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INTEGER FACTORIZATION and ITS
IMPORTANCE

A prime is an integer that has no divisors expect 1 and itself.

Integer factorization theorem: each integer n can be uniquelly expressed
as a product of the powers of primes

n −
k∏

i=1

peii .

where p1 < p2 < . . . < pk are primes

No efficient classical algorithm is known to find, in general factors
p1, p2, . . . pk

The fastest classical algorithm to factor an m-bit integer that is product of

two primes has exponential complexity O(ecm
1/3(lgm)2/3), where e is the basis

of natural logarithms.

The fact that there is not known classical algorithm to factor integers is
playing very important role in cryptography - for making secure encryptions
and secure digital signatures.
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LARGEST PRIME

On February 3, 2016 C. Cooper from
university Missouri announced a new
(Mersene) prime

274207181

that has 5 millions more digits as
previously known largest prime.
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DESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978 by Rivest, Shamir, Adleman
Basic idea: prime multiplication is very easy, integer factorization unfeasible.

Design of RSA cryptosystems

1 Choose randomly two large about s-bit primes p,q, where s ∈ [512, 1024],
and denote

n = pq, φ(n) = (p − 1)(q − 1)

2 Choose a large d such that

gcd(d , φ(n)) = 1

and compute
e = d−1(mod φ(n))

Public key: n (modulus), e (encryption exponent)
Trapdoor information: p, q, d (decryption exponent)

Plaintext w
Encryption: cryptotext c = w e mod n
Decryption: plaintext w = cd mod n
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RSA CHALLENGE

The first public description of the RSA cryptosystem was in the paper.

Martin Gardner: A newkind of cipher that would take million years to break,
Scientific American, 1977

and in this paper the RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951
2093 0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451
5781 5154

encrypted using the RSA cryptosystem with 129 digit number, called also
RSA129

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362
562 561 842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147
599 290 026 879 543 541.

and with e = 9007.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and
one 65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE

In 2002 RSA inventors received Turing award.
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FROM RSA CRYPTOSYSTEM to RSA
SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c : w = cd .

Does it has a sense to change the order of these two operations: To do first
c = wd and then ce?. Is this a crazy idea?

No, we just ned to interpret outcomes of these operations differently. Indeed,
s = wd should be interpreted as the signature of the message w - to be sent
together with w

and w = se can then be verification of such a signature.
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WHY ARE RSA ENCRYPTIONS and
SIGNATURES SECURE?

RSA encryptions and signatures are
considered as secure because there is not
known a methods that could be able
factorize in RSA used moduly on current
and in near future forseeable classical
supercomputers.
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REDUCTIONS of FACTORIZATION PROBLEM

REDUCTIONS of the FACTORIZATION PROBLEM
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FIRST REDUCTION

Lemma If there is a polynomial time deterministic (randomized) [quantum]
algorithm to find a nontrivial solution of the modular quadratic equations

a2 ≡ 1 (mod n),

then there is a polynomial time deterministic (randomized) [quantum] algorithm
to factorize integers.

Proof. Let a 6= ±1 be such that a2 ≡ 1 (mod n). Since

a2 − 1 = (a + 1)(a− 1),

if n is not prime, then a prime factor of n has to be a prime factor of either a + 1
or a− 1.

By using Euclid’s algorithm to compute

gcd(a + 1, n) and gcd(a− 1, n)

we can find, in O(lg n) steps, a prime factor of n.
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SECOND REDUCTION

The second key concept is that of the period of functions

fn,x(k) = xk mod n.

Period is the smallest integer r such that

fn,x(k + r) = fn,x(k)

for any k, i.e. the smallest r such that

x r ≡ 1 (mod n).

AN ALGORITHM TO SOLVE EQUATION x2 ≡ 1 (mod n).

