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I. INTRODUCTION

My research encompasses three seemingly different fields in Theoretical Physics. These

are namely, (1) localization - delocalization of eigenstates in one-dimensional correlated

disordered systems, (2) transport properties of conducting polymers, and (3) the study of

systems, describable by discrete nonlinear Schrödinger equation (DNLSE) or by its stan-

dard variants, which include Ablowitz-Ladik nonlinear equation, modified Salerno equation

(MSE) etc. These fields are, however, not as disparate or disjoint as it might appear. Their

relationship and the logical follow up from one field to the other will be evident in the

following discussion.

II. LOCALIZATION-DELOCALIZATION OF EIGENSTATES

We know that while perfect system is a phenomenon, impurity is the reality. Again,

it is equally well known that transport and optical properties are directly related to the

existence of localized states in the system. So, the study of formation of localized states due

to linear as well as nonlinear impurities is an important and also an active area of research

even today, in spite of its successful beginning in the late fifties by P. W. Anderson[1–3]. We

note that in perfect systems, all states are extended, while localized states appear due to the

presence of impurities in the system. Furthermore, according to Anderson’s theorem, almost

all eigenstates of one-dimensional linear disordered systems are exponentially localized.

Almost thirty years later in 1989 since the inception of the field, I in collaboration with

Prof. D. H. Dunlap and Prof. P. Phillips wrote a very important paper in this field of

localization of eigenstates. This paper appeared in Physical Review B[4]. We showed that

in one-dimensional correlated disordered systems, it is indeed possible to have extended

states without contradicting the basics of Anderson’s theorem on localization. These ex-

tended states may give rise to anamoly in the transport properties of the system. This work

subsequently gave birth to the now famous Random Dimer Model (RDM)[5, 6]. However,

after the work of Dunlap, Wu and Phillips on RDM was published in 1990, an acrimonious

controversy ensued. Consequently, my work on RDM and on one-dimensional extended cor-

related systems with my collaborators, Dr. P. K. Datta and Dr. D. Giri became extremely

significant. We proved beyond doubt the merit and authenticity of the basic premises of
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the RDM[7, 8]. Thereafter, we showed by studying the symmetric random trimer model

(SRTM) that the merging of resonances can increase the width of the non-scattered states

in one-dimensional correlated disordered systems. This paper, to our merits, is the first

paper where the effect of resonance merging is studied . Another interesting fall out of this

model is that it substantiates beyond any doubt by its own unambiguous scaling behavior

of nonscattered states , the scaling behavior of nonscattered states in RDM[9, 10]. Fur-

thermore, in these works, we introduced a simple but novel method for ”Bandwidth Scaling

Analysis”. My this series of papers is so novel and so accurate in numerical analysis in liai-

son appropriate analytical approach , that these papers are used as bench-mark examples to

study other related problems numerically. The third work in this category formulates this

problem using the invariant measure method. This is the most natural linear extension of

the field. For this purpose, the work of Bovier and Klein[11, 12] needed to be generalized.

Obviously, the interest was to study one-dimensional extended correlated disordered systems

analytically within the perturbation framework. This work appeared in J. Phys. A [13], and

its abstract also appeared in Mathematical Review.

III. CONDUCTING POLYMERS

My second field of research deals with conducting polymers. The material importance

of the field can be gauged from the vast literature it generated[14–18]. It is a field which

synthesizes physics, chemistry, mathematics, and material science. In this field, we took

interest in polythiophene (PT) and polyaniline (PAN). Both are exciting by their own merits.

The basic aim was to understand the mechanism triggering the insulator to metal transition

in these systems. There are two prominent schools of thought. One school thinks that the

mechanism can be understood by considering these as archetype example of one-dimensional

correlated disordered systems. The founding stone for this thought is the work of Wu and

Phillips on polyaniline[19, 20]. Another school thinks that the transition occurs due to the

spontaneous formation of a polaron lattice[18]. My work with Dr. Giri on PT reveals two

interesting facets. In a published work in Phys. Rev. B , we showed that if the electron-

lattice interaction is allowed to alter the site energies of the electron[21], the correlated

disordered system model may not stand the scrutiny[22]. In another published work in

J. Chem. Phys., it is shown that the boundary condition may play a crucial role in the
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understanding of the mechanism[23].

