
Volume 8 Number 1 2019

STUDENT JOURNAL OF
PHYSICS

INTERNATIONAL JOURNAL

INDIAN ASSOCIATION OF PHYSICS TEACHERS

ISSN – 2319-3166



STUDENT JOURNAL OF PHYSICS

This is a quarterly journal published by Indian Association Of Physics Teachers. It publishes research articles
contributed  by  Under  Graduate  and  Post  Graduate  students  of  colleges,  universities  and  similar  teaching
institutions, as principal authors.

INTERNATIONAL EDITORIAL BOARD

Editor-in-Chief 

L. Satpathy
Institute of Physics, Bhubaneswar, India
E-mail: satpathy@iopb.res.in

Chief Editors 

Mahanti, S. D.
Physics and Astronomy Department, Michigan State University, East 
Lansing, Mi 48824, USA
E-mail: mahanti@pa.msu.edu
Srivastava, A.M.
Institute of Physics, Bhubaneswar, India
E-mail: ajit@iopb.res.in

EDITORS

Caballero, Danny
Department of Physics, Michigan State University, U.S.A.
E-mail: caballero@pa.msu.edu
Kortemeyer, Gerd
Joint Professor in Physics & Lyman Briggs College, Michigan State 
University, U.S.A.
E-mail: kortemey@msu.edu
Mohanty, Bedangadas
NISER, Bhubaneswar, India
E-mail: bedanga@niser.ac.in
Panigrahi, Prasanta
IISER, Kolkata, India
E-mail: panigrahi.iiser@gmail.com
Ajith Prasad, K.C.
Mahatma Gandhi College, Thiruvananthapuram, India
E-mail: ajithprasadkc@gmail.com
Scheicher, Ralph
Physics Department, University of Uppsala, Sweden
E-mail: ralph.scheicher@physics.uu.se
Singh, Vijay A.
Homi Bhabha Centre for Science Education (TIFR), Mumbai, India
E-mail: physics.sutra@gmail.com
Walker, Allison
Department of Physics, University of Bath Bath BA2 7AY, UK
E-mail: A.B.Walker@bath.ac.uk
Carlson, Brett Vern
Department de Fisica, Institute Technologico de Astronatica, 
Sao Paulo, Brasil 
E-mail: brettvc@gmail.com

INTERNATIONAL ADVISORY BOARD 

Mani, H.S.
CMI, Chennai, India (hsmani@cmi.ac.in) 
Moszkowski, S. M.
UCLA, USA (stevemos@ucla.edu) 
Pati, Jogesh C.
SLAC, Stanford, USA (pati@slac.stanford.edu) 
Prakash, Satya
Panjab University, Chandigarh, India 
(profsprakash@hotmail.com) 
Ramakrishnan, T.V.
BHU, Varanasi, India (tvrama@bhu.ac.in) 
Rajasekaran, G.
The Institute of Mathematical Sciences, Chennai, 
India (graj@imsc.res.in)
Sen, Ashoke
HRI, Allahabad, India (sen@hri.res.in) 
Vinas, X.
Departament d’Estructura i Constituents de la 
Mat`eria and Institut de Ci`encies del Cosmos, 
Facultat de F´ısica, Universitat de Barcelona, 
Barcelona, Spain (xavier@ecm.ub.edu) 

TECHNICAL EDITOR 

Pradhan, D.
ILS, Bhubaneswar, India
(dayanidhi.pradhan@gmail.com) 

WEB MANAGEMENT 

Ghosh, Aditya Prasad
IOP, Bhubaneswar, India
(aditya@iopb.res.in) 

Registered Office

Editor-in-Chief, SJP, Institute of Physics, Sainik 
School, Bhubaneswar, Odisha, India – 751005
(www.iopb.res.in/~sjp/)



STUDENT JOURNAL OF PHYSICS

Scope of the Journal

The  journal is devoted to research carried out by students at undergraduate level. It  provides a platform for the young
students to explore their creativity, originality, and independence in terms of research articles which may be written in

collaboration with senior scientist(s), but with a very significant contribution from the student. The articles will be judged
for suitability of publication in the following two broad categories:

1. Project based articles

These articles are based on research projects assigned and guided by senior scientist(s) and carried out
predominantly or entirely by the student.

2. Articles based on original ideas of student

These articles are originated by the student and developed by him/ her with possible help from senior advisor.
Very often an undergraduate student producing original idea is unable to find a venue for its expression where it

can get due attention. SJP, with its primary goal of encouraging original research at the undergraduate level
provides a platform for bringing out such research works.

It is an online journal with no cost to the author.
Since SJP is concerned with undergraduate physics education, it will occasionally also publish articles on science education

written by senior physicists.

Information for Authors

• Check the accuracy of your references.
• Include the complete source information for any references cited in the abstract. (Do not cite reference numbers in

the abstract.)
• Number references in text consecutively, starting with [1].

• Language: Papers should have a clear presentation written in good English. Use a spell checker.

Submission

1. Use the link "Submit" of Website to submit all files (manuscript and figures) together in the submission (either as a
single .tar file or as multiple files)

2. Choose one of the Editors in the link "Submit" of Website as communicating editor while submitting your
manuscript.

Preparation for Submission

Use the template available at "Submit" section of Website for preparation of the manuscript.

Re-Submission

• For re-submission, please respond to the major points of the criticism raised by the referees.
• If your paper is accepted, please check the proofs carefully.

Scope

• SJP covers all areas of applied, fundamental, and interdisciplinary physics research.

http://www.iopb.res.in/~sjp/submit.php
http://www.iopb.res.in/~sjp/submit.php
http://www.iopb.res.in/~sjp/submit.php




STUDENT JOURNAL OF PHYSICS

Exploring Symbolic Neural Networks for Multiscale Applications

Elijah Sheridan1,2, David Rimel2 and Michael S. Murillo2

1 2nd Year, Undergraduate, Department of Physics and Astronomy, College of Arts and Science, Vanderbilt
University, Nashville, Tennessee 37235
2 Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lans-
ing, Michigan 48824

Abstract. Many scientific and engineering applications involve dynamics across wide ranges of length and
time scales. Modeling such multiscale systems is challenging when the known macroscopic models are approx-
imate versions of the underlying microscopic dynamics. The nonexistence of general mathematical descriptions
of some such systems motivates the use of additional tools, such as machine learning, in computational model-
ing. Additional goals of scientific objectivity, interpretability, and potential for extrapolation lead us to consider
the use of deep symbolic neural networks, in particular, in the hope of learning analytic forms representing the
macroscopic equations of motion in a multiscale system directly from the microscopic, atomistic dynamics. In
this paper, we implement the previously developed EQL÷ (EQuation Learner) model—an end-to-end differen-
tiable, feed-forward function-learning network—in multiscale modeling and evaluate the model using simpler
physical systems, with broader future applications in mind. We find that EQL÷ is capable of exactly solving
systems in some instances, but is able only to approximate more complex physical relations. We also identify
hyperparameter sensitivities and structural idiosyncrasies that result in potentially undesirable behavior, leading
us to consider particular potential future improvements.

Keywords: Neural Network, Multiscale Application, Equation Learner.