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

If this algorithm stops, then ar/2 is a non-trivial solution of the equation

x2 ≡ 1 (mod n).
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A GENERAL SCHEME for Shor’s ALGORITHM

The following flow diagram shows the general scheme of Shor’s quantum
factorization algorithm

quantum
x

find period r
subroutine

r  is
even?

r/2 r/2

z=1 ?

output  z

no

yes

no

compute
z = gcd(a, n)

z = 1?

yes

no

z = max{gcd(n, a   -1), gcd(n, a    +1)}

yes

of function   a   mod n

choose randomly
a {2, ... ,n-1}

The algorithm works in polynomial time in case period finding is done in
polynomial time which can be done on quantum computer as Peter Shor showed
in 1994.
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SHOR’s FACTORIZATION ALGORITHM

1 For given n, q = 2d , a create states

1
√
q

q−1∑
x=0

|n, a, q, x , 0〉 and

1
√
q

q−1∑
x=0

|n, a, q, x , ax mod n〉

2 By measuring the last register the state collapses into the state

1√
A + 1

A∑
j=0

|n, a, q, jr + l , y〉 or, shortly
1√

A + 1

A∑
j=0

|jr + l〉,

where A is the largest integer such that l + Ar ≤ q, r is the period of
ax mod n and l is the offset.

3 In case A = q
r − 1, the resulting state has the form.

√
r
q

∑ q
r −1
j=0 |jr + l〉

4 By applying quantum Fourier transformation we get then the state

1√
r

r−1∑
j=0

e2πilj/r |j q
r
〉.

5 By measuring the resulting state we get c = jq
r and if gcd(j , r) = 1, what is

very likely, then from c and q we can determine the period r .
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DISCRETE FOURIER TRANSFORM

Discrete Fourier Transform maps a vector a = (a0, a1, . . . , an−1)T into the vector
DFT (a) = Ana, where An is an n × n matrix such that An[i , j ] = 1√

n
ωij for

0 ≤ i , j < n and ω = e2πi/n is the nth root of unity.
The matrix An has therefore the form

An =
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ω(n−1)

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ω(n−1) ω2(n−1) . . . ω(n−1)2

 .

The Inverse Discrete Fourier Transform is the mapping

DFT−1(a) = A−1n a,

where

A−1n [i , j ] =
1√
n
ω−ij .
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QUANTUM FOURIER TRANSFORM

The Quantum Fourier Transform is a quantum variant of the Discrete Fourier
Transform (DFT). DFT maps a q-dimensional complex vector

{f (0), f (1), . . . , f (q − 1)} into {f̄ (0), f̄ (1), . . . , f̄ (q − 1)},

where for any c ∈ {0, . . . , q − 1}

f̄ (c) =
1
√
q

q−1∑
a=0

e2πiac/qf (a), (1)

The quantum version of DFT (QFT) is the unitary transformation

QFTq : |a〉 → 1
√
q

q−1∑
c=0

e2πiac/q|c〉 (2)
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The quantum version of DFT (QFT) is the unitary transformation

QFTq : |a〉 → 1
√
q

q−1∑
c=0

e2πiac/q|c〉 (3)

defined for 0 ≤ a < q, by the unitary matrix

Fq =
1
√
q


1 1 1 . . . 1
1 ω ω2 . . . ω(q−1)

1 ω2 ω4 . . . ω2(q−1)

...
...

...
...

1 ω(q−1) ω2(q−1) . . . ω(q−1)2

 ,

where ω = e2πi/q is the qth root of unity.

If applied to a quantum superposition, QFTq performs as follows;

QFTq :

q−1∑
a=0

f (a)|a〉 →
q−1∑
c=0

f̄ (c)|c〉,

where f̄ (c) is defined by (1).
Observe that

QFTq : |0〉 → 1
√
q

q−1∑
i=0

|i〉,
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SHOR’s ALGORITHM - PHASE 1

Given an m bit integer n we choose a n2 ≤ q = 2d ≤ 2n2

and start with five
registers in states |n, a, q, 0, 0〉.
Application of the Hadamard transformation to the fourth register yields state

1
√
q

q−1∑
x=0

|n, a, q, x , 0〉.

and using quantum parallelism we compute ax mod n for all x in one step, to get

1
√
q

q−1∑
x=0

|n, a, q, x , ax mod n〉.

