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Introduction

What is a game?

One definition: A form of competitive sport or activity played
according to rules.

  

TICKTACKTOE CHESS
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Von Neumann’s definition

Von Neumann’s idea when talking about games is only tangentially
about sport.
Jacob Bronowski in Ascent of Man writes ”To VonNeumann,
games meant not really Chess which are amenable to a solution
given a particular position. For him, games mimicked real life,
wherein real life situations like bluffing, deception, etc, hold centre
stage”

What is game theory really?

Game theory is a rigorous branch of Mathematical logic that
underlies real conflicts among (not always rational) humans.
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Why should we study game theory?

Biology-evolutionary game theory: Survival of the fittest,
Contribution of Axelrod ”Evolution of Coperation” took game
theory into biology.

Quantum Physics (Quantum game theory, Quantum
algorithms)

Statistical Physics-Minority games: El Ferrol Bar problem.

Social Sciences- Politics (Diplomacy, Election, etc.),
Economics (Auctions, mergers & acquisitions, etc.)
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Basic definitions

Players: Game theory is about logical players interested only
in winning.

Actions : The set of all choices available to a player.

Payoff : With each action we associate some value(a real
number) such that higher values(i.e. payoff) are preferred.

Optimal Strategy : Strategy that maximizes a player’s
expected payoff.
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Types of games

Cooperative and non-cooperative

A game is cooperative if the players are able to form binding
agreements i.e. the optimal strategy is to cooperate, players can
coordinate their strategies and share the payoff.
Example of a cooperative game : Treasure Hunt- An expedition of
n people have found a treasure in the mount; each pair of them
can carry out one piece, but not more. How will they pair up?
Example of a non-cooperative game: Chess(Sports), Matching
pennies, Penny flip
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Types of games

Zero sum and Non-zero sum

If one player wins exactly the same amount the other player looses
then the sum of their payoff’s is zero. Since the payoff’s are against
each other these games are also known as non-cooperative games.
Example of a zero sum game : Matching pennies
Example of a non-zero sum game : Prisoner’s dilemma
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Types of games

Simultaneous and sequential

In simultaneous games players play simultaneously or say the
players do not know of the other player’s actions it makes the
game effectively simultaneous.
Sequential games are where players play one after the another.
Example of a sequential game : Chess
Example of a simultaneous game : Matching pennies
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Von-Neumann’s Minimax theorem for zero sum games

Minimax via cake division

Cutter goes for nearly half the cake by electing to split the cake
evenly. This amount, the maximum row minimum, is called
“maximin”. Cutter acts to maximize the minimum the chooser will
leave him-”maximin”.
Chooser looks for minimum column maximum-”minimax”.
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Nash Equilibrium for zero and non-zero sum games

Nash Equilibrium via Prisoner’s dilemma

Nash equilibrium: A set of strategies is a Nash equilibrium if no
player can do better by unilaterally changing their strategy
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Matching pennies

The game is played between two players, Players A and B.
Each player has a penny and must secretly turn the penny to heads
or tails.
The players then reveal their choices simultaneously.
If the pennies match both heads or both tails then player A keeps
both pennies,(so wins 1 from B i.e. +1 for A and -1 for B).
If they don’t match player B keeps both the pennies.

  

A

B

A zero sum, noncooperative and simultaneous 
game without a fixed Nash equilibrium.
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Matching pennies

  

MAXIMIN

MAXIMIN MINIMAX

MINIMAX

MINIMAX   & MAXIMIN

Pure vs. Mixed strategies

Pure: Playing heads or tails with certainty.
Mixed: Playing heads or tails randomly (with 50% probability for
each)
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Nash equilibrium(NE) for Matching Pennies

Alice and Bob, have a penny that each secretly flips to heads H or
tails T. No communication takes place between them and they
disclose their choices simultaneously to a referee. If referee finds
that pennies match (both heads or both tails), he takes 1$ from
Bob and gives it to Alice (+1 for Alice, -1 for Bob). If the pennies
do not match he does the opposite. As one players gain is exactly
equal to the other players loss, the game is zero-sum and is
represented with the payoff matrix:

  

It is well known that MP has no pure strategy Nash equilibrium
but instead has a unique mixed strategy NE.
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Mixed strategy NE for Matching Pennies

Consider repeated play of the game in which x and y are the
probabilities with which H is played by Alice and Bob, respectively.
The pure strategy T is then played with probability (1-x) by Alice,
and with probability (1-y) by Bob, and the players payoff relations
read

  

 For the payoff matrix these inequalities read:

 At the NE, the player's payoff's work out as:
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Meyer’s Penny flip game

The PQ penny flip was designed by David Meyer, its a close cousin
of the Matching pennies game and has the following rules:
Players P and Q each have access to a single penny.
Initial state of the penny is heads(say). Each player can choose to
either flip or not flip the penny.
Players cannot see the current state of the penny.
Sequence of actions :Q → P → Q
If final state is heads, Q wins else P wins
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Payoff’s for Meyer’s Penny flip game

The payoff matrix for the game is as follows with the first entry as
the payoff of P and the second is the payoff of Q.

  

Nash equilibrium for Meyer’s penny flip

No pure strategy NE but a mixed strategy NE exists. The pair of
mixed strategies with P flipping or not flipping with prob. 1/2 and
Q playing each of the available four strategies with prob. 1/4 is
the NE with payoff zero.
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Quantum Games - An Introduction

Quantization Rules:

Superposed initial states
Quantum entanglement of initial states.
Superposition of strategies to be used on the initial states
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Quantum Penny Flip game

Quantum Penny flip game Rules:

The penny of the game is represented as a qubit(two-level system),
with Heads maps to |0 > and tails mapped to |1 >.
Player P does classical moves i.e. Flip (X) or not flip (I).
Player Q does quantum moves i.e. any general unitary U (say
Hadamard).
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Quantum vs. Classical moves

  

Why does Q win?

Q’s quantum strategy puts the penny into the equal superposition
of ‘head’ and ‘tail’.
This state is invariant under X or I, Q always wins.

D. Mayer, Quantum Strategies, Phys. Rev. Lett. 82, 1052 (1999).
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Quantum Prisoner’s dilemma

Quantum Prisoner’s dilemma: The steps

Step 1: Initial state |ψin >= |00 >
Step 2: Generate entanglement via
Ĵ(γ) = cos(γ2 )Î ⊗ Î + i sin(γ2 )X̂ ⊗ X̂

Step 3: |ψfin >= Ĵ†(γ)(Â⊗ B̂)Ĵ(γ)|00 >, Â and B̂ represent Alice
and Bob’s strategies.
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Payoff’s in Prisoners dilemma and Chicken

  

Prisoner's Dilemma

Game of chicken

Figure : Classical Payoff’s

Quantum Payoff’s for Alice or Bob

< $ >=
∑2

i ,j=1 $ij | < ij |ψfin > |2
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Alice’s and Bob’s strategies

  

Strategy Always cooperate: 

General strategy: 

Cooperate: |0>, Defect: |1>

Strategy Always defect: 

Alice classical player: Alice classical player:                       or

Bob quantum player: 

Eisert's miracle move: 
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Payoff’s for quantum prisoner’s dilemma

  Solid line: Bob plays Miracle move, Dashed line: Bob defects
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Van Enk’s criticism

  

Q is a superposition of C and D
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Can classical strategies win against quantum strategies?

Motivation of our work

In the quantum penny flip game we see how the quantum player
can outperform the classical player.
However, is the converse at all possible?
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Quantum entangled penny flip game: Introduction

Introduction

A maximally entangled state of two qubits is the “penny” of the
game.
It is shared by P and Q; each allowed to make moves on only the
qubit in their possession.