In the case of polyaniline, Dr. Giri and I performed an extensive AM1 calculation to

understand the structure of the neutral system as well as the system containing either a

bipolaronic or a polaronic defect. The basic aim of the work was to understand compre-

hensively the reason, if any, for the formation of the polaron lattice. This work favors the

polaron lattice theory. A part of the work is published in Theo. Chem. My other collabora-

tors in this work were Dr. D. Majumdar and Prof. S. P. Bhattacharya of Indian association

for The Cultivation of Science, Calcutta[24].

IV. DISCRETE NONLINEAR SCHRÖDINGER EQUATION

A. Small Polarons and Holstein Models

In continuation, we consider now another interesting as well as important aspect of physics

of particle-phonon interaction [25–27]. Particles, like electron or quasiparticles like exciton

and vibron can interact with phonon. This gives rise to another dressed quasiparticle, called

polaron, as mentioned in the context of conducting polymers. Again, when the coupling

with phonon increases, the polaron radius decreases and becomes of the order of the lattice

constant of the crystal. Then, all momenta of the Brillouin zone contribute to the polaron

wave function and the effective mass approximation cannot be applied. This regime occurs

if the characteristic potential energy, Ep due to the local lattice deformation is comparable

to or larger than the half bandwidth, D of the crystal. The strong coupling regime of the

particle-phonon interaction with the dimensionless coupling constant, λ = Ep

D
À 1 is

called a small polaron.

The main features of the small polaron are revealed quite accurately in the simplest

Holstein model consisting of only two vibrating molecular sites with a particle hopping

between them. Even in this simple model, we can have two different situations, namely (i)

nonadiabatic small polaron and (ii) adiabatic small polaron. In the first case, the lattice

dynamics is significantly faster than the particle dynamics. In the second case, the situation

is reversed. In both cases, hopping gets significantly reduced due to the interaction with

phonon. In the language of effective mass, in the small polaron limit (SP), the effective mass

of SP, m∗ enhances exponentially as a function of the particle-phonon interaction parameter.
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Furthermore, expectedly in the nonadiabatic limit, this mass enhancement of SP is larger

than it is in the adiabatic limit. We note that in the zeroth order approximation, a crystal

in the strong particle-phonon coupling limit can be considered a set of two level Holstein

problem.

B. Many Small Polarons and Lang-Firsov Transformation

Consider now a many particle interacting system, interacting with one another and also

with phonons in the system. Particles are assumed to hop from a site to another in the

lattice. Consider again the strong coupling regime of particle-phonon interaction, λ → ∞.

In this limit, one can use the well known Lang-Firsov canonical transformation to partially

diagonalize the relevant Hamiltonian[25, 28, 29]. This diagonalization is exact in the limit

of no hopping or λ = ∞. We further note that the Lang-Firsov transformation is the

displacement transformation for the multi-polaron system shifting ions to the new equilib-

rium positions. In a more general sense, it changes the boson vacuum. In the transformed

Hamiltonian, both the hopping and the polaron-polaron interaction become dependent on

phonon variables. Furthermore, the transformed Hamiltonian in zero order of hopping de-

scribes localized polarons and independent phonons which are vibration of ions relative to

new equilibrium positions depending on the polaron occupation numbers.

When this transformed hopping term is averaged over the equilibrium phonon distribu-

tion, it shows dependence on the temperature as well as on phonon frequencies. In this

order, we have a model in which a single Holstein polaron hops from a site to another with

this averaged hopping. Of course, we also have the residual polaron-phonon interaction, de-

scribed by Hp−ph and polaron-polaron interaction, Hp−p. In the limit of λ → ∞, these extra

terms in the total Hamiltonian give polaron band broadening, renormalization of phonon

frequencies and scattering of polarons. The term, Hp−ph also gives negative contribution to

the polaron self energy. So, the polaron energy is lowered and its effective mass increases.