As the next step we perform a measurement on the last register.Let y be the
value obtained, i.e. y = al mod n for the smallest l (ly ) with this property. If r is
the period of fn,a, then aly ≡ ajr+ly (mod n) for all j . Therefore, the measurement
actually selects the sequence of x ’s values (in the fourth register),
ly , ly + r , ly + 2r , . . . , ly + Ar , where A is the largest integer such that
ly + Ar ≤ q − 1. Clearly, A ≈ q

r . The post-measurement state is then

|φl〉 =
1√

A + 1

A∑
j=0

|n, a, q, jr + ly , y〉 =
1√

A + 1

A∑
j=0

|jr + ly 〉. (4)

after omitting some registers being fixed from now on.
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SHOR’s ALGORITHM - SECOND PHASE

From now on we consider only a special case. namely, that r divides q. Then

A = q
r − 1, last state can be written as |φl〉 =

√
r
q

∑ q
r −1
j=0 |jr + ly 〉 and after QFTq

is applied on |φl〉 we get:

QFTq|φl〉 =
1
√
q

q−1∑
c=0

√
r

q

q
r −1∑
j=0

e2πic(jr+ly )/q|c〉

=

√
r

q

q−1∑
c=0

e2πily c/q

 q
r −1∑
j=0

e2πijcr/q

 |c〉 =

q−1∑
c=0

αc |c〉.

If c is a multiple of q
r , then e2πijcr/q = 1and if c is not a multiple of q

r , then∑ q
r −1
j=0 e2πijcr/q = 0,because the above sum is over a set of q

r roots of unity equally
spaced around the unit circle. Thus

αc =

{ 1√
r
e2πily c/q, if c is a multiple of q

r ;

0, otherwise;
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Therefore

|φout〉 = QFTq|φl〉 =
1√
r

r−1∑
j=0

e2πily j/r |j q
r
〉.

The key point now is that the trouble-making offset ly appears now in the phase
factor e2πily j/r and has influence neither on the probabilities nor on values
obtained by the measurement.
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SHOR’s ALGORTHM - PHASE 3

Period extraction

Each measurement of the state |φout〉 therefore yields one of the values c = λ q
r ,

λ ∈ {0, 1, . . . r − 1}, where each λ is chosen with the same probability 1
r .

Observe also that in this case the QFT transforms a function with the period r
(and an offset l) to a function with the period q

r and offset 0.

After each measurement we therefore know c and q and

c

q
=
λ

r
,

where λ is randomly chosen.

If gcd(λ, r) = 1, then from q we can determine r by dividing q with gcd(c , q).
Since λ is chosen randomly, the probability that gcd(λ, r) = 1 is greater than
Ω( 1

lg lg r ). If the above computation is repeated O(lg lg r) times, then the success
probability can be as close to 1 as desired and therefore r can be determined
efficiently.1

1As observed by Shor (1994) and shown by Cleve et al. (1998), the expected number of trials
can be put down to a constant.
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c

q
=
λ

r
,

where λ is randomly chosen.

If gcd(λ, r) = 1, then from q we can determine r by dividing q with gcd(c , q).

Since λ is chosen randomly, the probability that gcd(λ, r) = 1 is greater than
Ω( 1

lg lg r ). If the above computation is repeated O(lg lg r) times, then the success
probability can be as close to 1 as desired and therefore r can be determined
efficiently.1

1As observed by Shor (1994) and shown by Cleve et al. (1998), the expected number of trials
can be put down to a constant.
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In the general case, i.e., if

A 6= q

r
− 1,

there is only a more sophisticated
computation of the resulting probabilities
and a more sophisticated way to
determine r (using a continuous fraction
method to extract the period from its
approximation).
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ANALYSIS of SHORs FACTORIZATION
ALGORITHM

Efficient implementations of QFTq, concerning the number of gates, are
known for the the case q = 2d or q is smooth (that is if factors of q are
smaller than O(lg q)).
Efficient implementations of modular operations (including exponentiation)
are known.
First estimation said that 300 lg n gates are needed to factor n.
An estimation said that to factor 130 digit integers would require two weeks
on an ideal quantum computer with switching frequency 1 MHz. However, to
factor 260-digit number only 16 times larger time would be needed.
It has been shown that there is polynomial time factorization even in the case
only one pure qubit is available and the rest of quantumness available is in
mixed states.
To factor an integer n Shor’s algorithm uses O(lg3 n) steps and success
probability is guaranteed to be at least Ω( 1

lg lg n ).
An analysis of Shor’s algorithm therefore shows that by running the algorithm
O(lg lg n) times, therefore in total in O(lg3 n lg lg n) times we have very high
success probability.
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EFFICIANT IMPLEMENTATION of QFT

The clue to the design of a quantum circuit to implement the QFT

|x〉 → 1√
2m

2m−1∑
y=0

e
2πixy
2m |y〉

for |x〉 = |xm−1〉|xm−2〉 . . . |x0〉, wher xi s are bits, is the decomposition

2m−1∑
y=0

e
2πixy
2m |y〉 = (|0〉+ e

πix
20 |1〉)(|0〉+ e

πix
21 |1〉) . . . (|0〉+ e

πix
2m−1 |1〉)