1. INTRODUCTION

A multiscale system is a physical system whose structure and evolution relies on information from
different temporal and spatial scales. Such systems are studied across scientific and engineering
disciplines; we are interested in the computational modeling of multiscale systems. A prototypical
example of a microscopic model is molecular dynamics (MD), which models atomic and molecular
behavior typically at the sub-micron scale. Conversely, hydrodynamics is a standard macroscopic
model that can describe phenomena on very large length and times scales; however, hydrodynamics
relies on microscopic closure information that can only be obtained from microscale models. This
closure information is, in fact, the information that distinguishes one material from another in the
model. In many cases, the structure of the closure is known, and the closure information can be
computed in advance; for example, MD can be used to precompute the equation of state needed to
inform the pressure closure term in a hydrodynamics model. In some cases, however, the closure
and/or its data are not known in advance.
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Here, we examine a particular class of multiscale model, known as heterogeneous multiscale
models (HMMs), that employs two separate methods at the two scales. Typically [18], the two
methods are run sequentially; the microscale model, usually MD, runs first and produces closure
data, and the macroscale model, usually hydrodynamics, runs next and uses that closure data until
it becomes stale, at which point the cycle repeats. It is desirable that multiscale models depend
as little as possible on information contained at the smaller scales, as smaller-scale systems are
computationally much more expensive because of both the quantity of items to be simulated and
the system complexity. However, a minimal level of microscale computation is typically required
to maintain a target level of accuracy. In general, it is not desirable to employ advanced, complex
problem-solving approaches when such approaches are not strictly necessary because of expense or
impracticality. However, the inherent complexities of some multiscale systems warrant a search for
alternative modeling methods.

We chose to explore machine learning (ML) approaches in this work for several reasons. First,
we—and other researchers [12][13]—hope to use ML to resolve several difficulties, including the
closure problem. Second, we observe that with extensive research into multiscale systems, traditions
and customs have evolved that result in inevitable biases, which incentivize the selection of an
objective, data-driven approach, and ML approaches can be designed to fulfill these conditions.
Finally, ML is an emerging tool that is proving to be of increasing utility in the sciences [14], and
we hope to use ML to maximize the accuracy of our results. We note that ML was by no means
our only possible choice of method, and that other data-driven methods [16] have been developed to
mitigate the closure problem and other unresolved problems as well.

Among the many types of ML, we chose to develop deep neural networks for our multiscale
modeling. ML models, in general, are extremely sensitive to the form of their input data, and because
of this sensitivity, feature engineering, i.e., the construction and preparation of input parameters, is
of the utmost importance. To escape existing scientific biases as much as possible, we must choose
to be as hands-off as possible in the implementation of our ML method; we should let even the
process of feature engineering be controlled by the ML model. For this reason, we chose to use deep
neural networks in this work; in these models, each layer receives features produced, customized,
and optimized by the layer before it. Using deep neural networks, we hope to minimize scientific
bias in our results and thereby to increase the chance of producing innovative results as well.

Among all possible ML approaches, we examined ML models that learn analytic mathemati-
cal expressions—in particular, macroscale equations of motion. Generic neural networks are often
viewed as uninterpretable black boxes, as they are often applied to problems with no presumed
underlying mathematical laws. In the physical world, however, much of behavior is governed by
mathematical laws; thus, we chose to employ symbolic, function-learning neural networks in this
work [11]. This selection ensures that our ML model learns something that is structurally similar
to the goal (a function), thereby enabling higher accuracy. Furthermore, because actual equations
describe phenomena not merely at individual points but across regions, we can expect to be able
to extrapolate results obtained with a function-learning network more accurately as well. Finally,

2 Student Journal of Physics,Vol. 8, No. 1, 2019



working with a symbolic network gives us the luxury of being able to critically examine and interpret
our model’s output and its components.

In this paper, we explored the use of the Equation Learner with Division (EQL÷) model [2],
which is a modification of the original Equation Learner (EQL) model [1] and a general-purpose
end-to-end differentiable, feed-forward function-learning network. It is worth noting that many
other symbolic function-learning neural networks exist [8–10] and that EQL÷ is also not inherently
physics-informed, unlike alternative ML approaches that take the form of both symbolic [5] and
non-symbolic [6, 7, 15] neural networks.

In Section 2, we introduce the EQL÷ model in depth, beginning with a survey of the general
theory and vocabulary of neural networks. Next, in Section 3, we provide experimental evaluation
of EQL÷ motivated by our particular interest in computational modeling. Finally, in Section 4, we
offer conclusions about our findings and a perspective on the path forward for incorporating ML into
the study and simulation of multiscale systems.

2. NEURAL NETWORKS AND EQL÷

In this section, we discuss the theory behind the EQL÷ model. The first subsection briefly intro-
duces neural networks and their architecture and training. With this framework, we are then able
to construct a comprehensive, rigorous description of the mathematical architecture of the EQL÷

model in the second subsection. The third and fourth subsections motivate and establish the loss
function and training schedule used with the EQL÷ model, respectively.

2.1 A Brief Introduction to Artificial Neural Networks

Artificial neural networks (ANNs) are a broad class of ML algorithms whose design is based on
the structure and behavior of biological neurons. The simplest ANNs use as their fundamental
unit a “neuron,” whose architecture accepts n input variables and returns one output value. The
neuron works by computing a linear combination of those input variables and applying an “activation
function” to this sum, which is a nonlinear function (e.g., a sigmoid function).

Mathematically, the ANN can be expressed in terms of a vector of input variables x ∈ Rn, a
“row vector” or 1×nmatrix of weights w ∈ M1,n, a bias b ∈ R, and a activation function f : R→ R.
Here, the “bias” is simply a constant that is independent of the input vector; it can be thought of as
a weight that multiplies x0 = 1. In this framework, for a given set of inputs, our neuron computes
and returns f(wx + b); in this way, our neuron is really a function P : Rn → R.

The neuron learns by changing its weights and bias, the elements of the row vector w and the
number b, respectively. For every input x that we give our neuron, we have some value y ∈ R that
we wish our neuron to return, and we penalize the neuron based on how far off its result is from
this y, i.e., how large |f(wx + b) − y| is. We desire that our neuron chooses weights to minimize
this penalty, which we call a “loss function,” across all training data. Multivariable minimization
problems can be treated with calculus-based methods, in this case usually with what are called
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“backpropagation” algorithms, which use the negative gradient to enable our neuron to efficiently
“learn” by consistently updating its weights to improve accuracy with respect to a dataset. We refer
to the input vectors in this data set as “predictors” and the desired output values as “labels.” Given
a model with ` weights and biases, our loss function can be understood as L : R` → R, and we can
think about this learning process as the traversal of the graph of L (an `-dimesional hypersurface
in R`+1) toward local minima, analogous to how a marble would roll to the nearest crevice on a
wrinkled sheet. We use standard backpropagation methods [19], which we won’t discuss further.

We generalize the single neuron first by recognizing that we can produce m outputs (instead
of just one) by merely sending our input x through m distinct neurons, each with its own weights
and bias. Instead of considering many separate row vectors w1, . . . ,wm, we can stack them on top
of each other as rows in a single matrix W ∈ Mm,n, and similarly, we can define a vector b ∈ Rm

that stacks the individual biases associated with each neuron on top of each other to make a vector.
The matrix W and vector b then act on our input vector x, and we obtain the final output of our
“neuron group” by applying our activation function f to each component of the resulting vector
Wx + b ∈ Rm. Note that our network is now a function P : Rn → Rm.

Finally, we are able to realize the most general form of neural network by chaining these groups
of individual neurons together. This is accomplished by feeding the output of one neuron group as
input into another neuron group. The number of neuron groups chained together in this way is the
number of layers L of the model; for example, an architecture with L = 3 layers has three separate
W matrices, W(1), W(2), and W(3), and three separate B vectors, b(1), b(2), b(3). Such models
are called “multi-layer networks.”

Because each layer of the ANN has its own weight matrix Wi and bias vector bi, chaining
neurons together in this way introduces another variable. We usually have a fixed number of inputs
n and outputs m that we wish to use and produce, respectively, but if L ≥ 3, then we have what are
called “hidden layers,” which neither directly receive the input variables nor output the final result
of the multi-layer neuron. We refer to ANNs with L ≥ 3 as “deep.” Before, our values n and m
determined the dimensions of the weight matrix W and bias vector b; now, we potentially have
many weight matrices and bias vectors, and those associated with hidden layers can theoretically be
of any dimension, as long as each W(i) and b(i) is compatible with W(i−1), W(i+1) and b(i−1),
b(i+1), respectively, for matrix multiplication and vector addition. We call the number of elements
in the vector output of an individual layer the “width” zi of that layer, with zL = m by definition.

