion of
local-realism.

A deterministic theory is bound to be nonlocal if it has to explain
certain correlations predicted by quantum theory.

Bell in ‘Speakable and Unspeakable in Quantum Mechanics’

In a theory in which parameters are added to quantum mechanics to
determine the results of individual measurements, without changing
the statistical predictions, there must be a mechanism whereby the
setting of one measuring device can influence the reading of another
instrument, however remote.

This is what we mean by quantum nonlocality.
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Can this nonlocality be used to signal?
(Bell’s inequality from operational assumptions)

No-signalling (signal locality) is said to be satisfied iff

p(a|A,B ,P) = p(a|A,P) ∀ a,A,B ,

p(b|A,B ,P) = p(b|B ,P) ∀ b,A,B . (7)

i.e., probability of Alice getting a in a measurement of A at his place is
independent of the measurement setting of Bob.
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p(b|A,B ,P) = p(b|B ,P) ∀ b,A,B . (7)

i.e., probability of Alice getting a in a measurement of A at his place is
independent of the measurement setting of Bob.

If p(a|A,B ,P) 6= p(a|A,P) then by looking at her measurement
statistics, Alice can determine what observable-setting Bob has
chosen at a space-like separated place (Relativity does not
allow).
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p(a|A,B ,P) = p(a|A,P) ∀ a,A,B ,

p(b|A,B ,P) = p(b|B ,P) ∀ b,A,B . (7)

i.e., probability of Alice getting a in a measurement of A at his place is
independent of the measurement setting of Bob.

If p(a|A,B ,P) 6= p(a|A,P) then by looking at her measurement
statistics, Alice can determine what observable-setting Bob has
chosen at a space-like separated place (Relativity does not
allow).

Violation of locality does not imply signalling, as here the
probabilities for Alice’s outcome conditioned on the Hidden
variables depends on choice of measurement-settings at Bob’s
site. But since those hidden variables are unknown, inaccessible;
this kind of nonlocality cannot be used to signal.
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Can this nonlocality be used to signal?
(Bell’s inequality from operational assumptions)

No-signalling (signal locality) is said to be satisfied iff

p(a|A,B ,P) = p(a|A,P) ∀ a,A,B ,

p(b|A,B ,P) = p(b|B ,P) ∀ b,A,B . (7)

i.e., probability of Alice getting a in a measurement of A at his place is
independent of the measurement setting of Bob.

If p(a|A,B ,P) 6= p(a|A,P) then by looking at her measurement
statistics, Alice can determine what observable-setting Bob has
chosen at a space-like separated place (Relativity does not
allow).

Violation of locality does not imply signalling, as here the
probabilities for Alice’s outcome conditioned on the Hidden
variables depends on choice of measurement-settings at Bob’s
site. But since those hidden variables are unknown, inaccessible;
this kind of nonlocality cannot be used to signal.
Bohm’s model is an example of a model that violates locality but not
signal locality.
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Bell’s inequality from operational assumptions

A model is said to satisfy signal locality iff

p(a|A,B ,P) = p(a|A,P) ∀ a,A,B ,

p(b|A,B ,P) = p(b|B ,P) ∀ b,A,B . (8)
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Locality is an ontological concept while signal locality is an
operational concept (testable in labs).
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an operational concept.
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Locality is an ontological concept while signal locality is an
operational concept (testable in labs).

Locality implies signal locality but the converse is not true.

A model is said to be predictable iff

p(a, b|A,B ,P) ∈ {0, 1} ∀ a, b,A,B . (9)

Whereas, ‘Realism’ is an ontological concept, ‘Predictability’ is
an operational concept.

Predictability implies Realism but the converse is not true.