The exponent in th l-th factor of the above decomposition can be written as
follows

exp(
πi(2m−1xm−1 + 2m−2xm−2 + . . .+ 2x1 + x0)

2l−1 )

= exp(
πi(2l−1xl−1 + 2l−2xl−2 + . . .+ 2x1 + x0)

2l−1 )

= (−1)xl−1exp(
πixl−2

2
) . . . exp(

πix1
2l−2 )exp(

πix0
2l−1 )
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CIRCUIT for QFT

If the unitary

φkl =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
πi

2l−k


is considered which acts on the lth and kth qubit, then the resulting circuit for
QFT has the form:

H

H

H

H

φ φ

φ φ

φ

φ

It has therefoe O(n2) gates.
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HIDDEN SUBGROUP PROBLEM

Another famous Shor’s algorithm is the one to compute discrete logarithm for
modular computation - also the problem for which we do not know an efficient
classical algorithm.

These two problems, and many other including those discussed in previous lecture,

deal with a special clase of so called Hidden subgroup problems.

Given is: An (efficiently computable) function f : G → R, where G is a group
and R is a finite set.
Given is a promise: There exists a subgroup G0 ≤ G such that f is constant

and distinct on the cossets of G defined by G0.

Task: Find a generating set for G0 (in a polynomial time (in lg |G |) with respect
to the number of calls to the oracle for f and in the overall polynomial time).

It has been shown that Hidden subroup problem has efficient solution in the case
the group is commutative. The case of non-commutative group is open. Positive
solution is shown to be very unlikely.

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 26/48



HIDDEN SUBGROUP PROBLEM

Another famous Shor’s algorithm is the one to compute discrete logarithm for
modular computation - also the problem for which we do not know an efficient
classical algorithm.

These two problems, and many other including those discussed in previous lecture,
deal with a special clase of so called Hidden subgroup problems.

Given is: An (efficiently computable) function f : G → R, where G is a group
and R is a finite set.
Given is a promise: There exists a subgroup G0 ≤ G such that f is constant

and distinct on the cossets of G defined by G0.

Task: Find a generating set for G0 (in a polynomial time (in lg |G |) with respect
to the number of calls to the oracle for f and in the overall polynomial time).

It has been shown that Hidden subroup problem has efficient solution in the case
the group is commutative. The case of non-commutative group is open. Positive
solution is shown to be very unlikely.

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 26/48



HIDDEN SUBGROUP PROBLEM

Another famous Shor’s algorithm is the one to compute discrete logarithm for
modular computation - also the problem for which we do not know an efficient
classical algorithm.

These two problems, and many other including those discussed in previous lecture,
deal with a special clase of so called Hidden subgroup problems.

Given is: An (efficiently computable) function f : G → R, where G is a group
and R is a finite set.
Given is a promise: There exists a subgroup G0 ≤ G such that f is constant

and distinct on the cossets of G defined by G0.

Task: Find a generating set for G0 (in a polynomial time (in lg |G |) with respect
to the number of calls to the oracle for f and in the overall polynomial time).

It has been shown that Hidden subroup problem has efficient solution in the case
the group is commutative.

The case of non-commutative group is open. Positive
solution is shown to be very unlikely.

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 26/48



HIDDEN SUBGROUP PROBLEM

Another famous Shor’s algorithm is the one to compute discrete logarithm for
modular computation - also the problem for which we do not know an efficient
classical algorithm.

These two problems, and many other including those discussed in previous lecture,
deal with a special clase of so called Hidden subgroup problems.

Given is: An (efficiently computable) function f : G → R, where G is a group
and R is a finite set.
Given is a promise: There exists a subgroup G0 ≤ G such that f is constant

and distinct on the cossets of G defined by G0.

Task: Find a generating set for G0 (in a polynomial time (in lg |G |) with respect
to the number of calls to the oracle for f and in the overall polynomial time).

It has been shown that Hidden subroup problem has efficient solution in the case
the group is commutative. The case of non-commutative group is open.

Positive
solution is shown to be very unlikely.

