I. Antoniadis

String Phenomenology

Indian Strings Meeting

Puri, December 2006

OUTLINE

- Motivations
- Framework of low scale strings
 large extra dimensions, low scale gravity
- Exp predictions for particle accelerators strong gravity, TeV dimensions, string effects
- D-brane embedding of the Standard Model unification, proton stability, Right-neutrinos
- Electroweak symmetry breaking
- SUSY in the bulk and short range forces radion force, gauge bosons in the bulk
- SUSY breaking by internal magnetic fields or equivalently branes at angles
- Gaugino masses
 Split supersymmetry, Dirac masses

Hierarchy problem: why gravity is so weak compared to the other interactions?

Quantum theory: all particle masses $\nearrow M_P \sim 10^{19}$ GeV

 Supersymmetry: protection of hierarchy due to cancellations between fermions and bosons

$$\Rightarrow m_{\rm SUSY} \sim {\rm TeV}$$

• TeV strings: low UV cutoff

$$\Rightarrow M_s \sim \text{TeV}$$

Split supersymmetry: unknown solution
 live with the hierarchy

 $\Rightarrow m_0$ heavy, fermions light

→ all of them testable at LHC

• Heterotic string:

Natural framework for susy and unification However mismatch between string and GUT scales $M_s = gM_P \simeq 50 M_{\rm GUT}$

- Framework of type I string theory
- ⇒ D-brane world

Natural separation of global SUSY from gravity

D-branes/open strings closed strings

- ⇒ 2 new scenaria besides 'conventional' low energy susy Standard Model
- low string scale
- split supersymmetry

Braneworld

two types of compact extra dimensions:

- ullet parallel (d_{\parallel}) : can be as large as 10^{-16} cm (TeV $^{-1}$)
- ullet transverse ($oldsymbol{\perp}$): can be as large as 0.1 mm

 $R_{\perp}\lesssim$ 45 $\mu{\rm m}$ at 95% CL

ullet dark-energy length scale pprox 85 μ m

Dimensions of finite size: p-3 parallel n=9-p transverse

calculability \Rightarrow $R_{\parallel} \simeq l_{\rm string}$; R_{\perp} arbitrary

$$M_P^2 \simeq \frac{1}{\alpha^2} M_s^{2+n} R_\perp^n$$

Planck mass in 4 + n dims: M_*^{2+n}

small $M_s/M_P \Rightarrow$ extra-large R_{\perp}

$$M_{s}\sim 1~{
m TeV} \Rightarrow R_{\perp}\sim .1-10^{-13}~{
m mm}~(n=2-6)$$
 I.A.-Arkani Hamed-Dimopoulos-Dvali '98

- weak string coupling: $g_s = \alpha$
- ullet gravity strong at $M_*\sim M_s << M_P$ $10^{30} \ {
 m stronger than thought previously!}$ deviations from Newton's law at distances $< R_\perp$

Hidden submillimeter dimensions

⇒ strong gravity at the TeV

Gravitational radiation in the bulk

3d: Kaluza Klein gravitons very light

⇒ high energy: huge number of particles produced

LHC: 10^{30} massive gravitons of intensity 10^{-30} each

Signal: missing energy

Angular distribution \Rightarrow spin of the graviton

Limits on R_{\perp} in mm

Experiment	$R_{\perp}(n=2)$	$R_{\perp}(n=4)$	$R_{\perp}(n=6)$
Collider bounds			
LEP 2	4.8×10^{-1}	1.9×10^{-8}	6.8×10^{-11}
Tevatron	5.5×10^{-1}	1.4×10^{-8}	4.1×10^{-11}
LHC	4.5×10^{-3}	5.6×10^{-10}	2.7×10^{-12}
NLC	1.2×10^{-2}	1.2×10^{-9}	6.5×10^{-12}
Astrophysics/cosmology bounds			
SN1987A	3×10^{-4}	1×10^{-8}	6×10^{-10}
COMPTEL	$5 imes 10^{-5}$	-	-

Large TeV dimensions

longitudinal dimensions: $R^{-1} \lesssim M_s \Rightarrow$ R^{-1} first scale of new physics I.A. '90 increasing the energy

- could happen for some of the internal dims
- explain coupling constant ratios g_2/g_3
- susy breaking
- fermion masses displace light generations