We distinguish between two types of parameters in our model. Several variables in our model
are predetermined and are thus established before training begins (e.g., n, m, L), while others are
“learned” by the model during training (e.g., the elements of W(i) and b(i)). We call the former
“hyperparameters” and the latter simply “parameters,” or alternatively, weights or trained variables.

EQL÷, the ML model we utilize in this paper and introduce in the next section, is an extension
of the ANN approach we have established here. This means that the vocabulary we develop here
can be applied to the EQL÷ as well. We demonstrate this in Fig. 1, which gives a diagram of an
example of an EQL÷ model architecture (and of its predecessor, EQL). The EQL÷ model alternates
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between the application of weights/biases to input vectors (labeled as the functions T (1), T (2), and
T (3) in the diagram) and a set of non-linear functions to each individual output component (labeled
collectively F (1) and F (2) in the diagram) that behaves like a activation function. In this way, Fig. 1
demonstrates how the EQL÷ model is an extension of a basic neural network: in particular, we see
an example EQL÷ model with the hyperparameters n = 3, m = 3, and L = 3 (recall that T (i) and
F (i) are grouped together for each i to form an individual layer), with zi = 6 throughout.

Figure 1. Architecture of an instance of the EQL÷ model, demonstrating how it builds
on both generally on the general neural network architecture described in Sec. 2.1
and specifically on its predecessor, the EQL model. In the language of Sec. 2.1, this
instance has hyperparameters n = 3, m = 3, L = 3, and zi = 6. In the language of
Sec. 2.2, this instance has hyperparameters n = 3, m = 3, L = 3, ui = 4, vi = 1,
H = {id, sin, cos, sigm}, and I(i) = {1, 2, 3, 4}. Note that in this diagram, nodes are
values, while lines are operations; in contrast, conventionally, the opposite is true.

2.2 EQL÷ Architecture

We now introduce the architecture of the EQL÷ model [2]. An EQL÷ model is defined by the
following hyperparameters: the number of inputs n, the number of outputs m, the number of lay-
ers L, the two (L − 1)-tuples that together define layer widths U = {u(1), . . . , u(L−1)}, V =

{v(1), . . . , v(L−1)} ⊂ N, the ordered hypothesis set H = {F1, . . . ,F`} ⊂ (R → R), the (L − 1)-
tuple of unary function index tuples I = {I(1), . . . , I(L−1)} (where I(j) ⊂ N/`N is a u(j)-tuple,
1 ≤ j ≤ L−1), and the division threshold θ ∈ R (described below). Such a model learns a function
Ψ : Rn → Rm defined as Ψ(x) = (ψ(1) ◦ . . . ◦ ψ(L))(x), where ψ(i) denotes the function applied
by the ith layer.

Layer i first applies a (fully trainable) affine map T (i)(x) = W(i)x + b(i). If i < L, the
layer then applies a nonlinear map F (i) : Ru

(i)+2v(i) → Ru
(i)+v(i) composed of u(i) unary functions

f
(i)
1 , . . . , f

(i)
u : R → R, sampled from H through I such that f (i)j = F

I
(i)
j

, and v(i) instances of
multiplication, as follows:

F (i)(x) =
(
f
(i)
1 (x1), ... , f

(i)

u(i)(xu(i)), xu(i)+1·xu+2, ... , xu(i)+2v(i)−1·xu(i)+2v(i)

)
. (1)
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Where xi gives the ith component of the input vector x. If i = L, then the layer instead follows the
affine map with a special element-wise division function D : R2m → Rm, defined as

D(x) = (hθ(x1, x2), . . . , hθ(x2m−1, x2m)), (2)

where the binary function hθ : R2 → R is, in turn, a division operation modified to avoid divergences
during training, defined as

hθ(a, b) =

a
b b > θ,

0 b < θ.
(3)

The net transformation ψ(i) associated with a given layer is then

ψ(i)(x) =


(
F (i) ◦ T (i)

)
(x) i < L,(

D ◦ T (i)
)

(x) i = L.
(4)

Eq. 4 allows us to establish the domain and codomain of ψ(i):

ψ(i) :


n→ u(i) + v(i) i = 1,

u(i−1) + v(i−1) → u(i) + v(i) 1 < i < L,

u(i−1) + v(i−1) → m i = L.

(5)

The domains and codomains for each component of ψ(i) can then be inferred from Eq. 5 and the
definitions of T (i) and F (i).

The relationship between EQL÷ and EQL, from which EQL÷ originates, is shown in Fig. 1.
Each EQL÷ model can be thought of as containing an EQL model within it: if we define Φ(x) =

(T (L) ◦ ψ(L−1) ◦ . . . ◦ ψ(1))(x), then Φ(x) and all of the hyperparameters it depends on precisely
define the architecture of the EQL model. EQL÷, then, is simply EQL with division.

2.3 The EQL÷ Loss Function

We now consider the qualitative goals of EQL÷ and use these to motivate the terms of the loss
function we employ with our model [2].

Most importantly, we want these models to be accurate and capable of learning equations that
represent data well. This desire mandates the presence of a term in our loss function that captures
the error of the model with respect to training data; in our loss function, we use the mean squared
error for this purpose.

Next, and more subtly, because we use these models to learn real, physical equations, it is often
desirable for a model to use only a small fraction of its weights. EQL÷ has the capacity to develop
learned functions that are hundreds of terms long, but in most cases, actually learning such long
functions would be an example of overfitting the data. Thus, we chose to include a term in our loss
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function that encourages sparsity: an L1 regularizer [19]. The combination of the mean squared
error with L1 regularization is commonly referred to as a Lasso-like objective [3].

Finally, we have constructed our division layer in such a way that we avoid divergences by
ignoring (setting to zero) division nodes with denominators below a threshold θ. Thus, in the event
that a division node settles on a sufficiently small or negative denominator at any point in training, it
not only will be zeroed out but will also possess no gradient to allow weights and biases to evolve in
such a way that the denominator ever becomes positive again. This situation prompts us to impose
an artificial gradient as a part of our EQL÷ loss function that penalizes denominators in a manner
proportional to how far below θ they are.

We now present the loss function L for our EQL÷ model. First, consider an EQL÷ model
learning a function Ψ : Rn → Rm with L layers. We define Φ : Rn → R2m to be Φ(x) =

(T (L) ◦ ψ(L−1) ◦ · · · ◦ ψ(1))(x); note that this definition coincides with that in the previous section,
giving the function whose output is input into D. L for this model with respect to a dataset X of
length N with predictors xi and labels yi (where the subscript now indexes the data point within the
data set, instead of indicating a vector component) can now be written as

L(X) =
1

N

N∑
i=1

‖Ψ(xi)− yi‖22︸ ︷︷ ︸
Mean Squared Error

(Accuracy)

+λ
L∑
l=1

(
‖W(l)‖

1
+ ‖b(l)‖

1

)
︸ ︷︷ ︸

L1 Regularization
(Sparsity)

+
N∑
i=1

m∑
j=1

max(θ − Φ(xi)2j
, 0).︸ ︷︷ ︸

Artificial Gradient
(Positive Denominators)

(6)

Note that the even-numbered indices of Φ(xi) are precisely the denominators of that division layer.
We can now also see that the regularization coefficient λ ∈ R is another hyperparameter for EQL÷.

2.4 EQL÷ Training Schedule

As outlined by the creators of this model [1, 2], we used a stochastic gradient-descent algorithm
with mini-batches and optimized the loss function using the Adam method [4] as follows:

Wt+1 = Wt + Adam(−∇L(X), α), (7)

where Wt denotes a vector containing all trainable weights and biases at an arbitrary training time
step t ∈ N. The learning rate α ∈ R used with Adam is another model hyperparameter.

We can motivate the EQL÷ training schedule [1, 2] by identifying a particular problem implic-
itly contained in our loss function L. Presently, our regularization penalty will both minimize the
number of active (non-zero) weights and biases (i.e., impose sparsity) and minimize the magnitude
of those weights and biases (i.e., impose “small” coefficients). This latter behavior is undesirable,
as it means that our model will have some difficulty learning functions with large coefficients.