E G Cavalcanti, H M Wiseman Found. Phys. 42, 1329 (2012)
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Bell’s inequality from operational assumptions

Predictability ∧ Signal locality ⇒ Bell’s inequality
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Bell’s inequality from operational assumptions

Predictability ∧ Signal locality ⇒ Bell’s inequality

A sufficient step in the derivation of BI is to establish the
following factorizability relation which follows from the
assumptions of local-realism:

p(a, b|A,B ,P , λ) = p(a|A,P , λ)p(b|B ,P , λ).
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Bell’s inequality from operational assumptions

Predictability ∧ Signal locality ⇒ Bell’s inequality

A sufficient step in the derivation of BI is to establish the
following factorizability relation which follows from the
assumptions of local-realism:

p(a, b|A,B ,P , λ) = p(a|A,P , λ)p(b|B ,P , λ).

We now show: predictability ∧ signal locality ⇒ factorizability
relation

E. G. Cavalcanti, Howard M. Wiseman Found. Phys. 42, 1329 (2012).
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Bell’s inequality from operational assumptions

The assumption of predictability implies:

p(a,b|A, B, P, λ) = p(a,b|A, B, P). (10)

This is because p(a, b|A, B, P) ∈ {0, 1} hence conditioning it on further variable(s)
cannot alter it.

According to Baye’s theorem,

p(a, b|A, B, P) = p(a|A, B, P)p(b|A, a,B, P). (11)

The assumption of predictability implies that b = f (A, B, P) (i.e., b is specified by
specifying A, B, and P) and hence

p(b|A, a, B, P) = p(b|A, B, P). (12)
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BI from · · ·

Putting for p(b|A, a, B, P) from Eq. (12) into Eq. (11), we get

p(a,b|A, B, P) = p(a|A, B, P)p(b|A, B, P) (13)

From the assumption of signal locality

p(a,b|A, B, P) = p(a|A, P)p(b|B, P). (14)

Putting this into Eq. (10), we get

p(a, b|A, B, P, λ) = p(a|A, P)p(b|B, P). (15)

By conditioning the RHS of the above equation on λ, we get the desired factorizability
relation.
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Randomness Certification by Bell’s Theorem

Consider a situation where BI is violated but no-signalling is
satisfied (!).
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This is important as

Randomness is a valuable resource for various important tasks.

For these tasks, the genuineness of the used randomness is of primary concern.
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(1) Algorithmic: Mathematical formulae are used to produce random numbers.

But, true randomness does not exist from a mathematical point of view. D. Knuth,

The art of Computer Programming Vol.2, Seminumerical Algorithms (Addison-Wesley,

1981)

(2) Hardware:Extracting Randomness from physical processes.

But, there is no process in classical world which, in principle, cannot be predicted.

S.Pironio et al., Nature 464 1021 (2010)
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Bell inequality as measure of entanglement
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Nonlocality without Inequality

Proofs of Bell’s theorem without using Bell’s inequalities are called ‘nonlocality
without inequality (NLWI) proofs’.
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in these proofs the focus is on a single event whose occurrence shows the
incompatibility of quantum theory with the notion of local-realism.

The first such proof is due to Greenberger, Horne and Zeilinger.

Although their proof is direct, it requires at least an eight-dimensional Hilbert
space.

In 1992, Hardy gave a proof of Bell’s theorem (without inequality) which like
Bell’s proof, requires only two qubits.

L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)
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Nonlocality without Inequality

Proofs of Bell’s theorem without using Bell’s inequalities are called ‘nonlocality
without inequality (NLWI) proofs’.

Unlike the case of Bell’s inequality where we collect statistics of many events,
in these proofs the focus is on a single event whose occurrence shows the
incompatibility of quantum theory with the notion of local-realism.

The first such proof is due to Greenberger, Horne and Zeilinger.

Although their proof is direct, it requires at least an eight-dimensional Hilbert
space.

In 1992, Hardy gave a proof of Bell’s theorem (without inequality) which like
Bell’s proof, requires only two qubits.

L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)

The Hardy’s argument of “nonlocality without inequality” has been considered to be
the “best version of Bell’s theorem”.