Massive tower of Kaluza Klein modes for Standard Model particles

$$M_n^2 = M_0^2 + \frac{n^2}{R^2}$$
 ; $n = \pm 1, \pm 2, \dots$

 \Rightarrow excited states of photon, W^{\pm} , Z, gluons

Localized fermions (on 3-brane intersections)

⇒ single production of KK modes

- ullet strong bounds indirect effects: $R^{-1}\gtrsim {
 m 3TeV}$
- new resonances but at most n = 1

Otherwise KK momentum conservation

⇒ pair production of KK modes (universal dims)

- weak bounds $R^{-1} \gtrsim 300-500 \text{ GeV}$
- no resonances
- ullet lightest KK stable \Rightarrow dark matter candidate

Servant-Tait '02

I.A.-Benakli-Quiros '94, '99

- no observation in dijets

$$\Rightarrow R^{-1} \gtrsim$$
 20 TeV ; 95% CL

- more than one dimension \Rightarrow stronger limits

Massive string vibrations \Rightarrow indirect effects virtual exchanges \Rightarrow effective interactions e.g. four-fermion operators

Actual limits: Matter fermions on

• same set of branes $\Rightarrow M_s \gtrsim$ 500 GeV

dim-8:
$$\frac{g^2}{M_s^4}(\bar{\psi}\partial\psi)^2$$
 Cullen-Perelstein-Peskin '00

• brane intersections $\Rightarrow M_s \gtrsim 2-3$ TeV

dim-6:
$$\frac{g^2}{M_s^2}(\bar{\psi}\psi)^2$$
 I.A.-Benakli-Laugier '00

High energies \Rightarrow

- direct production: string physics
- strong gravity: production of micro-black holes?

Giddings-Thomas, Dimopoulos-Landsberg '01

Generic spectrum

N coincident branes $\Rightarrow U(N)$

a-stack

 $\overbrace{\hspace{1cm}}^{\hspace{1cm}} \hspace{1cm} \hspace$

 $U(1)_a$ charge: +1 or -1

U(1): "baryon" number

- ullet open strings from the same stack \Rightarrow adjoint gauge multiplets of $U(N_a)$
- stretched between two stacks

a-stack in p dims $\Rightarrow \text{ b-stack in } p' \text{ dims}$ $\Rightarrow \text{ bifundamentals of } U(N_a) \times U(N_b)$ in $p \cap p'$ dims

A D-brane embedding of the Standard Model

I.A.-Kiritsis-Tomaras '00

I.A.-Kiritsis-Rizos-Tomaras '02

ullet oriented strings \Rightarrow

need at least 4 brane-stacks

existence of bulk with large dimensions ⇒

minimal choice:
$$U(3) \times U(2) \times U(1) \times U(1)_{bulk}$$

color branes (g_3) weak branes (g_2)

• also for non-oriented strings

with Baryon and Lepton number symmetries

Standard Model on D-branes

- $g_2^2/g_3^2 = R/l_s \Rightarrow$ KK modes for $SU(2)_L$
- $U(1)^4 \Rightarrow$ hypercharge + B, L, PQ global
- U(1) on top of U(2) or $U(3) \Rightarrow$ prediction for $\sin^2 \theta_W$
- ullet u_R in the bulk \Rightarrow small neutrino masses

The remaining three U(1)'s : anomalous Green-Schwarz anomaly cancellation \Rightarrow

- they become massive (absorb three axions)
- the global symmetries remain in perturbation
- Baryon number ⇒ proton stability
- Lepton number \Rightarrow protect small neutrino masses no Lepton number $\Rightarrow \frac{1}{M_s} LLHH$

 \Rightarrow Majorana mass: $\frac{\langle H \rangle^2}{M_s} LL$ \sim GeV

- PQ-type symmetry ⇒ electroweak axion
 can be explicitly broken by moving slightly away from
 the orbifold point

$\sin^2 \theta_W(M_s)$

 \Rightarrow correct prediction for $\sin^2 \theta_W$ for $M_s \sim$ a few TeV

R-neutrinos: open strings in the bulk $H'L\nu_R$

Arkani Hamed-Dimopoulos-Dvali-March Russell '98

Dienes-Dudas-Gherghetta '98

•
$$\int d^{4+n}x \, \bar{\nu} \partial \nu$$
 $\nu = (\nu_R, \nu_R^c) \Rightarrow$

$$R_{\perp}^{n} \int d^{4}x \sum_{m} \left\{ \bar{\nu}_{Rm} \partial \nu_{Rm} + \bar{\nu}_{Rm}^{c} \partial \nu_{Rm}^{c} + \frac{m}{R_{\perp}} \nu_{Rm} \nu_{Rm}^{c} + c.c. \right\}$$