This problem with our loss function was mitigated by imposing the following three-phase dy-
namic training schedule. Given a training duration T , phase one of training lasts for 1

4T , during
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which we let λ = 0 (i.e., we impose no regularization). The goal of this phase of training is for the
weights and biases to acquire plausible values when given some time to settle without restriction.
Phase two of training lasts 7

10T , and in this period we set λ to its predetermined, non-zero value and
impose regularization on the trainable variables to establish sparsity. Finally, in phase three, weights
and biases are allowed to reach previously inaccessible magnitudes through the brief re-elimination
of regularization (i.e., setting λ = 0 once again) for the final 1

20T of training. To prevent trainable
variables with small or zero values from reemerging and undoing the benefits of sparsity imposed
during phase two, we impose the additional constraint that those small variables must maintain their
total L0 norm; that is, we require all trainable variables with values greater than or equal to a thresh-
old c ∈ R to remain non-zero, and all variables with values strictly less than c to become and remain
zero.

As a final note, the original creators of EQL÷, desiring the division threshold θ to be as small
as possible while still recognizing the risk of divergence associated with sufficiently small values,
chose to make θ a dynamic hyperparameter that varies with the epoch number t, as follows:

θ(t) =
1√
t + 1

. (8)

Eq. 8 allows θ to shrink as the model learns to avoid small and negative denominators, thanks to the
“artificial gradient” in L, as defined in Eq. 6.

Figure 2. Visualization of the training schedule for EQL and EQL÷, showing the dy-
namic regularization progression and the relative length of the three training periods.

3. RESULTS

To test our models, we chose two examples of physical systems that exhibit behavior that is simul-
taneously well understood and complex. In particular, we examined the single and double pendula.
The equations of motion for both systems are well known and are not difficult to derive using the
methods of Lagrangian mechanics, but in both cases, the equations of motion are nonlinear and do
not possess general analytic solutions. In practice, the single and double pendula can be modeled
through numerical integration methods.
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Computational numerical integrators typically depend on a function f : Rn → Rn that cap-
tures the first-order ordinary differential equation (ODE) decomposition of a system’s equations of
motion. This function maps a “state vector,” which contains complete information about a given
system’s state, to a vector which gives the time rate of change of each component in state vector,
evaluated at that particular state; i.e., the ith component of f(a) is dxi

dt |xi=ai for a system defined
by n variables x1, x2, . . . , xn. The state of a system is usually specified as a complete set of 1

2n

generalized coordinates and either their time derivatives or their associated generalized momenta.
It is this function f , which efficiently contains the equations of motion of a given system, that

we chose to ask our EQL÷ model to learn for both the single and double pendula. Thus, we were
able to evaluate the accuracy of our trained models by numerically integrating their learned equations
and comparing the resulting time series data with those resulting from the numerical integration of
the true equations of motion.

We find the EQL÷ model to be extremely sensitive to hyperparameters, especially the regular-
ization coefficient λ. Even in cases where EQL÷ is tasked with learning a relatively simple function,
we find that setting λ too low causes the EQL÷ model to tend to learn functions with many nonlinear
terms (i.e., overfitting the data), while setting λ too high restricts the number of terms in the learned
function and eliminates the model’s ability to capture subtleties and complexities (i.e., underfitting
the data). We illustrate this point in Fig. 3 with an invented function and three functions learned by
three separate trained instances of EQL÷, each using a different value of λ. The function learned by
the instance with the greatest regularization merely captures a global trend inside the training region
(indicated by the vertical dotted lines), while the function learned by the instance with the smallest
value of λ overfits the training region and cannot be extrapolated. Only the function learned by the
model instance in which λ takes on an intermediate value is able to capture both local structure in
the training region and a global trend.

3.1 Single Pendulum

Adopting overdot notation to denote derivatives taken with respect to time, the motion of the ideal
single pendulum of unit length and unit mass is given by the following linear first-order ordinary
differential equation for the angle θ that the pendulum makes with the vertical:

θ̈ + g sin(θ) = 0. (9)

If we define ω := θ̇, we observe that a single-pendulum state is uniquely determined by the vector
(θ, ω). In this case, the function f , which captures the defining first-order differential equations,
takes the form f(θ, ω) : R2 → R2 and is defined as

f(θ, ω) =

[
ω

−g sin(θ)

]
. (10)

However, we recall that one of the anticipated weaknesses of the EQL÷ architecture is its
difficulty with learning large coefficients. As a consequence, we follow a modification imposed
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Figure 3. Visualizing the sensitivity of EQL÷ to the regularization hyperparameter λ
using an arbitrary function as the goal and plotting that goal along with three functions
learned by three EQL÷ models, each with a different λ value. In particular, we see how
models with values for λ that are either slightly too high (10−1) or too low (10−5) end
up underfitting or overfitting the data, respectively. This illustrates the sensitivity of
EQL÷ to regularization, which in turn necessitates the fine-tuning of the hyperparam-
eter λ to each data set. Dotted vertical lines give the bounds of the region from which
training data was sampled.

by the creators of EQL÷, who used the single pendulum to test its predecessor, EQL [1, 2], and
divide both components of f by g, giving the following, scaled-down function f ′ with easier-to-
learn coefficients:

f ′(θ, ω) =

[
1
gω

− sin(θ)

]
. (11)

Eq. 11 gives the function we trained the EQL÷ model to learn. We also followed a data-
generation procedure designed by the original creators of the EQL÷ model [1]; this procedure in-
volves sampling the hypercube [−h, h]× [−h, h] ⊂ R2, h ∈ R for N predictors and using the goal
function f ′ to compute their corresponding N labels.

Because of the simplicity of this function, we find that EQL÷ is effective at learning it exactly,
without too many data points or training epochs, across certain ranges of hyperparameter values.
In an attempt to pinpoint the minimal amount of training data and the minimal training duration
required, we completed a grid search across a range of values for the number of data pointsN and the
training epoch T ; our results are shown in Fig. 4 in the form of “heat maps” that depict the accuracy
of individual trained models using color. As a metric, we used the root-mean-squared error (RMSE,
the square root of the first term in Eq. 6) on an “extrapolation” data set containing 10000 data points,
with predictors sampled from the rectangular hyper-shell [−2h, 2h]×[−2h, 2h]\[−h, h]×[−h, h] ⊂
R2. We made the following hyperparameter selections for this grid search: L = 2, 4u(i) = v(i) = 4,
H = {id, sin, cos, sigm}, I(i) chosen by evenly sampling {1, 2, 3, 4}, θ = 10−3, λ = 10−3, and
α = 0.005. Fig. 4 shows that as N increases, the variability in the accuracy of our training models
also increases.
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Further inspection of the training process reveals that in the third phase of training (the final
1
20T ), models often quickly converged to nearly perfect functions but failed to remain there, contin-
uing to tweak coefficients, thereby varying in their root-mean-squared error scales.

To counter this tendency, we implemented an early stopping functionality during the final stage
of training that automatically cut off training when the model stopped improving and restored the
previous best set of weights and biases Wtbest

from that stage. We find this modification to be
immensely successful. Fig. 4 offers a comparison between models trained with and without early
stopping, with one heat map shown for each category.

Figure 4. Visualizing the accuracy of equations learned by EQL÷ models for different
training data set sizes N and different training durations T through a heat map where
each cell gives the average total RMSE on an extrapolation test data set across five
EQL÷ models trained at those hyperparameter settings. On the left we give a heatmap
for models trained without early stopping, while on the right we give a heatmap for
models trained with early stopping (in the final stage of training), demonstrating the
effectiveness of early stopping and suggesting the propensity of the EQL÷ model to
locate and then stray away from absolute minima during the final stage of training.