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 26/48



HIDDEN SUBGROUP PROBLEM

Another famous Shor’s algorithm is the one to compute discrete logarithm for
modular computation - also the problem for which we do not know an efficient
classical algorithm.

These two problems, and many other including those discussed in previous lecture,
deal with a special clase of so called Hidden subgroup problems.

Given is: An (efficiently computable) function f : G → R, where G is a group
and R is a finite set.
Given is a promise: There exists a subgroup G0 ≤ G such that f is constant

and distinct on the cossets of G defined by G0.

Task: Find a generating set for G0 (in a polynomial time (in lg |G |) with respect
to the number of calls to the oracle for f and in the overall polynomial time).

It has been shown that Hidden subroup problem has efficient solution in the case
the group is commutative. The case of non-commutative group is open. Positive
solution is shown to be very unlikely.

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 26/48



A SEARCH PROBLEM and GROVER”S
ALGORITHM

QUANTUM SEARCHING
in

UNORDERED SETS
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GROVERs SEARCH PROBLEM

Problem - a popular formulation: In an unsorted database of N items
there is exactly one, x0, satisfying an easy to verify condition P. Find x0.

Classical algorithms need in average N
2 checks.

Grover’s quantum algorithm exists that needs O(
√
N) steps.

Here is the basic idea of the algorithm - ”cooking” a solution.

x

x

x

x

x

x

0

0

0

0

0

0

average

(a)

(b)

(c)

(d)

(e)

(f)
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COOKING SOLUTION bY GROVER ALGORITHM

x

x

x

x

x

x

0

0

0

0

0

0

average

(a)

(b)

(c)

(d)

(e)

(f)

The figure above demonstrates some steps of the Grover algorithm.

Starting state, Figure (a), is equally weighted superposition of all basis states.
State |x0〉 is the one with f (x0) = 1.

Next step, Figure (b), is the state obtained by multiplying with −1 the
amplitude of the state |x0〉.
Figure (c) shows the state after inversion over the average - the amplitude at
|x0〉 is increased and amplitudes other basis states are decreased.

As the next step, Figure (d), depicts situation that amplitude at the basis
state |x0〉 is negated and the next step.

Figure (e), shows the result after another inversion about the average. In case
this process iterates for a proper number of steps we get that the amplitude
at state |x0〉 is (almost) 1 and amplitudes at other states are (almost) 0. A
measurement in such a situation produces x0 as the classical outcome.
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INVERSION ABOUT AVERAGE - TOOL

Inversion about the average is the unitary transformation

Dn :
2n−1∑
i=0

ai |φi 〉 →
2n−1∑
i=0

(2E − ai )|φi 〉,

where E is the average of {ai | 0 ≤ i < 2n}. This important transformation can be
performed by the matrix

−HnV
n
0 Hn = Dn =


−1 + 2

2n
2
2n . . . 2

2n

2
2n −1 + 2

2n
. . . 2

2n

...
...

. . .
...

2
2n

2
2n . . . −1 + 2

2n

 .

The matrix Dn is clearly unitary and it can be shown to have the form
Dn = −HnV

n
0 Hn, where

V n
0 [i , j ] = 0 if i 6= j ,V n

0 [1, 1] = −1 and V n
0 [i , i ] = 1 if 1 < i ≤ n.
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APPLICATION of the INVERSION ABOUT
AVERAGE

Let us consider again the unitary transformation

Dn :
2n−1∑
i=0

ai |φi 〉 →
2n−1∑
i=0

(2E − ai )|φi 〉,

and the following example:
Example: Let ai = a if i 6= x0 and ax0 = −a. Then

E = a− 2

2n
a

2E − ai =

{
a− 4

2n a if i 6= x0
2E − ax0 = 3a− 4

2n a; otherwise

Therefore, the value of 2E − ai is smaller than a if i 6= i0, and increases otherwise
- if i = i0.
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GROVERs ALGORITHM

Start in the state

|φ〉 =
1√
2n

2n−1∑
x=0

|x〉

and iterate bπ4
√

2nc times the transformation (so called Grover’s iterate):

−HnV
n
0 HnVf︸ ︷︷ ︸ |φ〉 → |φ〉.

Afterwords, measure the register to get some x1 (hopefully x0) and check whether
f (x1) = 1. If not, repeat the procedure.

It has been shown that the above algorithm is optimal for finding the solution
with probability > 1

2 .

