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String theory gives a framework for studying
classical and quantum properties of black holes.

One of the important properties characterizing
a black hole is the Bekenstein-Hawking entropy
SBH.

For a two derivative action

SBH = A/(4GN)

A: Area of the event horizon

GN : Newton’s constant

Question: Can we understand this entropy from
statistical viewpoint?
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In string theory one finds that for a wide class
of extremal black holes

SBH = Sstat, Sstat ≡ ln(Degeneracy)

Given this success, it is natural to carry out
our study of black holes to finer details.

String theory leads to

(Super-)gravity + higher derivative terms

Does the agreement continue to hold even af-
ter taking into account the effects of higher
derivative corrections?
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In order to attack this problem we need to open

two fronts.

First of all we need to learn how to take into

account the effect of the higher derivative terms

on the computation of black hole entropy.

But we also need to know how to calculate the

statistical entropy to greater accuracy.

→ involves precise computation of the degen-

eracy of states with a given set of charges.

In this talk we shall address both problems.
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A general frameork for computing higher deriva-
tive corrections to black hole entropy has been
developed by Wald.

We shall use this to develop a general method
for calculating higher derivative corrections to
SBH for extremal black holes.

We shall also calculate the exact degeneracy
of microstates associated with a certain set of
black holes in string theory.

Finally we compare the black hole entropy with
the statistical entropy computed from micro-
scopic counting of states.
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How do we define extremal black holes in a

higher derivative theory?

Consider spherically symmetric black holes in

D = 4.

All known extremal black holes in D = 4 have

near horizon geometry AdS2×S2 with isometry

SO(2,1)× SO(3).

We shall take this to be the definition of ex-

tremal black holes even in the presence of higher

derivative terms.
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Consider an arbitrary general coordinate in-
variant theory of gravity coupled to a set of
Maxwell fields A

(i)
µ and neutral scalar fields {φs}.

The most general form of the near horizon ge-
ometry of an extremal black hole consistent
with SO(2,1)× SO(3) isometry:

ds2 ≡ gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+v2

(
dθ2 + sin2 θdφ2

)
φs = us

F
(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ ,

v1, v2, us, ei, pi: constants
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ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θdφ2

)
φs = us

F (i)
rt = ei, F (i)

θφ =
pi

4π
sin θ ,

√
−det gL: Lagrangian density.

Take L to be invariant under general coordi-
nate, local Lorentz and gauge transformations.

Define:

f(~u,~v, ~e, ~p) ≡
∫

dθ dφ
√
−det gL

E(~u,~v, ~e, ~q, ~p) ≡ 2π(ei qi − f(~u,~v, ~e, ~p))
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Using equations of motion and Wald’s formula

for entropy one finds that for an extremal black

hole of electric charge ~q and magnetic charge

~p,

1. the values of {us}, {ei}, v1 and v2 are ob-

tained by extremizing E(~u,~v, ~e, ~q, ~p) with re-

spect to {us}, {ei}, v1 and v2:

∂E
∂us

= 0,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0,
∂E
∂ei

= 0

2. SBH = E at the extremum.

10



Thus the ‘entropy function’ E determines

– the near horizon values {us} of the scalar

fields,

– the sizes v1, v2 of AdS2 and S2

– the gauge field strengths {ei}

– the entropy SBH
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The results can be generalized to

1. Rotating black holes

2. Black holes in higher dimensions

3. Lagrangian densities containing Chern-Simons

terms.
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The entropy function formalism leads to a gen-

eral proof of the ‘attractor mechanism’ for ex-

tremal black holes.

If we have a theory with scalar fields which

have no potential then asymptotically the scalar

fields can have arbitrary values.

However the entropy of an extremal black hole

with a given set of charges ~q, ~p is indepen-

dent of the asymptotic values of these ‘moduli

fields’.
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Proof of attractor mechanism:

If E has no flat directions then the extremiza-

tion of E determines the near horizon parame-

ters ~u, ~v, ~e completely in terms of ~q, ~p.

If E has flat directions, then extremization of E
does not determine ~u, ~v, ~e uniquely and there

is a continuous family of extrema.

But since E does not depend on the flat direc-

tions, SBH = E is still determined in terms of

~q, ~p and is independent of any other data.
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The entropy function formalism has been suc-

cessfully used for calculating higher derivative

corrections to the entropy of extremal black

holes in many theories.