N.D. Mermin, Am. J.Phys. 62, 880 (1994)
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Hardy’s nonlocality argument

Consider the standard Bell scenario
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Hardy’s nonlocality argument

Consider the standard Bell scenario

Consider now the following four conditions:

Prob(+1, +1|A, B, P) > 0, (16)

Prob(−1, +1|A
′

, B, P) = 0, (17)

Prob(+1,−1|A, B
′

, P) = 0, (18)

Prob(+1, +1|A′

, B
′

, P) = 0. (19)

The above four conditions together form the basis of Hardy’s nonlocality
argument.
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The above four conditions together form the basis of Hardy’s nonlocality
argument.

The first condition says that in an experiment in which Alice chooses to
measure the observable A and Bob chooses the observable B, the probability
that both will get +1 as measurement outcomes is nonzero. Other conditions
can be analyzed similarly.
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, B, P) = 0, (17)

Prob(+1,−1|A, B
′

, P) = 0, (18)

Prob(+1, +1|A′

, B
′

, P) = 0. (19)

The above four conditions together form the basis of Hardy’s nonlocality
argument.

The first condition says that in an experiment in which Alice chooses to
measure the observable A and Bob chooses the observable B, the probability
that both will get +1 as measurement outcomes is nonzero. Other conditions
can be analyzed similarly.

The Hardy’s nonlocality argument makes use of the fact that these four
conditions cannot be fulfilled simultaneously in the framework of a
local-realistic theory, but they can be in quantum mechanics.
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Hardy’s condition and local-realistic theory

we start with the first condition.
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we start with the first condition.

By using the factorizability relation, we notice that in a local-realistic theory,
this condition will get satisfied if

Z

Λ

p(+1|A, P, λ) p(+1|B, P, λ)p(λ) dλ > 0. (20)
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This implies the existence of a subset Λ′ of the ontic state space Λ in which
p(+1|A, Pλ) > 0 and p(+1|B, Pλ) > 0.
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This implies the existence of a subset Λ′ of the ontic state space Λ in which
p(+1|A, Pλ) > 0 and p(+1|B, Pλ) > 0.

Use of the factorizability relation in the second Hardy’s condition says that for
the local-realistic model to satisfy the second Hardy’s condition,
p(−1|A′

P, λ) p(+1|B, P, λ) = 0 for all λ ∈ Λ.

However, for λ ∈ Λ′, this condition implies p(−1|A′

P, λ) = 0 or equivalently for

these λ’s, p(+1|A′

P, λ) = 1.

Similar reasoning for the third Hardy’s condition provides p(+1|B ′

P, λ) = 1 for
λ ∈ Λ′.
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Hardy’s condition and local-realistic · · ·

Thus a local- realistic model will predict for the last probability in the Hardy’s condition
as follows:

Prob(+1, +1|A
′

, B
′

, P) =
R

Λ
p(+1|A′

, P, λ) p(+1|B ′

, P, λ)p(λ) dλ

≥
R

Λ′
p(+1|A′

, P, λ) p(+1|B ′

, P, λ)p(λ) dλ

=
R

Λ′
p(λ) dλ > 0. (21)
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Every pure nonmaximally entangled state of two-qubits exhibits
Hardy’s nonlocality

Any pure nonmaximally entangled state |ψ〉 of two spin-1/2 particles
can be written as

|ψ〉 = a|v1〉 ⊗ |v2〉 + b|u1〉 ⊗ |v2〉 + c |v1〉 ⊗ |u2〉 (abc 6= 0)

for a proper choice of orthonormal basis {|ui〉, |vi 〉} for i -th particle,
i = 1, 2; |u1〉, |u2〉 need not bear any relationship with each other.

S. Goldstein, Phys. Rev. Lett. 72 (1994)

Assignment2: Check that this state satisfies all the four Hardy’s conditions
for the following choice of observables:
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A = |w⊥

1 〉〈w⊥

1 | − |w1〉〈w1|,
A

′ = |u1〉〈u1| − |v1〉〈v1|,
B = |w⊥

2 〉〈w⊥

2 | − |w2〉〈w2|,
B

′ = |u2〉〈u2| − |v2〉〈v2|

where

|w1〉 =
a|v1〉 + b|u1〉
p

|a|2 + |b|2
,

|w2〉 =
a|v2〉 + c|u2〉
p

|a|2 + |c|2
.
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Thank You
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