C. Nonadiabatic Small polarons

We further note that there are systems in which the tunneling of the quasiparticle is

inherently slow. A good example is this regard is the hopping of vibrons in α-helical pro-
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teins. Of course, the application of Lang-Firsov transformations in this type of systems is

reasonable. Also, increase in the temperature and/or the softening of phonons in the system

can lead to extreme slowing down of the hopping. This situation can arise in high Tc oxides,

in molecular solids like naphthalene, anthracene (in the crystallographic c′ direction) and

in many biological systems having proton transport and energy transport. So, we can have

systems having dynamics in the nonadiabatic limit. Consequently, the small polaron band-

width will be smaller than the average phonon frequency. At high temperature, of course,

polaron bandwidth will be quite narrow. Then, the prominent event will be the scattering

of polarons by two phonons and multiphonons processes. This incoherent processes will lead

to the thermally activated hopping of polarons from one localized state to another localized

state. The dynamics can be described by a Master equation. On the other hand, if the tem-

perature is not too high, scattering of polaron by two phonons and multiphonon processes

can be ignored. So, there can be a coherent tunneling of polarons, even though the system

is in the nonadiabatic limit. On the other hand, the self energy effect from Hp−ph and Hp−p

will tend to trap the polarons.

This aspect is also nicely described by Holstein[30]. We already mentioned that the Lang-

Firsov transformation is an exact transformation, and it makes the tunneling term in the

tight binding formalism dependent on phonon variables. From the transformed Hamiltonian,

it can be seen that there are possibilities of diagonal and nondiagonal tunneling of polarons,

depending on the scattering of polarons by phonons. However, depending on the system,

there will be a critical temperature below which coherent tunneling will be the dominant

mode of transport. This is the regime which is of interest in my present research.

D. Alternative Approaches

This regime of transport of small polarons or transport below the critical can be treated

classically in spite of the coherent nature of the tunneling. So, alternative descriptions of this

dynamics, basing on discrete nonlinear Schrödinger equation (DNLSE) or its variants like

Ablowitz-Ladik equation and Salerno equation, have emerged[31, 32]. In these descriptions,

it is a single particle dynamics in the spirit of Hatree formalism[33]. The hopping is described

by the usual tunneling of a small polaron. Mostly, nearest-neighbor hopping is considered.

In a reasonable picture, two types of phonons are considered. One set of phonons dresses
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the particle to form small polarons. The other set, being soft phonons, is treated classically

by considering harmonic or anharmonic lattice vibrations. In quantum mechanical terms,

this set of phonons are treated in the coherent state formalism. The lattice vibration is

assumed to alter the site energy, or the hopping, or both. This causes the coupling of

two dynamics. Since, the dynamics is in the nonadiabatic limit, the solution of the lattice

dynamics is possible by ignoring the inertia of the elastic subsystems[34–36]. Its subsequent

incorporation into the particle dynamics then leads to desired nonlinear equations. One such

equation is, of course DNLSE. DNLSE is also a non-integrable standard discretization of

the continuous integrable nonlinear Schrödinger equation[35]. A broader discrete nonlinear

equation is obtained when the lattice dynamics is allowed to alter both the tunneling and

site-energies. The following discussion is in the context of DNLSE.

V. SYSTEMS HAVING NONLINEAR IMPURITIES

When such strong interaction exists in domains, we get systems having domains of nonlin-

ear impurities. Again, if we have anharmonic vibrations, we can have nonlinear impurities

having power law structure[37]. These systems should also produce stationary localized

states and in one-dimensional systems, these states should be exponentially localized. In

this field, in my work in collaboration with Dr. B. C. Gupta, I considered first a one-

dimensional perfect systems with two juxtaposed nonlinear impurities with power law struc-

ture. The power is denoted by a parameter σ. The strength of these impurities is denoted

by χi i = 1, 2. It is found that this system has both stable and unstable stationary localized

states. Furthermore, the phase diagram of stationary localized states in the χ − σ plane

is found to be very rich, showing different regions containing different number of localized

states. The maximum number of localized states is found to be six. In linear systems, we

cannot have more than two localized states. Again, these are stable eigenstates. These

results are published in Phys. Rev. B and Phys. Lett. A[38–40]. In another work, albeit

not yet published, the effect of separation between two nonlinear impurities on the number

of localized states is investigated[41].

Since, the standard DNLSE has same type of nonlinearity at all sites, it has the transla-

tional invariance. We note that linear systems with translational invariance does not produce

any localized state. But, due to the nonlinearity, it can produce self-localized stationary
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states or breathers. Breathers are spatially localized time periodic solutions of nonlinear

equations[42–47]. It is further to be noted that the formation of breathers is enhanced by

discreteness and lattice periodicity. As the type of breathers, that is investigated both in

Cayley tree and in one dimensional system is stationary localized states of the system, these

breathers are called trivial breathers. The formation of breathers is investigated using the

mean field formalism. Importantly, for the Cayley tree an ingenious transformation is de-

veloped to transform the problem to an effective one dimensional problem with an extra

bond (hopping) defect[48]. In this work, my collaborators were Dr. B. C. Gupta, and Mr.