Our experimentation with EQL÷ in the single-pendulum system also reveals several interesting
tendencies of the model, specifically with respect to the algebraic equivalencies or approximations
it converges upon as local minima. In Fig. 5, we present examples of learned functions, which
demonstrate a few of the more notable instances of such approximations. In this figure, the first
component of f2 illustrates the model’s use of sigm(0), which equals 1

2 , but avoids incurring the loss-
function cost of a non-zero weight resulting from regularization; the use of sigm(0) was consistently
encountered. The first component of f1 exemplifies how EQL÷ approximates a line with small slope
by a low-frequency sine curve; the second component of f1 shows how EQL÷ discovers and takes
advantage of the identity sin(θ) = cos(θ − π

2 ). Finally, the second component of f3 depicts how
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EQL÷ can locally approximate one period of− sin(θ) somewhat effectively with a rational function.

f1(θ, ω) =

[
1.08 sin (0.0946ω)

−1.0 cos (1.0θ − 1.57)

]

f2(θ, ω) =

[
0.0591ω

0.177 sigm (0)+0.491

−1.0 sin (1.0θ)

]

f3(θ, ω) =

[
0.102ω

− 0.134θ
0.0367θ2+0.125

]

Figure 5. A few examples of close approximations to the goal function learned by
instances of the EQL÷ model trained for the single-pendulum system. These represent
local minima that the model was unable to escape during the training process. We
identify the capacity and tendency of insufficiently-trained EQL÷ models to discover
functional approximations, trigonometric identities, and loss function loopholes.

3.2 Double Pendulum

The motion of the double pendulum is significantly more complicated. The system often acts as a
canonical example of chaos (which occurs when similar initial conditions do not necessarily result in
similar time evolution), and the differential equations constituting its equations of motion represent
a considerable step up in complexity and nonlinearity. As before, let us consider each individual
pendulum in the double pendulum to have unit length and unit mass. If we let θ1, θ2 be the two
angles which the two rods constituting the pendulum make with respect to the vertical (numbered
from the top down) and define ω1 := θ̇1, ω2 := θ̇2, then we can write the function f that captures
the first-order decomposition of the equations of motion for the double pendulum as

f(θ1, ω1, θ2, ω2) =


ω1

ω2
1 cos(θ1−θ2) sin(θ1−θ2)+g sin(θ2) cos(θ1−θ2)−ω2

2 sin(θ1−θ2)−2g sin(θ1)
2−cos2(θ1−θ2)

ω2

ω2
2 cos(θ1−θ2) sin(θ1−θ2)+2g sin(θ1) cos(θ1−θ2)−2ω2

1 sin(θ1−θ2)−2g sin(θ2)
2−cos2(θ1−θ2)

 .
(12)

Our data-sampling method mirrors that of the single pendulum, except that the hypercube now
resides in R4.

We find that the double-pendulum case requires us to modify our original method for assessing
the accuracy of our model results, the learned equations. Our experimentation—which included
training on data sets with size up to N = 50000 and durations up to T = 10000, requiring up to
16 hours to complete—failed to reveal a hyperparameter configuration for which an EQL÷ model
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could exactly learn the desired equation. As a result, our evaluation must involve the qualification
of the accuracy of the approximations to f learned by our models. We recall that the ultimate
goal of our project is to discover learned equations to be used in computational modeling; it seems
natural, then, to evaluate our models based on the accuracy of the computational models that use
the learned equations. Thus, in the case of the double pendulum, we established a metric E(t) for
the accuracy of a computational model at time t to be the Euclidean distance between the true and
learned locations of the second mass (the one on the very end of the double pendulum) at time t,
given by the numerical integration of the learned equation and the numerical integration of the true
equations of motion at time t.

In Fig. 6, we select three of our trained models, differing with respect to the training-time
variables N and T , and plot E(t) vs. time for two different initial conditions: one we call “low-
energy” ([θ1, ω1, θ2, ω2]> = [π4 , 0,

π
4 , 0]>), and one we label “high-energy” ([θ1, ω1, θ2, ω2]> =

[π2 , 0,
π
2 , 0]>). For the remainder of this section, “Model 1,” “Model 2,” and “Model 3” will refer

to the models labeled as such in Fig. 6. The hyperparameters for the models were L = 4, 4u(i) =

v(i) = 4,H = {id, sin, cos, sigm}, I(i) chosen by evenly sampling {1, 2, 3, 4}, θ = 10−3, λ = 10−3

and α = 10−3; the models were trained on data generated with the choice h = 3.

Figure 6. The error E(t) vs. time t for three instances of trained EQL÷ models for
two initial conditions: low energy ([π

4
, 0, π

4
, 0]>, pictured on the left) and high energy

([π
2
, 0, π

2
, 0]>, pictured on the right). We find that equations learned by sufficient-

ly-trained EQL÷ models can effectively approximate the time evolution of a double
pendulum beginning in a low-energy configuration for extended periods, but are un-
able to approximate higher-energy double pendula undergoing chaotic motion are only
approximated for longer than a few seconds.

In addition to measuring the accuracy of the computational model, we are also interested in
learning to what extent the model discovers functions that adhere to natural laws, such as the conser-
vation of energy. We now introduce two statistics that will enable us to evaluate the extent to which
our models conserve energy. First, if we define E(t) to be the total energy of the system at time t as
predicted by a computational model, and we letE0 be the total energy of the initial condition, we can
then define the energy drift Ed of the predicted trajectory to be the slope of the linear approximation
to the curve E(t)−E0

E0
. This number represents the magnitude and direction of the global trend of the

total energy of the modeled system and should ideally be 0.
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We note, though, that Ed = 0 could be true for a predicted trajectory even if the trajectory does
not conserve energy, if the system alternates or oscillates evenly between too much (E(t) > E0) and
too little (E(t) < E0) energy. Cases such as this are captured with our second statistic, the energy
fluctuation Ef , defined as

Ef =

√
1

|T |
∑
t∈T

(E(t)− E0)2, (13)

where T is the set of times for which the system state is computed, and |T | gives the number of
elements in T . By squaring the difference between the modeled system energy and the initial energy,
we sum a measure of the magnitudes of the discrepancies over time and compute the average thereof.
Together,Ed andEf give an indication of the extent to which a model locally conserves energy from
moment to moment for a given initial condition.

Models Energy DriftEd
(Low Energy)

Energy FluctuationEf

(Low Energy)
Energy DriftEd
(High Energy)

Energy FluctuationEf

(High Energy)

Model 1 -1.24e-5 J 0.0694 J -0.0139 J 4.38 J
Model 2 -4.90e-5 J 0.227 J -0.0177 J 5.49 J
Model 3 5.93e-4 J 1.756 J 0.0859 J 2.21 J

Table 1. The energy drift Ed and energy fluctuation Ef for each model shown in
Fig. 6 for both the low-energy and high-energy initial conditions. We find equations
learned by sufficiently-trained models capable of conserving energy for trajectories
with low-energy initial configurations of the double pendulum, but fail to achieve this
for higher-energy initial configurations that lead to chaotic motion. These measures
of energy conservation were computed over the duration indicated in Fig. 6. Videos
showing these time evolutions can be found at bit.ly/2lfQ763.

Examination of the time evolution of the actual double pendulum from the low-energy initial
condition reveals behavior that is more or less like that of a single pendulum; it oscillates back and
forth in a relatively uniform way without exhibiting much chaos. The high-energy initial condition,
however, devolves into highly chaotic motion after about eight seconds. This behavior is clearly
shown in Fig. 6: in the low-energy plot, we find that the two more thoroughly trained models are
able to maintain a high level of accuracy for a long period of time, while Model 3 appears to be
moving essentially in and out of phase with the real double-pendulum behavior. However, in the
high-energy plot, we observe a complete collapse in accuracy precisely at the eight-second mark;
flaws in the approximations of all three models are placed on full display by the inherently chaotic
nature of the double pendulum given this particular initial condition. Table 1 reveals a similar story:
energy is conserved relatively well in the low-energy case, but we find greater deviations more
quickly in the more strenuous test posed by the high-energy initial condition.
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4. CONCLUSION

To summarize, we introduced multiscale physical systems and the challenges associated with their
study and modeling, namely microscale simulation costs and the closure problem. We then presented
some of our goals—objectivity, interpretability, and extrapolation—and used these to determine a
suitable external tool to pursue to find a potential solution to our multiscale modeling problems. We
chose to use symbolic function-learning neural networks, which we chose to explore, in particular,
using the EQL÷ model. We then introduced the architecture of neural networks and the extension of
this structure to the EQL÷ model. Next, we used our goals to motivate the terms in our loss function
and described our training procedure. Finally, we presented our results generated by testing the
EQL÷ model on the equations of motion for the single and double pendula.