Moves

Sequence of actions : Q → P → Q

Rules of winning

If the final state of the game is a maximally entangled state then Q
wins, If it is a separable state then P wins.
If it is a non-maximally entangled state then its a draw.
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Playing the Quantum entangled penny flip game

The classical pure strategy

In this case the classical player P is allowed only the pure strategy
of either flipping or not flipping his qubits.
The initial state of the system:|ψ >= 1√

2
(|10 > −|01 >)

Moves

Sequence of actions : Q → P → Q

Q does a Hadamard

H ⊗ I |ψ >= 1
2 (|00 > −|01 > −|10 > −|11 >)
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The classical pure strategy

P’s move: To flip or not to flip

I ⊗ X 1
2 (|00 > −|01 > −|10 > −|11 >) = 1

2 (|01 > −|00 > −|11 >
−|10 >)
OR
I ⊗ I 1

2 (|00 > −|01 > −|10 > −|11 >) = 1
2 (|00 > −|01 > −|10 >

−|11 >)

Q’s move: H again

H ⊗ I 1
2 (|01 > −|00 > −|11 > −|10 >) = 1√

2
(|11 > −|00 >)

OR
H ⊗ I 1

2 (|00 > −|01 > −|10 > −|11 >) = 1√
2

(|00 > +|11 >)

In either case Q wins.
Colin Benjamin Review
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What did we learn?

Moral

In quantum entangled penny flip game, with one player having
classical pure strategy, while the other player does quantum moves
gives a definite win to quantum player.

Why is this important?

The game here is about whether player Q having all quantum
strategies at his hand can keep the state maximally entangled,
whereas P with classical moves can or cannot reduce/destroy the
entanglement.

Algorithms

Strategy is similar to an algorithm: finite # of steps to solve a
problem/win a game.
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The classical mixed strategy

Defining mixed strategy

P can now flip or not flip with some probability “p”.
A maximally entangled state of two qubits is the “penny” of the
game.
It is shared by P and Q; each allowed to make moves on only the
qubit in their possession.
Sequence of actions :Q → P → Q
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Playing with classical mixed strategy

Initial state

The maximally entangled state “Penny”:
|ψ >= 1√

2
(|10 > −|01 >)

In the form of density matrix:

ρ0 = |ψ〉 〈ψ| = 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

.

Q’s move

Q makes an unitary transformation on her part of the shared state.

UQ1 =

[
a b∗

b −a∗
]

.

The state after Q’s move then is ρ1 = (UQ1 ⊗ I )ρ0(UQ1 ⊗ I )†.
Colin Benjamin Review
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Playing with classical mixed strategy

P’s move

P now plays a mixed strategy, which entails flipping the state of his
qubit with probability “p” or not flipping. The state after P’s move
then is: ρ2 = p(I ⊗ X )ρ1(I ⊗ X )† + (1− p)(I ⊗ I )ρ1(I ⊗ I )†.

Q’s final move

At the end Q makes her final move, which as before has to be an
unitary transformation, it further could be same as her first move

or different. Thus UQ2 =

[
α β∗

β −α∗
]

. The state after this final

move then is ρ3 = (UQ2 ⊗ I )ρ2(UQ2 ⊗ I )†.
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Analysing the game

When Q’s moves are Hadamard

To understand this case of P using mixed, lets analyse this case for
Q using the familiar Hadamard transform in both steps 2 and 4. In
this special case,

ρ3 = 1
2


p 0 0 −p
0 1− p −1 + p 0
0 −1 + p 1− p 0
−p 0 0 p

.
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Is the final state entangled or separable?

To check the entanglement content of this final state we take
recourse to an entanglement measure- Concurrence.
Concurrence for a two qubit density matrix ρ3 is defined as follows-
we first define a ”spin-flipped” density matrix, γ as
(σy ⊗ σy )ρ∗3(σy ⊗ σy ). Then we calculate the square root of the
eignevalues of the matrix ρ3γ (say λ1,λ2,λ3,λ4) in decreasing
order. Then, Concurrence is :

max (λ1 − λ2 − λ3 − λ4, 0)
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Figure : Concurrence vs p showing that entanglement vanishes at
p = 1/2, so by P’s classical moves entanglement is completely destroyed
enabling him to win.