•
$$S_{int} = g_s \int d^4x H(x) L(x) \nu_R(x, y = 0)$$

$$\langle H \rangle = v \; \Rightarrow \; \; {
m mass-terms:} \; {g_s v \over R_\perp^{n/2}} \sum_m \nu_L \nu_{Rm}$$

$$\frac{g_s v}{R_\perp^{n/2}} << \frac{1}{R_\perp} \Leftrightarrow g_s v << R_\perp^{n/2-1}$$
 in string units \Rightarrow

- $m \neq 0$: masses for KK ν_m unaffected
- m = 0: Dirac neutrino masses

$$m_{
u} \simeq rac{g_s v}{R_{\perp}^{n/2}} \simeq rac{g_s}{g^2} v rac{M_s}{M_p}$$

$$\simeq 10^{-3}-10^{-2}$$
 eV for $M_s \simeq 1-10$ TeV

In principle one $\nu_R \Rightarrow$

both solar and atmospheric oscillations

two frequencies: solar $\leftrightarrow m_{\nu} <<$

atmospheric ↔ 1st KK excitation

however cannot be made realistic

e.g. KK modes → important sterile component

- \Rightarrow need to introduce three ν_R^i (at least 2) $\mbox{explain oscillations in the traditional way}$
- only from zero modes u_{R0}^i
- make KK modes heavy

Davoudiasl-Langacker-Perelstein '02

Origin of EW symmetry breaking?

little hierarchy: $m_W/M_s \lesssim \mathcal{O}(10^{-1})$

string tree-level: $m_W = 0$ or $\mathcal{O}(M_s)$

possible solution: radiative breaking

I.A.-Benakli-Quiros '00

$$V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

 $\mu^2=0$ at tree but becomes <0 at one loop non susy vacuum

simplest case: one Higgs from the same brane

$$\Rightarrow$$
 tree-level V same as susy: $\lambda = \frac{1}{8}(g^2 + g'^2)$
D-terms

$$\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$$

loop-factor estimated by a toy model computation

$$R o \infty$$
 : $arepsilon(R) M_s \sim arepsilon_\infty / R$ $arepsilon_\infty \simeq 0.008$ UV cutoff: $M_s o 1/R$

R
ightarrow 0 : $\varepsilon(R) \simeq 0.14$ large transverse dim

• $M_H = M_Z$ at tree ${\rm same \ as \ MSSM \ for \ } {\rm tan} \ \beta, m_A \to \infty$

•
$$M_s = M_H/(\sqrt{2}g\varepsilon)$$

Low-energy SM radiative corrections

top quark sector

$$M_H \sim$$
 120 GeV

 \Rightarrow

$$M_s \sim \text{a few TeV}$$

- global SUSY:
- No need to be there at least for hierarchy
- New ways of breaking
 using extra dimensions
 branes at angles/internal magnetic fields
- SUGRA: probably unbroken in the bulk ⇒
 very weakly broken
- New forces at submm scales
 e.g. radion, graviphoton
- Non linear realization on branes
 SM + (light) goldstino

Energy density: Λ_{bulk} , Λ_{brane}

generic non-SUSY string model ⇒

$$\Lambda_{\rm bulk} \sim M_s^{4+n} \Rightarrow \Lambda_{\rm brane} \sim M_s^{4+n} R_\perp^n \sim M_s^2 M_P^2$$

analog in softly broken SUSY: $m_{\rm SUSY}^2 \Lambda_{UV}^2$

quadratic divergence to Λ

vanishing if bulk is (approximately) SUSY

$$\Lambda_{\rm brane} \sim M_s^4 \Rightarrow \Lambda_{\rm bulk} \sim M_s^4/R_\perp^n$$

Prediction: possible new forces at submm scales

e.g. radion
$$\equiv \ln R_{\perp}$$

mass: $(\text{TeV})^2/M_P \sim 10^{-4} \text{ eV} \rightarrow \text{mm range}$

coupling:
$$\frac{1}{m} \frac{\partial m}{\partial \ln R_{\perp}} = \sqrt{\frac{n}{n+2}} \times \text{gravity}$$