Ananda Mohan Ghosh. These works are published in J. Phys.: Condensed Matter[49] and

in Eur. Phys. J. B [49].

VI. ALMOST INTEGRABLE NONLINEAR EQUATIONS

Nonlinear equations constitute a very big as well as a very important field of mathematics,

with inherent application in in physical and biophysical problems. A not so precise flow chart

of nonlinear equations is given here for better understanding of subsequent discussion. We

note that ”H. H. Equation” in this chart means the famouse ”Hodgkin-Huxley equation”.

Integrable nonlinear equations with single soliton and multisolitons solutions constitute

a very rich facet, albeit not the only one, of nonlinear dynamics[31, 50]. These integrable

equations can either be continuous or discrete. In the first category, we have the famous

Korteweg-de Vries (KdV) equation. Another important examples are continuous nonlinear

Schrödinger equation (CNLSE) and the famous Sine-Gordon (s-G) equation. In the other

category, famous examples include Toda equation[51] and Ablowitz-Ladik equation[52]. We

note in this context that Ablowitz-Ladik equation describes a Hamiltonian system with dy-

namics described by noncanonical variables[50]. However, a global transformation exists,

which takes these noncanonical variables to canonical variables[53]. In case of integrable

equations, there are two types of solitons. solitons that are formed due to acute balance be-

tween dispersion and nonlinearity are called dynamical solitons. Kdv solitons are dynamical

solitons. On the other hand, solitons formed from the competition between nonlinearity and

constraints arising arising topological invariants are called topological solitons. Kink and

anti-kink solutions of s-G equation are examples of topological solitons [54, 55].

There is again a class of nonlinear equations that is as such not integrable, but in some
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way similar to one of the known integrable equations. In other words, in the small pertur-

bation limit, these equations are covered by KAM theorem [55]. A good example is Salerno

equation[56]. In such a situation, soliton dynamics can be studied by one or the other pre-

scribed perturbation methods[34]. So, one of my projects was to study soliton dynamics

perturbatively of nonlinear equations that can arise in soft molecular chains due to inter-

action of excitation with acoustic phonon[36]. Soliton in soft molecular chains arising from

above mechanism is generally referred to as Davydov’s soliton. Soliton mechanisms have

been proposed also in a number of biomolecular and molecular processes. One good example

in the biological area is the attempt to explain the structural and dynamical flexibility of

DNA by a soliton mechanism . However, most well studied of all is the problem of storage

and transport of biological energy by Davydov’s soliton in α-helical proteins. One of my
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works in this field is the perturbative analysis of soliton dynamics. This has appeared in

Phys. Rev. E[36]. The abstract of the paper is given below.

A. Abstract of the paper, Phys. Rev. E, 61, 5839 (2000)

Classical Ablowitz-Ladik type soliton dynamics from three closely related classical non-

linear equations is studied using a perturbative method. Model non-integrable equations

are derived by assuming nearest neighbor hopping of an exciton(vibron) in the presence of

a full exciton(vibron)-phonon interaction in soft molecular chains in general and spines of

α-helices in particular. In all cases, both trapped and moving solitons are found implying

activation energy barrier for propagating solitons. Analysis further shows that staggered

and nearly staggered trapped solitons will have a negative effective mass. In some mod-

els the exciton(vibron)-phonon coupling affects the hopping. For these models, when the

conservation of probability is taken into account, only propagating solitons with a broad

profile are found to be acceptable solutions. Of course, for the soliton to be a physically

meaningful entity, total nonlinear coupling strength should exceed a critical value. On the

basis of the result, a plausible modification in the mechanism for biological energy transport

involving conformational change in α-helix is proposed. Future directions of the work are

also mentioned.

VII. A NEW CLASS OF NON-INTEGRABLE DISCRETE NONLINEAR EQUA-

TIONS, HAVING SOLITARY WAVES

While working on this problem, I realized that a thorough mathematical analysis of

a related nonlinear equation will be useful. This led me to propose a discrete nonlinear

equation, which I called ”N-AL” (nonintegrable Ablowitz-Ladik) equation. To understand

the utility of this equation, I mention the following points.