In the case that there are t solutions, repeat the above iteration⌊
π

4

√
2n

t

⌋
times.
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ANALYSIS of THE GROVER ALORITHM

Denote
X1 = {x | f (x) = 1} X0 = {x | f (x) = 0}

and denote the state after jth iteration of Grover’s iterate −HnV
n
0 HnVf as

|φj〉 = kj
∑
x∈X1

|x〉+ lj
∑
x∈X0

|x〉

with

k0 =
1√
2n

= l0.

Since
|φj+1〉 = −HnV

n
0 HnVf |φj〉,

it holds

kj+1 =
2n − 2t

2n
kj +

2(2n − t)

2n
lj , lj+1 =

2n − 2t

2n
lj −

2t

2n
kj

what yields

kj =
1√
t

sin((2j + 1)θ)

lj =
1√

2n − t
cos((2j + 1)θ)

where sin2 θ = t
2n .
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Recurrence relations have therefore as the solution

kj =
1√
t

sin((2j + 1)θ), lj =
1√

2n − t
cos((2j + 1)θ)

where

sin2 θ =
t

2n
.

The aim now is to find such an j which maximizes kj and minimizes lj .

For doing that we need to take j such that cos((2j + 1)θ) = 0, that is
(2j + 1)θ = (2m + 1)π2 .

Hence

j =
π

4θ
− 1

2
+

mπ

2θ
what yields

j0 = d π
4θ
e,

and because sin2 θ = t
2n we have

0 ≤ sin θ ≤
√

t

2n

and therefore

j0 = O

(√
2n

t

)
.
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QUANTUM SEARCH in ORDERED LISTS

A related problem to that of a search in
an unordered list is a search in an ordered
list of n items.

The best upper bound known today is
3
4 lg n.

The best lower bound known today is
1
12 lg n −O(1).
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EFFICIENCY of GROVER’s SEARCH

There are at least four different proofs that Grover’s search is asymptotically
optimal.

Quite a bit is known about the relation between the error ε and the number T of
queries when searching an unordered list of n elements.

ε can be an arbitrary small constant if O(
√
n) queries are used, but not when

o(
√
n) queries are used.

ε can be at most 1
2nα

using O(n0.5+α) queries.

To achieve no error (ε = 0), θ(n) queries are needed.
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APPLICATIONS of GROVER’s SEARCH

There is a variety of applications of Grover’s search algorithm. Let us mention
some of them.

Extremes of functions computation (minimum, maximum).
Collision problem Task is to find, for a given black-box function f : X → Y ,
two different x 6= y such that f (x) = f (y), given a promise that such a pair
exist.

On a more general level an analogical problem deals with the so-called
r-to-one functions every element of their image has exactly r pre-images. It
has been shown that there is a quantum algorithm to solve collision problem
for r -to-one functions in quantum time O((n/r)1/3). It has been shown in
2003 by Shi that the above upper bound cannot be asymptotically improved.
Verification of predicate calculus formulas. Grover’s search algorithm can
be seen as a method to verify formulas

∃xP(x),

where P is a black-box predicate.
It has been shown that also more generalized formulas of the type

∀x1∃y1∀x2∃y2 . . . ∀xk∃ykP(x1, y1, x2, y2, . . . , xk , yk)

can be verified quantumly with the number of queries O(
√

2(2k)).
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QUANTUM MINIMUM FINDING ALGORITHM

Problem: Let s = s1, s2, . . . , sn be an unsorted sequence of distinct elements.
Find an m such that sm is minimal.

Classical search algorithm needs θ(n) comparisons.

QUANTUM SEARCH ALGORITHM

1 Choose as a first “threshold” a random y ∈ {1, . . . , n}.
2 Repeat the following three steps until the total running time is more than

22.5
√
n + 1.4 lg2 n.

1 Initialize

|ψ0〉 =
1√
n

n∑
i=1

|i〉|y〉

and consider an index i as marked if si < sy .
2 Apply Grover search to the first register to find an marked element.
3 Measure the first register. If y ′ is the outcome and sy′ < sy , take as a new

threshold the index y ′.

3 Return as the output the last threshold y .
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SHOR’s DISCRETE LOGARITHM ALGORITHM

Shor’s quantum algorithm for discrete logarithm will be again presented only for a
special case.

The task is to determine an r such that g r ≡ x(mod p) given a prime p, a
generator g of the group Z∗p and an 0 < x < p. The special case we consider is
that p − 1 is smooth.