We shall now apply this to compute the en-

tropy of a special class of quarter BPS black

holes in a class of N = 4 supersymmetric string

theories.
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CHL models based on ZZN orbifolds

1. Begin with heterotic string theory on

T4 × S1 × Ŝ1

T4: A four torus

S1, Ŝ1: two circles with period 2π

2. Take the orbifold by a ZZN group generated
by

2π/N shift along S1 together with an or-
der N internal symmetry of heterotic string
theory on T4.
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A dual description

1. Begin with type IIB string theory on

K3× S1 × S̃1

2. Take the orbifold by a ZZN group generated

by 2π/N shift along S1 together with an

appropriate order N internal symmetry of

type IIB string theory on K3.

The resulting theory is N = 4 supersymmetric.
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A special class of values of N :

N = 1,2,3,5,7

N = 1: heterotic string theory on T6.

For these theories the rank of the gauge group

is

r = 2k + 8, k =
24

N + 1
− 2
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At a generic point in the modul space we have

1. The string metric Gµν.

2. r U(1) gauge fields A
(i)
µ

3. r× r matrix valued scalar field M satisfying

MTLM = L, MT = M,

L: A matrix with six eigenvalues +1 and r− 6

eigenvalues −1.

4. Dilaton-axion field (S, a)
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Near horizon field configuration:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θ dφ2) ,

S = uS, a = ua, Mij = uMij

F
(i)
rt = ei, F

(i)
θφ =

pi sin θ

4π
, i, j = 1, . . . r
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First consider the case where we keep only two

derivative terms in the action.

1. Compute the entropy function E using

E ≡ 2π

(
eiqi −

∫
dθ dφ

√
−det gL

)

2. Eliminate the variables ei, uM , v1, v2 by

extremizing E with respect to them.
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Result for P2Q2 > (P ·Q)2:

E =
π

2

[(
Q2

uS
+

P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)]

Qi ≡ 2qi, Pi ≡
1

4π
Lijpj

P2 ≡ PTLP, Q2 ≡ QTLQ, Q · P ≡ QTLP

Eliminate ua, uS:

SBH = E = π
√

Q2P2 − (Q · P )2
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This gives the supergravity result for black hole

entropy.

Now consider the effect of a special type of

higher derivative correction to the Lagrangian

density:
√
−detG∆L

= φk(a, S)
√
−detG

{
RµνρσRµνρσ − 4RµνRµν + R2

}

φk(a, S): an S-duality invariant function.
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For the ZZN CHL models with prime N :

φk(a, S) = −
1

64π2

(
(k + 2) lnS

+ln f(k)(a + iS) + ln f(k)(−a + iS)
)

f(k)(τ) = η(τ)k+2 η(Nτ)k+2

k =
24

N + 1
− 2

η(τ): Dedekind η-function
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The addition of Gauss-Bonnet term in the ac-
tion induces the following change in E:

∆E = 64π2 φk(ua, uS)

Elimination of ei, uM , v1, v2 can be done as
before since the extra term does not depend
on these variables.

E + ∆E =
π

2

[ (Q2

uS
+

P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)

+128π φk(ua, uS)
]

Final result for entropy is obtained by eliminat-
ing ua and uS by extremizing E + ∆E.
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Computation of statistical entropy

Consider a generic 1/4 BPS dyonic state in
CHL string theory carrying r dimensional elec-
tric charge vector Q and magnetic charge vec-
tor P .

What is the degeneracy d(Q, P ) of these states?

We shall derive the formula for d(Q, P ) for a
specific class of charge vectors (Q, P ).

Then we shall express the formula in terms of
T-duality invariant combinations P2, Q2 and
Q · P .
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We consider a configuration in type IIB string
theory on K3× S1 × S̃1/ZZN with

1) Q5 D5-branes wrapped on K3× S1,

2) Q1 D1-branes wrapped on S1, and

3) one Kaluza-Klein monopole associated with
S̃1 compactification

carrying −n units of momentum along S1 and
J units of momentum along S̃1

T-duality invariants:

P2 = 2Q5(Q1−Q5), Q2 = 2n/N, Q · P = J
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In the weakly coupled type IIB description the
low energy dynamics of the system is described
by several non-interacting pieces:

1) The dynamics of the Kaluza-Klein monopole

2) The dynamics of the D1-D5 center of mass
coordinate in the Kaluza-Klein monopole back-
ground

3) The relative motion between the D1 and
the D5-brane

Each of these systems carry certain amount of
momenta along S1 and S̃1.