One important field of study in nonlinear nonintegrable equations is whether or not

solitary wave like solutions can exist in these equations. So, consider the NLS with an ad-

ditional Hamiltonian perturbation that models a nonlinear interaction between Langmuir

waves and electrons in plasma. It constitutes an interesting example of a continuous nonlin-

ear nonintegrable equation, which can have solitary waves as well as periodic solutions, and
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FIG. 1: This figure pertains to modified Salerno equation (MSE). It shows the dependence of the

critical value of µ, µc on the parameter, ε, which measures the strength of the nonintegrability

term in MSE. Both µc and ε are dimensionless. Ref. Phys. Rev. E, 61, 5839 (2000).
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FIG. 2: Thess figures pertains to MSE, showing the dynamics of solitons in the (x, k) plane.

ε = 1.0, and µc = π. Since, kcr = π
4
as a choice, µ = 2.052. So, µ < µc. Ref. Phys. Rev. E,

61, 5839 (2000).
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FIG. 3: This figure also pertains to MSE. However, for this figure µ = 3.2 > µc. Here k = 2πΦ

to make the figure symmetrical. Two propagating modes in the Φ-direction are shown by broken

curves. Again, all quantities are dimensionless. Ref. Phys. Rev. E, 61, 5839 (2000).

recurrence. It is further observed by numerical analysis of the nonlinear equation that re-

currence depends sensitively on initial conditions[57]. Contrary to the common belief, there

are also nonintegrable discrete systems which possess exact solitary waves. Indeed, there is

an existence theorem also[58].

The N-AL equation, that I proposed and studied to a certain extent, is an extended non-

integrable version of the ALDNLSE(Ablowitz-Ladik discrete nonlinear Scrödinger equation),

which has a ”tunable” nonlinearity in the intersite hopping term. At the same time, the form

of nonlinearity is such that it can allow solitary wave like solutions. It is to be noted that my
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FIG. 4: This figure pertains to the model with sole off-diagonal coupling. It shows the phase

diagram of the dynamics of solitons for in the x direction but for c = 1.2. µs = sinh−1(c) = 1.016.

All quantities are dimensionless. Ref. Phys. Rev. E, 61, 5839 (2000).

case is not covered by the existence theorem, that I have already mentioned. Inasmuch as

this nonlinearity is in the intersite hopping term, it serves two important purposes. First of

all, this extra dispersive correction to the ALDNLSE will try to destroy the Ablowitz-Ladik

(A-L) soliton by dispersion. So, by varying this term we can investigate the effect of disper-

sive imbalance on the maintenance of the moving solitonic profile. It is relevant at this point

to note that both the IN-DNLS (describe later) and the MSE (modified Salerno Equation,

a discrete nonlinear equation, that I also proposed) investigate the competition between the

on-site trapping and the solitonic motion of the A-L solitons. In case of the MSE, it is

found that the narrow A-L solitons, having width smaller than the critical width will get
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pinned by the lattice potential[34, 36]. Similar results are obtained numerically from the

IN-DNLS[53]. Secondly, since the extra dispersive term in the proposed equation breaks the

integrability of the ALDNLSE, the dynamics of the A-L solitons will not be transparent to

the lattice discreteness. So, along with the IN-DNLS and the MSE, this model also gives an

opportunity to study further the effect of Peierls-Nabarro (PN) potential on the dynamics

of solitons[53, 59]. My this work has appeared in J. Phys. A [60]. The abstract is given

below.

A. Abstract of the paper, J. Phys. A : Math. Gen. 35, 8109-8133 (2002)

Schrödinger Hamiltonians with tunable nonlinearities is introduced, which includes the

integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived

from these Hamiltonians using a generalized definition of Poisson brackets, and collectively

referred to as the N-AL equation, is studied. The symmetry properties of the equation are

discussed. These equations are shown to possess propagating localized solutions, having

the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik

nonlinear Schrödinger equation. The N-AL systems are shown to be suitable to study

the combined effect of the dynamical imbalance of nonlinearity and dispersion and the

Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary

wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete

breather solutions, due to the presence of saddle center bifurcations in phase portraits.

The unstaggered localized states are shown to have positive effective mass. On the other

hand, large width but small amplitude staggered localized states have negative effective

mass. The collision dynamics of two colliding solitary wave profiles are studied numerically.

Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic

interactions, certain universal features are observed in the collision dynamics. Future scopes

of this work and possible applications of the N-AL systems are discussed.

VIII. FURTHER STUDIES ON BREATHERS

The study of energy localization in nonlinear lattices has become an important field of

research in nonlinear dynamics in the past couple of decades[61]. In this context, the subject
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FIG. 5: The N-AL dynamics of an initial Ablowitz-Ladik soliton with k = − 3π
4
, Eq.(2.5).

Furthermore, l = 2, g1 = 0.0, g2 = 0.5 and µ = 1.0. The number of sites in the chain is 257

and the origin is taken at the center of the chain. Ref. J. Phys. A : Math. Gen. 35, 8109-8133

(2002).

of intrinsic localized modes (ILM) has drawn a considerable attention as it offers appealing

insights into a variety of problems ranging from the nonexponential energy relaxation[62] in

solids, to the local denaturation of DNA double strands[63]. The subject is also an intense

field of study in material science, and nonlinear optic applications[64, 65]. We note that ILMs

can be formed in translationally invariant systems, and for this to happen, nonlinearity plays

a crucial role.

There are two broad classes of intrinsic localizations in (1 + 1) dimensional nonlinear

systems[66]. Shape preserving localized excitations are called dynamical solitons[31, 54, 55].

Breathers belong to the second category of ILM in nonlinear systems[54, 66]. Breathers are

spatially localized time periodic solutions of nonlinear equations. They are characterized

by internal oscillations[54, 66]. Again, by breathers we usually imply stationary localized

excitations in nonlinear systems. However, under appropriate conditions, nonlinear systems

may have moving breathers[54]. We again note that the formation of breathers is aided by

lattice discreteness and lattice periodicity.
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FIG. 6: The N-AL collision dynamics of two initial A-L pulses. k2 = −k1 = π
2
. l = 1, g1 =

0.5 and µ = 1.0 as mentioned in the paper, J. Phys. A : Math. Gen. 35 8109 (2002). The

number of sites in the chain is 313 and the origin is taken at the middle of the chain.
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FIG. 7: The N-AL collision dynamics of two initial A-L pulses. k2 = −k1 = π
2
. l = 1, g1 =

0.5 and µ = 1.0 as mentioned in the paper, J. Phys. A : Math. Gen. 35 8109 (2002). The

number of sites in the chain is 313 and the origin is taken at the middle of the chain.
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FIG. 8: The N-AL collision dynamics of two initial A-L pulses. k2 = −k1 = 3π
4
. l = 2, g1 =

0.0, g2 = 0.5 and µ = 1.5 as mentioned in the above paper. The number of sites in the chain

is 313 and the origin is taken at the middle of the chain. Ref. J. Phys. A : Math. Gen. 35 8109

(2002).

IN-DNLS is a discrete nonlinear Schrödinger equation with tunable nonlinearity. In

one extreme, it reduces to the integrable A-L equation and in the opposite limit, it is

DNLSE. As this discrete equation is non-integrable in its general form, it is expected to

form breathers. Though some studies were made in this direction, a systematic study of

formation of breathers for systems described by this nonlinear equation was required. So, I

studied this problem using discrete variational formulation. In this approach, we used the

static form of A-L soliton, which is a breather as the ansatz. It is a very reasonable choice.

Furthermore, in stead using Lagrangian for the formulation, it is shown that the standard

Sturm-Liouville variational approach can be used to find the appropriate functional. A

detailed analysis is presented in the following paper by me[67]. The abstract is given below.
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A. Abstract of the paper, nlin.PS/0403060, International Journal of Mathematics

and Mathematical Sciences, Vol. 2005, No. 4, 20 April 2005.

IN-DNLS, considered here is a countable infinite set of coupled one dimensional nonlin-

ear ordinary differential difference equations with a tunable nonlinearity parameter, ν. This

equation is continuous in time and discrete in space with lattice translational invariance

and has global gauge invariance. When ν = 0, it reduces to the famous integrable Ablowitz

- Ladik (AL) equation. Otherwise it is nonintegrable. The formation of unstaggered and

staggered stationary localized states (SLS) in IN-DNLS is studied here using discrete vari-

ational method. The appropriate functional is derived and its equivalence to the effective

Lagrangian is established. From the physical consideration, the ansatz of SLS is assumed

to have the functional form of stationary soliton of AL equation. So, the ansatz contains

three optimizable parameters, defining width (β−1), maximum amplitude and its position