Using QFTp−1 twice, on the third and fourth sub-register of the state
|x , g , 0, 0, 0〉, we get

|φ〉 =
1

p − 1

p−2∑
a=0

p−2∑
b=0

|x , g , a, b, 0〉,

a uniform distribution of all pairs (a, b), 0 ≤ a, b ≤ p − 2. By applying to |φ〉 the
unitary mapping

(x , g , a, b, 0)→ (x , g , a, b, g ax−b mod p)

we get

|φ′〉 =
1

p − 1

p−2∑
a=0

p−2∑
b=0

|x , g , a, b, g ax−b mod p〉.
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Since parameters x , g will not be changed in the following computations we will
not write them explicitly in what follows.

Therefore the state we got at the previous computation is:

|φ′〉 =
1

p − 1

p−2∑
a=0

p−2∑
b=0

|a, b, g ax−b mod p〉.

As the next step we apply QFTp−1 on |φ′〉 twice, once to map each a to each c
with the amplitude 1√

p−1e
2πiac/(p−1) and once to map each b to each d with

amplitude 1√
p−1e

2πibd/(p−1).

The resulting state will be:

|φ1〉 =
1

(p − 1)2

p−2∑
a,b,c,d=0

e
2πi
p−1 (ac+bd)|c , d , g ax−b mod p〉.
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Hence

|φ1〉 =
1

(p − 1)2

p−2∑
a,b,c,d=0

e
2πi
p−1 (ac+bd)|c , d , g ax−b mod p〉.

Let us now measure the last register and denote by y the value we get.

The state |φ1〉 then collapses into the state (before the normalization)

|φ2〉 =

p−1∑
c,d=0

α(c , d)|c , d , y〉,

where

α(c , d) =
1

(p − 1)2

∑
{(a,b) | y=gax−b mod p}

e
2πi
p−1 (ac+bd).

We now claim that if y = g ax−b mod p, then y = gk for some k such that

a− rb ≡ k (mod p − 1).

Indeed,
y = g ax−b ≡ g a(g r )−b = g a−rb.

and, therefore, if a− rb ≡ k (mod p − 1), then

g a−br ≡ gk (mod p)
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Therefore

α(c , d) =
1

(p − 1)2

∑
{(a,b) | a−rb≡k (mod p−1)}

e
2πi
p−1 (ac+bd)

The probability Pr that, for fixed c and d , we get by measurement of |φ2〉 a value
y is therefore

Pr =

∣∣∣∣∣∣ 1

(p − 1)2

p−2∑
a,b=0

{e
2πi
p−1 (ac+bd) |a− rb ≡ k (mod p − 1)}

∣∣∣∣∣∣
2

.

By substituting a = k + rb + jb(p − 1) we get as the probability

Pr =

∣∣∣∣∣ 1

(p − 1)2

p−2∑
b=0

e
2πi
p−1 (kc+cjb(p−1)+b(d+rc))

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

(p − 1)2
e

2πikc
p−1

p−2∑
b=0

e
2πi
p−1 (b(d+rc))

∣∣∣∣∣
2

what equals

Pr =

∣∣∣∣∣ 1

(p − 1)2

p−2∑
b=0

e
2πi
p−1 (b(d+rc))

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

(p − 1)2

p−2∑
b=0

(e
2πi
p−1 (d+rc))b

∣∣∣∣∣
2
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The above probability Pr is therefore 0 if

d + rc 6≡ 0 mod (p − 1)

because, as in the previous algorithm, in such a case the sum in the above
expression is over a set of complex numbers equally spaced around the unit circle.

On the other hand, if
d ≡ −rc (mod p − 1),

then the above sum does not depend on b and it is equal to

(p − 1)−1e(2πikc/(p−1)).

The square of its absolute value, the probability, is therefore 1
(p−1)2 .

Consequence: the measurements on the first and second register provide a
(random) c < p − 1 and a d such that

d ≡ −rc (mod p − 1).

If gcd(c , p − 1) = 1, r can now be obtained as a unique solution of the above
congruence equation.

The number of computations needed to be performed, in order to get the
probability close to 1 for finding r , is polynomial in lg lg p.
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ANOTHE COMMENTS on SHOR’s
FACTORIZATION ALGORITHM

To factor an integer n Shor’s algorithm uses O(lg3 n) steps and success
probability is guaranteed to be at least Ω( 1

lg lg n ).