In conclusion, we find that EQL÷ succeeds quickly in the simpler case of the single pendulum
but can only approximate the more complex, chaotic double pendulum, with both accuracy and
the preservation of physically “legal” behavior (in particular, conservation of energy) deteriorating
rapidly with a higher-energy, more complex initial condition. In the context of multiscale modeling,
the inherent complexity and chaotic nature of multiscale physical systems will likely prove even
harder to resolve using EQL÷ in its present state.

In addition to these general results, we identified the sensitivity of EQL÷ to hyperparameters,
especially the regularization coefficient λ, which essentially parameterizes the over- or under-fitting
of the model; application of EQL÷ to a complex system requires extensive searches for ideal hy-
perparameters. We also revealed several unexpected idiosyncrasies of the model that result from
the nature of its architecture and training, such as the model’s propensity to take advantage of its
hypothesis set to dodge loss-function penalties, e.g., by using sigm(0) = 1

2 to “cheat” and gener-
ate a non-zero number without incurring a regularization cost. These observations grant valuable,
non-trivial insights into ML when the “optimization space” can be treated as a function space, a
characteristic of symbolic ML. In particular, we find that our function space is littered with local
minima. Some of these local minima can be attributed to the very nature of function spaces, e.g.,
to the high number of functional approximations or equivalencies that exist for any given goal func-
tion; other local minima arise as a consequence of particular choices, made during the design of the
model architecture and training, that arbitrarily and unintentionally favor certain functional forms,
e.g., those using sigm(0) instead of 1

2 .

We conclude that EQL÷ is a potentially capable model with some demonstrated success, but it
may not scale well with increasingly complex systems, particularly those that may be encountered in
multiscale modeling, because of the noted hyperparameter sensitivity and optimization challenges.
These results lead us to consider modifying or moving past EQL÷ as we proceed toward our mul-
tiscale modeling goal. Further analysis of the function space we are working with will help us to
identify and develop the particular architectural or training modifications necessary for a more ef-
fective symbolic neural network. We also recall that EQL÷ is not structurally physics-informed; in
future research, the fundamental mathematical features exhibited by physical systems can be used
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to design more specific, physically optimized strategies [5–7, 15] that can be used either in tandem
with or independent of EQL÷.
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Kevrekidis, Ioannis G, arXiv preprint arXiv:1907.12715, 2019

[7] Sam Greydanus and Misko Dzamba and Jason Yosinski, Hamiltonian Neural Networks abs/1906.01563,
2019, http://arxiv.org/abs/1906.01563, arXiv, 1906.01563

[8] Durbin, Richard and Rumelhart, David E., 10.1162/neco.1989.1.1.133, Neural Computation, 1, 133-142,
Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation
Networks

[9] Y. Shin and J. Ghosh, The pi-sigma network: an efficient higher-order neural network for pattern classifi-
cation and function approximation, 1991, 13-18 vol.1, 10.1109/IJCNN.1991.155142

[10] Sum-product networks: A new deep architecture, 9781467300612, 10.1109/iccvw.2011.6130310, 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Poon, Hoifung and
Domingos, Pedro, 2011

[11] Koza, John R.,10.1007/BF00175355, 1573-1375, Statistics and Computing, 87-112, Ge-
netic programming as a means for programming computers by natural selection, 1994,
https://doi.org/10.1007/BF00175355

[12] Machine learning closures for model order reduction of thermal fluids, San, Omer and Maulik, Romit,
Applied Mathematical Modelling, Vol. 60, 681-710, 2018

[13] Deep multiscale model learning, Wang, Yating and Cheung, Siu Wun and Chung, Eric T and Efendiev,
Yalchin and Wang, Min, arXiv preprint arXiv:1806.04830, 2018

[14] Mjolsness, Eric and DeCoste, Dennis, 10.1126/science.293.5537.2051, 0036-8075, 5537, 2051-2055,
American Association for the Advancement of Science, Machine Learning for Science: State of the Art
and Future Prospects, Vol. 293, 2001

[15] Maziar Raissi and Paris Perdikaris and George E. Karniadakis, Physics Informed Deep Learning (Part I:
Data-driven Solutions of Nonlinear Partial Differential Equations, abs/1711.10561, 2017, 1711.10561

[16] Physics-Informed Kriging: A Physics-Informed Gaussian Process Regression Method for Data-
Model Convergence, Yang, Xiu and Tartakovsky, Guzel and Tartakovsky, Alexandre, arXiv preprint
arXiv:1809.03461, 2018

16 Student Journal of Physics,Vol. 8, No. 1,2019



[17] Variational Multiscale Closures for Finite Element Discretizations Using the Mori-Zwanzig Approach,
Pradhan, Aniruddhe and Duraisamy, Karthik, arXiv preprint arXiv:1906.01411, 2019

[18] Heterogeneous multiscale method: A general methodology for multiscale modeling, E, Weinan and En-
gquist, Bjorn and Huang, Zhongyi, Phys. Rev. B, Vol. 67, Issue 9, 092101, 2003

[19] Marsland, Stephen, Machine Learning: An Algorithmic Perspective, Second Edition, 2014, 1466583282,
9781466583283

Student Journal of Physics,Vol. 8, No. 1, 2019 17



STUDENT JOURNAL OF PHYSICS

Optimizing an Electrospun Catalyst in Polyelectrolyte Membrane Fuel Cells
Surya Rajan1

1Senior, California High School, San Ramon, CA, 94583, USA

ABSTRACT

Polyelectrolyte Membrane Fuel Cells (PEMFCs) have been of great interest as a potential source of alternative energy due to
their high-power output and zero-emission activity, yet their low cost efficiency relative to combustion engines has impeded
commercial success. While the Pt/C catalyst is traditionally deposited on the electrodes of the PEMFC, electrospinning Pt/C has
been recently used to increase electrochemically active surface area and proton conductivity in the fuel cell. This study explores
optimizing the electrospinning of Pt/C onto the commercially used Nafion 117 membrane and fine tuning the deposition and
composition of the nanofiber structures to maximize electrochemically active surface area and proton conductivity. By varying
the electrospinning flow rate and Pt/C weight percentage, the peak power density achieved by the 32.5% wt. Pt/C nanofibers
electrospun at 0.5 mL/hr indicated an optimal fiber diameter of approximately 1.25 μm. For all Pt/C wt.  %, the 0.5 mL/hr
nanofiber-coated membranes performed better than or equal to the 1.0 mL/hr nanofiber-coated membranes in terms of power
density, supporting the agglomeration reduction picture derived from SEM imaging. Overall, tests showed a 62.5% increase in
maximum power density with 32.5% wt. Pt/C nanofibers extruded at 0.5 mL/hr onto Nafion 117 membranes when compared
with commercially used Nafion 117 membranes.