Classical random strategy wins against quantum strategy

Although the individual moves had no effect, a probabilistic move
has enabled the classical player to win!!!.
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Quantum entangled penny flip game: General quantum
strategy versus mixed classical strategy

What if the quantum player uses a general unitary and not just a
Hadamard?
Further in successive turns he does not implement the same
unitary, i.e., UQ1 6= UQ2

UQi
=

[
cos(θi )e

iφi sin(θi )e
iφ′i

sin(θi )e
−iφ′i − cos(θi )e

−iφi

]
, i = 1, 2.
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(a) Concurrence vs. θ1, θ2 = 0, φ1 =
π/2, φ′

1 = 0, φ2 = π/2, φ′
2 = 0

(b) Concurrence vs. θ2, θ1 = 0, φ1 =
π/2, φ′

1 = 0, φ2 = π/2, φ′
2 = 0

Figure : The Concurrence when quantum player plays a general unitary
vs. classical players mixed strategy. The classical player always wins when
p = 1/2, confirming that regardless of whether quantum player uses a
Hadamard or any other unitary he always loses when classical player plays
a mixed strategy of either flipping or not flipping with probability 50%.

Colin Benjamin Review



Introduction
Quantum games

Non-locality and Quantum games
Parrondo’s game

Conclusion: Game theory and greek crisis

Quantum Penny flip game
Quantum Prisoner’s dilemma
Quantum entangled penny flip game

Quantum circuit implementation

(a) Quantum player uses Hadamard. (b) Quantum player uses a general uni-
tary

Figure : The quantum circuit for the entangled penny flip game. M
denotes measurement of entanglement content via concurrence.
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Conclusion

Quantum entangled penny flip game

In a particular case where classical player uses a mixed strategy
with p = “0.5”, the quantum player indeed loses as opposed to the
expected win for all possible unitaries!

Meyer’s penny flip

Meyer showed that in the PQ penny flip if both players use
Quantum strategies then there is no advantage. However, a player
using a quantum strategy will win 100% of the time against a
player using a classical strategy.
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Perspective on quantum algorithms

Quantum algorithms have been shown to be more efficient than
classical algorithms, for example Shor’s algorithm. We in this work
put forth a counter example which demonstrates that a particular
classical algorithm can outwit the previously unbeatable quantum
algorithm in the entangled quantum penny flip problem. On top of
that the mixed strategy works against any possible unitary as we
show by simulation on a strategy space for all possible parameters.

What we show

Quantum strategies are not(always) better than classical strategies.
N. Anand and Colin Benjamin, Quantum Information Processing, 14 (11), 4027-4038 (2015).
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XOR or CHSH games

XOR games

The simplest type of two-player games.

Alice and Bob are two players playing a game with Charlie a
referee.

Charlie prepares x , y ∈ {0, 1}- x to Alice and y to Bob.

Alice is to produce a ∈ {0, 1}, and Bob is to produce
b ∈ {0, 1}.
Alice and Bob are not permitted to communicate.

Alice and Bob win the game if

a⊕ b = xΛy (1)

Where ′⊕′ denotes the sum modulo 2 (the XOR gate) and Λ
denotes the product (the AND gate).
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XOR or CHSH games

XOR games

Can Alice and Bob find a strategy that enables them to win
the game every time, no matter how Charlie chooses the input
bits?

Let a0, a1 denote the value of Alice’s output if her input is
x = 0, 1 and let b0, b1 denote Bob’s output if his input is
y = 0, 1.