(
√
Ψ, x0). Four possible situations are considered. An unstaggered SLS can be either on-site

peaked (x0 = 0.0) or inter-site peaked (x0 = 0.5). On the other hand, a staggered SLS can

be either Sievers-Takeno (ST) like mode (x0 = 0.0), or Page(P) like mode (x0 = 0.5). It

is shown here that unstable SLS arises due to incomplete consideration of the problem. In

the exact calculation, there exists no unstable mode. The width of an unstaggered SLS of

either type decreases with increasing ν > 0. Furthermore, on-site peaked state is found to

be energetically stable. These results are explained using the effective mass picture. For the

staggered SLS, the existence of ST like mode and P like mode is shown to be a fundamental

property of a system, described by IN-DNLS. Their properties are also investigated. For

large width and small amplitude SLS, the known asymptotic result for the amplitude is

obtained. Further scope and possible extensions of this work are discussed.

IX. FUTURE PROJECTS

A. Further Study of N-AL Equation

Integrable nonlinear equations are characterized by their soliton and multisoliton solu-

tions. Solitons also preserve their shape under collision. In that respect, solitons are like

particles. Again, in the transport phenomena of energy, excitation, mass etc. solitons provide

a nondispersive and nondissipative mechanism for transport[47, 68]. However, formation of
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FIG. 9: This figure shows the variation of βroot as a function of the nonintegrability parameter, ν

for various values of the parameter, a. It is obtained from the exact calculation. For this figure,

H̃0 = constant, x0 = 0.0, and λ = 1. Curve I : a = 0.5, Curve II : a = 1.0, Curve III : a = 1.5,

and Curve IV : a = 2.0. Ref. nlin.PS/0403060.

solitons in a physical system requires highly coherent dynamics of relevant dynamical vari-

ables of the system. Hence, in any physical system, occurrence of true solitons is not very

likely. Take, for example KdV equation and KdV solitons. KdV solitons are obtained by

assuming that the localized wave has small amplitude and large width. So, when it is said

that transport in a physical system occurs by a soliton mechanism, implicitly or explicitly a

time scale is attached. It means that below that time scale, the mechanism can be approxi-

mated by transport of solitons. So, if the relevant experimental time scale smaller than this

time scale, we can talk of soliton mechanism.

On the other hand, solitary waves can be found in nonintegrable nonlinear equations[60].

Solitary waves are unstable under collision, and aloso produce fractal structure in the colli-

sion region[60, 69]. So, formation of solitary waves requires less constraint on the coherence

of relevant dynamical variables. Now, if in a physical system scattering of solitary waves

is not an important phenomenon, soliton mechanism, replaced by solitary wave can also
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FIG. 10: This figure shows the variation of βroot as a function of the nonintegrability parameter, ν

for two positive values of the parameter, a. This figure presents the exact solution for λ = 1. For

Curves I(a) and I(b) a = 1, but x0 = 0.5 and 0.0 respectively. For Curves II(a) and II(b) a = 2.0,

but x0 = 0.5 and 0.0 respectively. Ref. nlin.PS/0403060.

provide a nondispersive nondissipative mechanism for transport. In this context then, N-

AL equation assumes much significance. Furthermore, I plan to give efforts to find other

nonlinear equation, continuous as well as discrete to add to our understanding of nonlinear

dynamics.

The existence of breathers in N-AL equation is found in my analysis[60]. So, a thorough

analysis of breather formation in this equation is an important problem. Again, this equa-

tion, when studied for soliton solutions by perturbative methods, shows homoclinic orbits

in the phase portrait. This indicates that the system may show chaotic dynamics[60]. As

it describes a hamiltonian system, the bifurcation seen in the phase portrait as a function

of the coupling parameter indicates destruction of one or more integral of motions. Since,

the existence of a particular integral of motion is due to a certain symmetry of a system,

a chaotic regime may emerge when the symmetry pattern of the system is changed[55]. In

relation to ”N-AL” equation, this is another aspect which I plan to pursue in the future.
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FIG. 11: This figure shows the variation of the energy of unstaggered stationary localized states

as a function of ν for two values of a and for two permissible values of x0. Of course, the result is

obtained from the exact calculation with H̃0 = constant. For Curves I(a) and II(a) a = 1.0, but

x0 = 0.0 and 0.5 respectively. For Curves I(b) and II(b) a = 2.0, but x0 = 0.0 and 0.5 respectively.