Keywords: Polyelectrolyte Membrane Fuel Cells (PEMFCs), Pt/C catalyst, electrospinning, nanofiber structures

1. INTRODUCTION 
With  the  human  population  currently  predicted  to  exceed  9.8  billion  by  2050  and  non-renewable
resources being depleted at an alarming pace,  renewable energy is increasingly being researched and
implemented globally to prepare for the energy demands of future generations [1, 2]. Hydrogen Fuel Cells
(HFCs), an emerging field of clean energy, have been singled out as a potential alternative to combustion
engines. Like lithium-ion batteries, they produce no carbon emissions, yet hydrogen fuel cells have an
energy to weight ratio ten times greater than lithium-ion batteries, much greater range, portability, and
refuel  times  similar  to  combustion  engines.  Among fuel  cells,  Polyelectrolyte  Membrane  Fuel  Cells
(PEMFCs)  are  particularly  attractive  due  to  their  high  power  density,  low  weight,  low  temperature
operation,  and  low  volume  compared  to  other  fuel  cells  [3].  However,  PEMFCs  have  suffered
commercially due to their lack of cost efficiency relative to combustion engines and other traditional
sources of energy and power.  Problems plaguing PEMFCs are largely the result  of  the sluggish and
expensive platinum-based catalysis of the oxidation and reduction reactions in the membrane electrode
assembly (MEA) of the cell [4]. While some studies have focused on non-platinum metal group catalysts
to decrease costs, much research has concerned optimizing the deposition of the platinum catalyst in the
fuel cell to maximize its catalytic activity per unit of mass deposited [5,6]. Recently, electrospinning has
been taken up as a potential method to increase the maximum power density of a PEMFC. In the process
of electrospinning, a high voltage is applied to a certain polymer solution volume, which then results in
polymer nanofibers being deposited onto a substrate.  Electrospinning is  typically  used to  finely tune
nanofiber  morphology,  and  because  of  this  unique  characteristic,  recent  PEMFC  research  has  been
focused on using this technique to increase contact area between the catalyst nanofibers to increase proton
conductivity and electrochemically active surface area. This paper focuses on optimizing this process by
varying two parameters: flow rate and Pt/C weight percentage in the resulting nanofibers formed from a
polymer solution.   

 Student Journal of Physics, Vol. 8, No. 1, 2019 18



2. METHODS
Four different polymer solutions consisting of deionized water, isopropanol (IPA), poly(acrylic acid), Pt/
C, LIQUIONTM Nafion solution with 15% wt. Nafion resins, 40% wt. deionized water, and 45% wt. IPA
were prepared. The Nafion solution was used to allow for increase adherence of the catalyst electrospun
layer onto the Nafion 117 membrane. PAA was used as a carrier polymer critical in any electrospinning
process, while water and IPA were used as solvents. Each of these solutions contained a different Pt/C
weight percentage so that once electrospinning of each of the solutions was completed, the Pt/C weight
percentages of the catalyst nanofiber layer masses were 20.0%, 25.0%, 32.5%, and 40.0%. Each of these
solutions were then electrospun at a voltage of 15.0 kV onto a Nafion 117 membrane substrate at two
different flow rates: 0.5 mL/hr and 1.0 mL/hr. This resulted in a total of eight different samples for each
Pt/C weight percentage, two per Pt/C weight percentage. Each of these samples were then tested in an H-
Tech PEMFC Demo Kit at a hydrogen flow rate of 80 cubic centimeters per minute at the anode and an
open-air environment at the cathode. After testing, untested samples of nanofiber catalyst layers for each
of  the  eight  samples  were  then  analyzed  through  Optical  Microscopy,  Laser  Microscopy,  3D Laser
Microscopy, and Scanning Electron Microscopy (SEM). 

3. RESULTS
The  Nafion-PAA-Pt/C  nanofiber  structures  were  characterized  using  Optical  Microscopy  at  100x
magnification. The Nafion and PAA are represented by the lighter colors in the images shown in Figure 1.
The figure shows that as Pt/C weight percentage is increased, more darker colors are shown in the images,
as the proportion of Nafion and PAA in the nanofibers is lesser. In addition, the images also show that the
nanofibers electrospun at a lower flow rate have a more even dispersion of lighter and darker colored
regions and finer arrangements, implying that electrospinning at a lower flow rate results in a more even
dispersion of Pt/C, Nafion, and PAA that results in finely-tuned nanofiber structures. Fibers with 40.0%
wt. Pt/C were observed to be much more interwoven and many followed circuitous paths. This correlation
between Pt/C wt. % and change in fiber orientation may indicate that more viscous solutions and samples
with higher Pt/C concentrations are less optimal for electrospinning as they either did not extrude from
the syringe smoothly or were not caught on the rotating drum efficiently. 
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The nanofiber diameters were determined through Laser Microscopy. Among the nanofibers electrospun
at a flow rate of 1.0 mL/hr, the diameters of each Pt/C weight percentage nanofibers were in increasing
order, respectively, 0.920 microns, 1.086 microns, 1.680 microns, and 2.024 microns. The nanofibers
electrospun at a flow rate of 0.5 mL/hr had diameters in increasing order of, respectively, 0.695 microns,
1.062 microns, 1.251 microns, and 1.863 microns (Figure 2).

Additionally, 3D Laser Microscopy was used to characterize the agglomeration of Nafion, PAA, and Pt/C
across  multiple  layers.  As  Pt/C  weight  percentage  increased,  higher  average  nanofiber  heights  were
observed for both flow rates. As electrospinning flow rate increased, higher average nanofiber heights
were also observed (Figure 3).
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Scanning  Electron  Microscopy  (SEM)  and  Energy-Dispersive  X-Ray  Spectroscopy  (EDS)  were
conducted on nanofiber samples of varying Pt/C weight percentages:  20.0%, 25.0%, and 30.0%, and
40.0% to obtain clear evidence of platinum deposition  increase on the nanofibers as platinum weight
percentage increased. As shown in the following figures, with increases in Pt/C weight percentage, there
is an increase in platinum content seen both in the SEM images with an electron high tension (EHT) of
2.5 kV and in the EDS spectra, as the absorption of X-rays by the platinum at a wavelength producing
about 2.0 kV shows an increase in intensity (Figure 4, Figure 5, Figure 6,  and Figure 7).  More detailed
SEM images of the nanofibers with 32.5% wt. Pt/C are shown in Figure 8 and Figure 9.

An open-circuit  voltage (OCV) of  approximately 1.0 V was achieved,  and the resulting polarization
curves for 32.5% wt. Pt/C nanofibers electrospun at flow rates of 0.5 mL/hr and 1.0 mL/hr were produced
and compared with the control. A maximum power density of 0.013 W/cm2 was observed for the 32.5%
wt.  Pt/C nanofibers electrospun at  0.5 mL/hr while  a  maximum power  density  of 0.008 W/cm 2 was
observed for a commercial PEMFC with a pure Nafion 117 membrane (Figure 10). Ultimately, a 62.5%
increase in power density was observed from the commercial PEMFC to a 32.5% wt. Pt/C nanofiber-
coated Nafion 117 membrane with fibers electrospun at a volumetric flow rate of 0.5 mL/hr on one side
(Figure 11). Although the Nafion 117 membrane coated with 32.5% wt. Pt/C nanofibers electrospun at
volumetric  flow  rate  of  1.0  mL/hr  displayed  a  lower  maximum  power  density  than  its  0.5  mL/hr
counterpart,  it  still  showed  a  maximum  power  density  of  0.010  W/cm2,  a  25%  increase  from  the
commercial PEMFC (Figure 12).
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4. CONCLUSION