 \Rightarrow can be experimentally tested for all $n \ge 2$

I.A.-Benakli-Maillard-Laugier '02

$$V(r) = -G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda} \right)$$

Radion $\Rightarrow M_* \gtrsim$ 3 - 4.5 TeV 95% CL (n=2-6) Adelberger et al. '04

Light U(1) gauge bosons

I.A.-Kiritsis-Rizos '02

U(1) anomalies \Rightarrow Green-Schwarz mechanism

$$\delta A = d\Lambda \quad \Rightarrow \quad \delta a = -M\Lambda$$
 gauge field axion

$$-\frac{1}{4g_A^2}F_A^2 - \frac{1}{2}\left(da + MA\right)^2 + \frac{a}{M}k_I^A\operatorname{Tr}F_I\wedge F_I$$
 cancel the anomaly

$$\Rightarrow$$
 $U(1)_A$ mass: $m_A = g_A M$

- a: Poincaré dual of a 2-form from RR closed string sector $da = *dB_2$
- \bullet $U(1)_A$ global symmetry remains (in perturbation)

ex. Baryon and Lepton number needed to prodect proton decay and neutrino masses

$$m_A = g_A M$$

small mass \Rightarrow small coupling

 \Rightarrow A in the bulk and a on the brane:

localized mass

$$g_A \sim 1/\sqrt{V_\perp}$$

$$\Rightarrow m_A \gtrsim M_s^2/M_P \simeq 10^{-4} \, \mathrm{eV}$$

 ${\cal A}$ propagates in part of the bulk

⇒ new submm forces

$$g_A \sim 1/\sqrt{V_\perp} \gtrsim M_s/M_P \sim 10^{-16}$$

$$\Rightarrow$$
 \gtrsim $10^6-10^8 imes$ gravity $m_{ extstyle proton}/M_s$

supernova \Rightarrow dim of the bulk ≥ 4

an order of magnitude improvement on bounds in the range 6-20 $\mu \mathrm{m}$

Smullin-Geraci-Weld-Chiaverini-Holmes-Kapitulnik '05

an order of magnitude improvement on bounds in the range 200 nm

Decca-López-Chan-Fischbach-Krause-Jamell '05

5: Colorado 4: Stanford

3: Lamoureaux 1: Mohideen et al.

Internal magnetic fields

- Type I string theory compactified in 4d on 6d Calabi-Yau
- $\Rightarrow N = 2$ SUSY in the bulk, N = 1 on branes
- Magnetic fluxes on 2-cycles
- ⇒ SUSY breaking

Dirac quantization: $H = \frac{m}{nA} \equiv \frac{p}{A}$

H: constant magnetic field

m: units of magnetic flux

n: brane wrapping

A: area of the 2-cycle

Spin-dependent mass shifts for all charged states

$$[p_i, p_j] = iqH\epsilon_{ij}$$
 q: charge

⇒ Landau spectrum

T-dual representation: branes at angles $\label{eq:decomposition} \mbox{magnetized D9-brane wrapped on } T^2$

$$H = \frac{m}{n} \frac{1}{R_1 R_2}$$

T-duality: $R_2 \to \alpha'/R_2 \equiv \tilde{R}_2 \Rightarrow$ D8-brane wrapped around a direction of angle θ in T^2

$$H = \frac{m}{n} \frac{\tilde{R}_2}{R_1} = \tan \theta$$

(m,n): wrapping numbers around (\tilde{R}_2,R_1)

Generic spectrum

Turn on H_I^a in several $U(\mathbf{1})_a$ directions

- \Rightarrow Gauge group: $\prod_a U(N_a) \leftarrow SU(N_a) \times U(1)_a$
- Neutral strings: adjoint representations
 - ⇒ massless gauge supermultiplets
- ullet Charged strings \Rightarrow massless chiral fermions but in general massive scalars
- ⇒ Generic spectrum of split SUSY:
- massless gauginos
- massive squarks and sleptons
- massless Higgs ⇔ non chiral susy intersection two Higgs multiplets

Minimal Standard Model embedding

New possibilities using intersecting branes

- no large dimensions for low string scale
- no need for B or L conservation
- but need $\sin^2\theta_W = \frac{3}{8}$

General analysis using 3 brane stacks

$$\Rightarrow U(3) \times U(2) \times U(1)$$
 antiquarks u^c, d^c ($\overline{3}, 1$): antisymmetric of $U(3)$ or bifundamental $U(3) \leftrightarrow U(1)$