Ref. nlin.PS/0403060.

Dynamics in nonlinear systems can also be effected by disorder and by stochastic forces.

Therefore, the study of the effect of diagonal and off diagonal disorder also of stochastic forces

on solitons and solitary waves and also on breathers constitute another important field of

study. Some futurestudies in this direction with N-AL and IN-DNLS are also present in my

scheme of things.

As I mentioned earlier that breathers can be formed in nonlinear Hamiltonian systems, de-

scribed by discrete nonlinear equations, which show band structure in the linear domain[67].

Though breathers are stationary solutions, they can be made mobile by perturbation[70].

Furthermore, breather-breather interaction can also alter the transport properties of a sys-

tem. In my plan of things, I would like to investigate these features of breathers, obtained

from IN-DNLS, MSE and N-AL. Note that in all these equations there is a soliton stabiliz-
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FIG. 12: This figure shows the variation of βroot as a function of the nonintegrability parameter,

ν for a = 1.0 and 2.0, as obtained from the exact calculation. Since, λ = −1, these states are

staggered stationary localized states. Curve I(a) : a = 1.0, and x0 = 0.0. Curve II(a) : a = 2.0,

and x0 = 0.0. Curve I(b) : a = 1.0, and x0 = 0.5. Curve II(b) : a = 2.0, and x0 = 0.5. Ref.

nlin.PS/0403060.

ing term. So, the structure of breathers, particularly trivial breathers may show structural

stability in their transport under perturbation.

B. Soliton Transport in Molecular Solids

The prospect of field-effect transistors, FETs, made of easily processible thin organic

films has stimulated considerable research effort. The most successful devices to date

have been made of oligomeric rather than polymeric material, an outstanding one being

α-sexithiophene, α-6T. The field-effect mobility of hole polarons in α-6T, measured in thin

film transistors, can be well fitted by Holstein’s small polaron theory[71]. The small polaron

theory is also used to explain the mobilities of photoinjected electrons in Naphthalene[29].

Again, to explain almost-temperature-independent mobility above 100K for electrons in an-
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thracene, naphthalene and in As2S3, Frölich large polaron theory is also developed. This

theory is also reasonably successful[72].

We note that the bandwidth in the crystallographic c′ axis of these compounds is very

narrow. So, the solitonic conduction along this axis can be investigated using the appropriate

version of DNLSE[73]. It is going to be one of my major projects in future.

X. BIOLOGY AND NONLINEAR DYNAMICS

A rich domain of nonlinear dynamics is biology[74, 75]. In biology, we can find almost all

possible nonlinear dynamics, starting from simple attracting fixed points to chaotic dynam-

ics. The first important contribution to mathematical biology comes in 1952 from Hodgkin

and Huxley[31]. They looked into the problem of electrical signal propagation on nerve axon

of the giant squid[74]. In this context, they proposed effectively a fourth order nonlinear

partial differential equation, which nicely modeled the problem. It is, however to be under-

stood that in spite of its success, the Hodgkin-Huxley model is a mathematical model rather

than a mathematical theory.

Another important field is the field of bioenergetics. Glycolysis, H+-pumps and many

other pumps like Na+−K+- pumps, Ca+2-pumps play very important roles in our biological

activities. Glycolysis is shown to have oscillatory behavior and many studies have been done

on this aspect of glycolysis. In general, the study of various oscillatory chemical reactions,

though a very well-treaded field can still offer important insights into many biological phe-

nomena. As I did some work on this in the context of H+-pump, I am always fascinated

by oscillatory chemical reactions. Definitely, I would like to study some aspects of those as

when it appears appropriate.

An important as well as interesting problem in biology is the replication of DNA[76]. As

DNA is a very complicated biological molecule, the problem at first sight appears hopeless.

However, it is to be understood that not all degrees of freedom of DNA take part in the

process. When the relevant degrees of freedom are properly understood and taken into

account, the problem comes within the tractable regime[76]. Consider in this context Bishop-

Peyrard model[63]. This is a very simple model. Still it is quite effectively in predicting DNA

melting. In my subsequent studies, I plan to study this equation and its possible variants to

understand relevant physical and biophysical problems. Consequently, higher order models

23



in the field DNA melting and transcription will be studied[76, 77].
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