For Alice and Bob to win for all possible inputs, their output
bits must satisfy

a0 ⊕ b0 = 0, (2)

a0 ⊕ b1 = 0, (3)

a1 ⊕ b0 = 0, (4)

a1 ⊕ b1 = 1. (5)
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XOR games: Shared randomness

Suppose that Charlie generates the input bits at random. Then
there is a very simple strategy that enables Alice and Bob to win
the game three times our of four: they always choose the output
a = b = 0 so that they lose only if the input is x = y = 1. The
CHSH inequality can be regarded as the statement that, if Alice
and Bob share no entanglement, then there is no better strategy.
We define random variables taking values +1,−1 as-

a = (−1)a0 , a′ = (−1)a1 , (6)

b = (−1)b0 , b′ = (−1)b1 , (7)

Then the CHSH inequality says that for any joint probability
distribution governing a, a0, b, b0 ∈ {+1,−1}, the expectation
values satisfy

〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉 ≤ 2 (8)
Colin Benjamin Review
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XOR or CHSH games

Shared randomness

If we denote by pxy the probability that equation 2, 3, 4, 5 is
satisfied when the input bits are (x , y), then

〈ab〉 = 2p00 − 1, (9)

〈ab′〉 = 2p01 − 1, (10)

〈a′b〉 = 2p10 − 1, (11)

〈a′b′〉 = 1− 2p11; (12)

for example 〈ab〉 = p00 − (1− p00) = 2p00 − 1 , because the value
of ab is +1 when Alice and Bob win and -1 when they lose.

Colin Benjamin Review



Introduction
Quantum games

Non-locality and Quantum games
Parrondo’s game

Conclusion: Game theory and greek crisis

XOR or CHSH games

Shared randomness

The CHSH inequality equation 8 becomes

2(p00 + p01 + p10 + p11)− 4 ≤ 2, (13)

or

〈p〉 =
1

4
(p00 + p01 + p10 + p11) ≤ 3

4
(14)

where 〈p〉 denotes the probability of winning averaged over a
uniform ensemble for the input bits. Thus, if the input bits are
random, Alice and Bob cannot attain a probability of winning
higher than 3/4.
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XOR or CHSH games

Shared Quantum entanglement

If Alice and Bob share quantum entanglement, they can devise a
better strategy. Based on the value of her input bit, Alice decides
to measure one of two Hermitian observables with eigenvalues
+1,−1: a if x = 0 and a′ if x=1. Similarly Bob measures b if y=0
and b′ if y=1. Then the quantum mechanical expectation values of
these observables satisfy

〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉 ≤ 2
√

2 (15)
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XOR or CHSH games

Shared Quantum entanglement

The probability that Alice and Bob win the game is constrained by

2(p00 + p01 + p10 + p11)− 4 ≤ 2
√

2, (16)

or

〈p〉 =
1

4
(p00 + p01 + p10 + p11) ≤ 1

2
+

1

2
√

2
= 0.853 (17)

Thus we have found that Alice and Bob can play the game more
successfully with quantum entanglement than without it. At least
for this purpose, shared quantum entanglement is a more powerful
resource than shared classical randomness.
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XOR or CHSH games

XOR: CHSH games

Binary games are games in which Alice and Bob’s answer are
bits: A = B = {0, 1}.
XOR games are binary games that are further restricted in
that the winning condition depends only on a⊕ b and not a
and b independently.

The CHSH games are example of XOR games.
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XOR or CHSH games

XOR: CHSH games

For shared randomness the probability of winning is
≤ 3

4 = 0.75.

For shared quantum entanglement the winning probability is
≤ cos2 π

8 = 0.853

Without shared entanglement the maximum probability of
winning is = 75%

With shared entanglement the maximum probability for
winning is = 85%
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XOR or CHSH games

CHSH game: classical version

Defining one of the optimal strategy i.e. they both produce 0.

Three out of four winning conditions are satisfied.

Overall probability to win the game = 3
4
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XOR or CHSH games

CHSH game: quantum version

Let Alice and Bob share an entangled state:

|Ψ〉 =
1√
2

(|00〉+ |11〉) (18)

As
a and Bt

b be the set of operators for Alice and Bob
respectively and are defined as follow:

Aa
0 = |φa(0)〉〈φa(0)|,

Aa
1 = |φa(π/4)〉〈φa(π/4)|,

Bb
0 = |φb(π/8)〉〈φb(/pi/8)|,

Bb
1 = |φb(−π/8)〉〈φb(−/pi/8)|.