An analysis of Shor’s algorithm therefore shows that by running the algorithm
O(lg lg n) times, therefore in total in O(lg3 n lg lg n) times we have very high
success probability.

Shor’s algorithms make some of the important current cryptosystems, as
RSA, ElGamal and so on vulnerable to attacks using quantum computers.

Shor’s result have been generalized to show that a large range of
cryptosystems, including elliptic curve cryptosystems, would be vulnerable to
attacks using quantum computers.
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O(lg lg n) times, therefore in total in O(lg3 n lg lg n) times we have very high
success probability.

Shor’s algorithms make some of the important current cryptosystems, as
RSA, ElGamal and so on vulnerable to attacks using quantum computers.
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FOURIER TRANSFORM on ABELIAN GROUPS

We show now basics how the concept of
Fourier Transform is defined on any finite
Abelian group.
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CHARACTERS on ABELIAN GROUPS

Let G be an Abelian additive group and |G | = n. A character χ of G is any
morphism χ : G → C/0. That means that for any g1, g2 ∈ G it holds:

χ(g1 + g2) = χ(g1)χ(g2)).

This implies that χ(0) = 1 and 1 = χ(ng) = χ(g)n for any g ∈ G . Therefore, all
values of χ are nth roots of unity.

If we define multiplication of characters χ1 and χ2 by χ1χ2(g) = χ1(g)χ2(g),
then characters form so-called dual group Ĝ. Groups G and Ĝ are isomorphic for
all Abelian groups G .

Example 1 Any cyclic group of n elements is isomorphic to the group Zn and all
its characters have the form, for some y ∈ Zn:

χy (x) = e
2πixy

n .

Example 2 In the additive group F2
m, of all binary strings of length m, all

characters have the form, for some binary m-bit strings x and y :

χy (x) = (−1)x·y ,

where x · y =
∑m

i=1 xiyi mod 2
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all Abelian groups G .

Example 1 Any cyclic group of n elements is isomorphic to the group Zn and all
its characters have the form, for some y ∈ Zn:

χy (x) = e
2πixy

n .

Example 2 In the additive group F2
m, of all binary strings of length m, all

characters have the form, for some binary m-bit strings x and y :

χy (x) = (−1)x·y ,

where x · y =
∑m

i=1 xiyi mod 2

prof. Jozef Gruska IV054 1. Seminal quantum algorithms 46/48



CHARACTERS on ABELIAN GROUPS

Let G be an Abelian additive group and |G | = n. A character χ of G is any
morphism χ : G → C/0. That means that for any g1, g2 ∈ G it holds:

χ(g1 + g2) = χ(g1)χ(g2)).

This implies that χ(0) = 1 and 1 = χ(ng) = χ(g)n for any g ∈ G . Therefore, all
values of χ are nth roots of unity.

If we define multiplication of characters χ1 and χ2 by χ1χ2(g) = χ1(g)χ2(g),
then characters form so-called dual group Ĝ. Groups G and Ĝ are isomorphic for
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ORTHOGONALITY of CHARACTERS

Any function f : G → C on an Abelian group G = {g1, . . . , gn} can be specified
by the vector (f (g1), . . . , f (gn)), and if the scalar product of two functions is
defined in the standard way as

〈f |g〉 =
n∑

i=1

f ∗(gi )h(gi ),

then for any characters χ1 and χ2 on G it holds

〈χi |χj〉 =

{
0, if i 6= j
n, if i = j

Therefore, the functions {Bi = 1√
n
χi} form an orthonormal basis on the set of all

functions f : G → C.
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FOURIER TRANSFORMS

Any function f : G → C has a unique representation with respect to the basis
{Bi = 1√

n
χi}ni=1,

f = f̂1B1 + . . .+ f̂nBn

In such a case the function f̂: G → C defined by

f̂(gi ) = f̂i

is called the Fourier transform of f .
Since f̂i = 〈Bi |f 〉, we get

f̂(gi ) =
1√
n

n∑
k=1

χ∗i (gk)f (gk),

Therefore in Zn the Fourier transform has the form

f̂(x) =
1√
n

∑
y∈Zn

e−
2πixy

n f (y)

and in Fm
2 the Fourier transform has the form

f̂(x) =
1√
2m

∑
y∈Fm

2

(−1)x·y f (y).
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