 \Rightarrow 3 models: antisymmetric is u^c , d^c or none

Model A

Model B

Model C

$$egin{array}{lll} Q & (3,2;1,1,0)_{1/6} & (3,2;1)_{1/6} \ u^c & (ar{3},1;2,0,0)_{-2/3} & (ar{3},1;-1)_{1/2} \ d^c & (ar{3},1;-1,0,arepsilon_d)_{1/3} & (ar{3},1;2)_{1/2} \ L & (1,2;0,-1,arepsilon_L)_{-1/2} & (1,2;0)_{1/2} \ l^c & (1,1;0,2,0)_{1} & (1,1;0)_{1/2} \
u^c & (1,1;0,0,2arepsilon_
u)_0 & (1,1;0)_{1/2} \ \end{array}$$

$$egin{array}{lll} (\mathbf{3},\mathbf{2};1,arepsilon_Q,0)_{1/6} & (\mathbf{3},\mathbf{2};1,arepsilon_Q,0)_{1/6} \ (ar{\mathbf{3}},\mathbf{1};-1,0,1)_{-2/3} & (ar{\mathbf{3}},\mathbf{1};-1,0,1)_{-2/3} \ (ar{\mathbf{3}},\mathbf{1};2,0,0)_{1/3} & (ar{\mathbf{3}},\mathbf{1};-1,0,-1)_{1/3} \ (\mathbf{1},\mathbf{2};0,arepsilon_L,\mathbf{1})_{-1/2} & (\mathbf{1},\mathbf{2};0,arepsilon_L,\mathbf{1})_{-1/2} \ (\mathbf{1},\mathbf{1};0,0,-2)_1 & (\mathbf{1},\mathbf{1};0,0,-2)_1 \ (\mathbf{1},\mathbf{1};0,2arepsilon_{\nu},0)_0 & (\mathbf{1},\mathbf{1};0,2arepsilon_{\nu},0)_0 \ \end{array}$$

$$Y_A = -\frac{1}{3}Q_3 + \frac{1}{2}Q_2$$

$$Y_{B,C} = \frac{1}{6}Q_3 - \frac{1}{2}Q_1$$

$$\mbox{Model A} \qquad : \qquad \sin^2\theta_W = \frac{1}{2+2\alpha_2/3\alpha_3} \, \Big|_{\alpha_2=\alpha_3} = \frac{3}{8} \label{eq:thetaward}$$

$$\text{Model B,C} \quad : \quad \left. \sin^2 \theta_W = \frac{1}{1 + \alpha_2/2\alpha_1 + \alpha_2/6\alpha_3} \right|_{\alpha_2 = \alpha_3} = \frac{6}{7 + 3\alpha_2/\alpha_1}$$

Gaugino masses: protected by R-symmetry

but broken in 4d SUGRA by the gravitino mass

Two possible ways for generating $m_{1/2}$:

(1) via gravity (brane susy) \Rightarrow

generate $m_{1/2}$ from $m_{3/2}$

one gravitational loop: 1 handle + 1 boundary

$$\Rightarrow m_{1/2} \sim g_s^2 \frac{m_{3/2}^3}{M_s^2}$$
 I.A.-Taylor '04

(2) keep gravity subdominant \Rightarrow generate $m_{1/2}$ from brane α' -corrections

two gauge loops: 3 boundaries

$$\Rightarrow m_{1/2} \sim g_s^2 \frac{m_0^4}{M_s^3}$$
 I.A.-Narain-Taylor '05

Oriented case

(1) g = 1 h = 1 from mirror involution of g = 2

(2) g = 0 h = 3 from mirror involution of g = 2

$$\sim \, \frac{m_{3/2}}{M_p^2} \times \left\{ \begin{array}{cc} \Lambda_{\rm UV}^2 & {\rm if~quadr.~divergent} \\ \\ m_{3/2}^2 & {\rm if~convergent} \end{array} \right.$$

but it vanishes for orbifolds

I.A.-Taylor '04

Sherk-Schwarz along an interval \bot branes

$$\Rightarrow m_{3/2} \sim 1/R$$

gravity strength
$$\Rightarrow R^{-1}=rac{2}{lpha_G^2}rac{M_s^3}{M_p^2}\sim 10^{13}$$
 GeV for $M_s\sim M_{
m GUT}\sim 10^{16}$ GeV

$$\bullet$$
 $m_{1/2}\sim g_s^2 rac{m_{3/2}^3}{M_s^2}\sim$ 1 TeV
$${
m if\ every\ loop-factor}\sim 10^{-2}$$