(19)
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XOR or CHSH games

CHSH game: quantum version

such that:

|φ0(θ)〉 = cos(θ)|0〉+ sin(θ)|1〉,

|φ1(θ)〉 = − sin(θ)|0〉+ cos(θ)|1〉.
(20)

Now the probability that on question s, t Alice answer a and
Bob answers b is given by :

P(a, b|s, t) = 〈Ψ|As
a ⊗ Bt

b|Ψ〉 (21)
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XOR or CHSH games

CHSH game: quantum version
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XOR or CHSH games

CHSH game: quantum version

Given our particular choice of Ψ, we have
〈Ψ|As

a ⊗ Bt
b|Ψ〉 = 1

2Tr(AT )B for arbitrary matrices A and B.

on doing calculations it is easy to show that the probability of
wining is given as cos2 π

8 = 0.853

”Bell nonlocality”, N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys.

86, 419 (2014).
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Quantum Parrondo’s game

Parrondo’s Paradox

Two games in which the probability of losing is greater than
probability of winning, if played in a particular sequence makes the
probability of winning greater than losing.
Example:
Game 1: If on a particular the amount of money that A has is
even, then he gains Rs. 3 and if its odd then he loses Rs.5
Game 2: Every turn A would lose Rs.1

Losing or winning?

Game 1: He would surely lose. Suppose he has Rs. 200, then after
1 st turn he would have Rs. 203, then the turn after he would have
Rs. 198. So finally he would lose all his money.
Game 2: Surely he would lose.
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Quantum Parrondo’s game

Parrondo’s paradox
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Quantum Parrondo’s game

Astumian’s paradox
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Quantum Parrondo’s game

The probability to lose in each game is more than win. But
suppose the game is played by tossing a faircoin at each turn such
that if its head then game 1 is played and if its tails then game 2 is
played.

  

Simple games to illustrate Parrondos paradox, H. Martin, H. Christian von Baeyer, Am. J. Phys. 72, 710

(2004).
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Quantum Parrondo’s game

History dependent Parrondo’s game

To introduce the quantum version of Parrondo’s game we have to
first understand the history dependent classical Parrondo’s game.
The construction of the game is the following-

Game A:It involves tossing a weighted coin 1 with probability
pw = 0.5− ε, 0 < ε� 1 for winning and pl = 1− pw for losing.

Game B:In this game 3 coins are used. One of them is tossed
based on the outcome of the previous game.
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Quantum Parrondo’s game

  

Coin 2: p
w
 =.9 – , Coin 3: p

w
=.25  , Coin 4: p

w
 =.7 . 

Evidently, coin 3 is tossed more often than the other coins, and
hence B is a losing game.
In the Parrondos games both A and B are losing games for small
positive values of ε. However, simulation of the games have
predicted that switching between the losing games, e.g., playing
two times A, two times B, two times A, and so on results in
winning, i.e., a player can play the two losing games A and B in
such an order to realize a winning expectation.
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Quantum Parrondo’s game

Quantum Parrondo’s game

The coin tossing game can be quantized by an SU(2) operation on
a qubit. A physical system may be a collection of polarized
photons with |0 > and |1 > representing horizontal and vertical
polarizations respectively.
An arbitrary SU(2) operation on a qubit is expressed as:

  

 This is the quantum analogue of the game A− a single toss of a 
biased coin. 

Quantum Parrondo’s Games, A. P. Flitney, J. Ng, D. Abbott, Physica A, 314 (2002) 35-42.
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Quantum Parrondo’s game

  

Game B consists of four SU(2) operations, each of the form of    :

 The result of n  successive games of B  is found by:
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Quantum Parrondo’s game
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Quantum Parrondo’s game

  

Colin Benjamin Review



Introduction
Quantum games

Non-locality and Quantum games
Parrondo’s game

Conclusion: Game theory and greek crisis

Game theory in Greek crisis

  
CNN-Video
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http://edition.cnn.com/videos/world/2015/04/24/pkg-sebastian-greece-game-theory-negotiations.cnn
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