28



We calculate the ‘partition function’ associ-

ated with each of these three pieces and then

take the product.

→ degeneracy as a function of Q1, Q5, n, J.

Then we express the result in terms of P2, Q2

and Q · P using

P2 = 2Q5(Q1−Q5), Q2 = 2n/N, Q · P = J
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The result for d(Q, P )

d(Q, P ) =
1

N

∫
C

dρdσdv
1

Φk(ρ, σ, v)

exp
[
−iπ(ρP2 + σQ2 + 2vQ · P )

]
,

ρ, σ, v: complex parameters

The integration ‘contour’ C is defined to be
the three real dimensional subspace:

Im ρ = M1, Im σ = M2, Im v = M3,

0 ≤ Re ρ ≤ 1, 0 ≤ Re σ ≤ N, 0 ≤ Re v ≤ 1 .

M1, M2, M3: large real constants
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Expression for Φk:

Φk(ρ, σ, v) = exp

(
2πi

(
1

N
σ + ρ + v

))
N−1∏
r=0

∏
l,b∈Z,k′∈Z+ r

N
k′,l,b>0

{
1− exp(2πi(k′σ + lρ + bv))

}∑N−1

s=0
e−2πils/N c(r,s)(4lk′−b2)

k′, l, b > 0: (k′ > 0, l ≥ 0, b ∈ ZZ) or

( k′ = 0, l > 0, b ∈ ZZ) or (k′ = 0, l = 0, b < 0)

cr,s(n): known coefficients, given in terms of

jacobi ϑ-functions and Dedekind η-functions.
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For comparing ln d(Q, P ) to black hole entropy
we need to estimate d(Q, P ) for large Q, P .

Strategy:

a) Do the v integral by picking up residues from
the poles of 1/Φk

Result:

d(Q, P ) =
∫

dρdσe−F (ρ,σ)

for some function F (ρ, σ).

b) Then do the ρ and σ integral using saddle
point approximation.
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d(Q, P ) =
∫

dρdσe−F (ρ,σ)

This integral can be regarded as a ‘path inte-
gral’ over zero dimensional fields ρ, σ with ac-
tion F (ρ, σ), and the result for ln d(Q, P ) may
be expressed as the result of extremizing an
‘effecting action’ Γ(ρ, σ) with respect to ρ, σ.

ln d(Q, P ) is the value of −Γ(ρ, σ) at its ex-
tremum.

−Γ(ρ, σ) can be calculated using Feynman di-
agrams and be called the statistical entropy
function.
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Result for Γ after a suitable change of variables
from (ρ, σ) to (ua, uS):

−Γ(ua, uS) =
π

2

[ (Q2

uS
+

P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)

+128π φk(ua, uS)
]
+O(Q−2, P−2)

φk(ua, uS) = −
1

64π2

(
(k + 2) lnuS

+ln f(k)(ua + iuS) + ln f(k)(−ua + iuS)
)

f(k)(τ) = η(τ)k+2 η(Nτ)k+2

k + 2 = 24/(N + 1)
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Now recall that the entropy function for the

black hole, after extremization with respect to

all the near horizon parameters except the val-

ues of the axion-dilaton field, is given by:

E =
π

2

[ (Q2

uS
+

P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)

+128π φk(ua, uS)
]

(ua, uS): near horizon value of the axion-dilaton

field.
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E and −Γ are identical functions to this order.

Thus extremization of E and −Γ give the same

answer.

→ equality between black hole entropy and sta-

tistical entropy to first non-leading power of

inverse charges.

36



Thus we see that the formula for the statistical

entropy matches the black hole entropy to this

order.

This result can be generalized for

1. CHL models with non-prime values of N .

2. N = 4 supersymmetric ZZN orbifiolds of

type IIA string theory on T6.
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An open question: What is the effect of other
four derivative terms on the entropy?

When Q is large compared to P , uS is large
and tree level approximation is good in the het-
erotic description.

Effect of including the set of all tree level four
derivative correction terms in the Lagrangian

→ same as the one obtained by just using the
Gauss-Bonnet term.

One can also give a general argument based on
supersymmetry that tree level higher derivative
terms do not modify the result.
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When Q and P are of same order, then keeping

only tree level terms is not a useful approxima-

tion scheme.

Thus we need to include the full φk(a, S) as

coefficient of the Gauss-Bonnet term.

However there are other four derivative correc-

tions to the effective action.

What is their effect on the entropy?

Is there a non-renormalization theorem similar

to that for the tree level result?
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