•
$$m_0 \gtrsim g_s \frac{m_{3/2}^2}{M_s} \sim 10^8 \text{ GeV}$$

scalar masses induced at one loop

⇒ split supersymmetry framework

heavy scalars, light fermions

Arkani Hamed-Dimopoulos, Giudice-Romanino '04

SUSY breaking by internal magnetic fields or equivalently branes at angles

Effective QFT description: D-breaking

magnetic field
$$H \sim \langle \mathsf{D} \rangle$$
-term of $U(1)$

$$\langle \mathsf{D} \rangle \sim m_0^2$$

U(N) brane stack

R-symmetry broken by string corrections

⇒ higher-dim effective operators:

I.A.-Narain-Taylor '05

$$F_{(0,3)}\int d^2\theta \mathcal{W}^2 \mathrm{Tr} W^2 \qquad \langle \mathcal{W} \rangle = \theta \langle \mathsf{D} \rangle$$

$$F_{(0,3)}\int d^2\theta \mathcal{W}^2 \mathrm{Tr} W^2 \qquad \qquad \langle \mathcal{W} \rangle = \theta \langle \mathsf{D} \rangle$$

$$\Rightarrow \ m_{1/2} \sim \epsilon^2 \frac{m_0^4}{M_s^3} \qquad \qquad \epsilon^2 \text{: 2-loop factor}$$

$$\sim$$
 TeV for $m_0 \sim 10^{13}-10^{14}$ GeV

• Higgsino mass

$$\int d^2\theta \mathcal{W}^2 \bar{D}^2 \bar{H}_1 \bar{H}_2 \Rightarrow \mu \sim \epsilon \frac{m_0^4}{M_s^3} \lesssim m_{1/2}$$

$$\psi_1 \psi_2$$

• Simple toroidal models

gauge multiplets:
$$N = 4$$
 (or $N = 2$) SUSY

⇒ Dirac gaugino masses without R

$$\int d^2\theta \mathcal{W} \mathrm{Tr} W A \ \Rightarrow \ m_D \sim \epsilon \frac{m_0^2}{M_s} \qquad \text{1-loop factor}$$

N=2 vector =N=1 vector W+ chiral A they can still be consistent with unification in inermediate energy scales $\sim 10^7-10^{13}$ GeV

I.A.-Benakli-Delgado-Quirós-Tuckmantel '05

Evading the hierarchy $m_0 >> m_D$:

- SM on a SUSY brane
- gauge mediation with Dirac masses

I.A.-Benakli-Delgado-Quirós in preparation

SU/SY brane with massive hypermultiplets in its (N=2) intersection with SM brane

$$(M,D) \longrightarrow \mathsf{SM} \quad \Rightarrow \quad M_s \to M$$

$$D < M < M_s \quad \Rightarrow \quad m_D^a = \frac{\alpha_a}{4\pi} \frac{D}{M}$$

ullet adjoint SM scalars Σ_a : one loop masses

$$m_{\Sigma^a}^2 = \frac{\alpha_a}{4\pi} \frac{D^2}{M^2}$$

ullet squarks and sleptons Q: two loop masses

$$m_Q^2 = 2\sum_a C_a(Q) \left(\frac{\alpha_a}{4\pi}\right)^2 \frac{D^2}{M^2}$$

Conclusions

TeV strings and large extra dimensions:

Physical reality or imagination?

Well motivated theoretical framework
with many testable experimental predictions
new resonances, missing energy

Stimulus for micro-gravity experiments

look for new forces at short distances

higher dim graviton, scalars, gauge fields

Gaugino masses from string loops:

High string scale \Rightarrow hierarchy $m_0 >> m_{1/2}$

1) Majorana masses

- gravity 'mediation' $\Rightarrow m_{1/2}^2 \sim m_0^3/M_s$
- ullet gauge 'mediation' $\Rightarrow m_{1/2} \sim m_0^4/M_s^3$
- 2) Dirac masses $\Rightarrow m_D \sim m_0^2/M_s$

evading the hierarchy:

$$M_s o M_{
m hyp}, \ m_0^2 o D$$
 in a SU/SY sector $m_0^{
m SM} \sim m_D$ from 2-loops