Overall,  PEMFC demonstration kit  testing indicates that electrospinning Pt/C-Nafion PAA nanofibers
onto the Nafion membrane has the capacity to increase PEMFC maximum power density by up to 62.5%,
suggesting the promise of this catalyst application technique. By comparing the polarization curves of
membranes coated with nanofibers of different flow rates and Pt/C weight percentages, it was found that
the optimal Pt/C weight percentage was approximately 32.5%, meaning an approximate balance between
platinum agglomeration, platinum content, and nanofiber diameter is achieved at that weight percentage.
The optimal flow rate tested was 0.5 mL/hr, and the performance of the nanofibers electrospun at varying
flow rates indicates that as flow rate decreases, PEMFC maximum power density increases. This trend
can be attributed to a decrease in nanofiber diameter and platinum agglomeration, which allows for more
finely-tuned nanofibers. Microscopy imaging of the nanofibers revealed key trends and characteristics
which impacted their performance as a catalyst when electrospun onto the Nafion 117 membrane. As the
Pt/C  wt.  %  was  increased  from  20.0%  to  40.0%,  platinum  content  increased  alongside  platinum
agglomeration and nanofiber diameter. The optimal performance of the 32.5 Pt/C wt.% nanofiber-coated
membranes demonstrated an approximate balance between these performance enhancing and limiting
parameters. The 0.5 mL/hr flow rate nanofibers exhibited lower levels of platinum agglomeration and
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lower  fiber  diameters  compared  to  the  1.0  mL/hr  nanofibers,  indicating  that  as  flow rate  decreases,
performance of the nanofiber-coated Nafion 117 membranes would increase. However, more flow rates
must be tested to confirm this trend, as there may be departures occurring at flow rates not tested in this
study.
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ABSTRACT

This study focuses on the comparative analysis of Particulate Matters (PM) – PM10 and PM2.5 between Ahmedabad (AMD) and
Gandhinagar (GND) city in Gujarat for the year 2016 -2018. Seasonal and annual analysis were carried out in order to understand
the trends and sources of pollution within the city. Further PM ratio analysis is also performed to identify contribution of finer
and coarser  mode aerosol.  The results  show that  industrial  areas  contribute  the most;  Followed by commercial  and traffic
junctions in both the cities. Ratio analysis  of different PM sizes is calculated as PM 2.5/10 and PM 1/2.5. Among which,  PM
2.5/10  ratio  is  found highest  during  the  monsoon as  larger  super  micron  particles  get  removed fast  during  monsoon than
submicron particles due to washout effect. While in summer, it is the lowest due to increase in temperature and moderate wind
speed. The ratio of PM 1/2.5 is highest during winter, owing to the fact that the combustion of heating appliances such as boilers,
closed stoves, open fire places emit more fine particles.

Keywords: Particulate matter, Air quality, Ratio analysis, Different Season.

1. INTRODUCTION
As we all know that the earth’s atmosphere is primarily made up of gases. Out of which, around 78.09%
is nitrogen, 21% oxygen, and the rest of it is made up of other gases. Also, our atmosphere contains liquid
droplets and solid particles which are very small in size, known as particulate matter (PM). Aerosol is the
particulate matter which is suspended in a gas. With naked eye we can see some particles, such as dust,
dirt, soot or smoke but others are so small that only an electron microscope can detect them.

According  to  the European committee for standardization (CEN), the different categories of particulate
matter  are:  Inhalable,  Thoracic,  Alveolic  and  Respirable  fraction.  Airborne  particles  which  can  be
aspirated into the air nose or mouth are known as inhalable particles. With increasing particle diameter,
inhalable capacity decreases gradually with reaching a level of about 50% at 100 microns.

A dust  mass  fraction  is  classified  into  emission  PM10,  PM2.5  and PM1.  Coarse  particles  having  a
diameter between 2.5 and 10 microns are known as Particulate  matter  10(PM10). Fine particles with a
diameter of 2.5μm or less are classified as Particulate matter 2.5. Ultrafine particles generally up to 0.1μm,
if exposed to the condensation or coagulation, can inflate into the size of 1μm. Such particles are defined
as PM1.

It has been observed that health is highly associated with the exposure to particle pollution. It can even
lead  to  premature  death.  These  health  issues  may  include  cardiovascular  effects  such  as  cardiac
arrhythmias and heart attacks as well as respiratory effects such as asthma attacks and bronchitis.  As a
result, it can result in absences from school or work, emergency room visits, high hospital admissions and
restricted activity days, importantly for those with pre-existing heart or lung disease, children and older
people.
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 The size of particles are is directly connected to their prospect for causing health problems. Out of which,

Fine particles (PM 2.5) have the greatest health risk. Once inhaled, such fine particles can go deep into the
lungs. They can even get mixed into the bloodstream. If these particles are exposed to a person, they can

affect  his lungs and heart.  Although coarse particles  (PM 10-2.5) have less  effect,  they can affect  a
person's eyes, nose and throat. The EPA (Environmental Protection Agency) has standardized about who
is at risk from the exposure to fine and coarse particles and includes simple measures that can be taken to
reduce health risk.

2. STUDY AREA

We have divided Ahmedabad into 33 locations as shown below:

Figure 1: Study Area of Ahmedabad. The Yellow markers shows the selected location for data acquisition. Total 33
locations.

We have divided Gandhinagar into 21 locations as shown below:

Figure 2: Study Area of Gandhinagar. The blue markers shows the selected location for data acquisition. Total
21 locations.
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3. INSTRUMENTATION

In this study, we have used GRIMM Portable Laser Aerosol Spectrometer and Dust Monitor Model  11-A
(GRIMM Aerosol Technik GmbH & Co. KG, Germany), to analyze particle size distribution [Figure 3].
For  continuous  measurement  of  airborne  particles  and  for  measuring the particle count distribution
GRIMM  Aerosol  Spectrometer  is  very  useful.  This  instrument  has  four  operational  modes:  1)
Environmental, 2) Occupational Health, 3) Mass Distribution and 4) Count Distribution. This instrument
measures the concentration  of  particles in an optical sensor  for  the size from 0.25μm to 32μm in 32
different channels in different sizes, with concentration range  of  mass from 1-100000μg/m3 (for mass
distribution,  environmental  and  occupational  health  modes) or  a  1-2000000  particles/L  (for  count
distribution mode). The sensitivity  of  these instruments is 1 particle/L for count mode and 1μg/m3 for
mass mode. Reproducibility of an instrument is 2%. In this study, Aerosol Spectrometer was operated in
count distribution mode to produce count distribution versus time with a temporal resolution of 6 sec. The
size of the particle and the wavelength  of  the incident light determine the strength  of  the light-matter
interaction.  The  matter particles can be either a solid or a droplet  or  a  gas  molecule.  To show  this
dependency, the parameter α is used.𝛼 = 𝜋 dp/λ  (1)
dp= Particle diameter, λ=incident wavelength, 

π=Particle circumference for spherical particles.

This value α defines the type of scattering.  For Particles much smaller  than the incident  wavelength
(α<<1) Rayleigh scattering occurs. For particle size greater than the incident wavelength (α>>1), rays
of light hitting the particle go through reflection, refraction and absorption, while the rays passing
around the particles edge give rise to diffraction.

4. METHODOLOGY

The aerosol inlet or custom designed air inlets are used to lead the sample air into the measuring cell, e.g.
for high wind speeds or overpressure.

Later, particles in the sample air were detected by light scattering inside the measuring cell. The
scattering light pulse of every single particle gets counted and the intensity of its scattering light
signal is then classified to a certain particle size.

The measuring principle is schematically shown in figure 3. The general light source of Grimm laser
aerosol spectrometers and dust monitors is a laser diode. The wavelength is in visible range at 660
nm for model 11-A. The laser diode can operate in a so called Multiplex Mode in which the intensity
of  the laser beam is being modulated. Thus, particles can be detected over a very wide size range
from 0.25μm up to 32μm. 
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On a flat elliptical strip, by means of illumination optics the laser beam is focused. The laser beam
lights a small measuring volume evenly and subsequently inside the focus, then led into a light trap.
After that, the sample air is focused aerodynamically and passed as particle flow through the inner
area of the measuring volume. The particle concentration of the sample air is normally so low during
the environmental measurement, that statistically seen only one particle is in the measuring volume.
Very  high  particle  concentrations  can  appear  while  measuring  at  particle  sources,  technical
particulate matters, or working places, which later require a previous dilution of the sample air. As the
entire sampling volume  of  1.2 liter/minute gets analyzed,   all  spectrometers  of  Grimm aerosol can
reach a  very good counting statistic.  Under a scattering angle  of 90°, the scattering light emitted by
every particle would be detected by a second optics and then directed to a receiver diode through a
wide-angle 11 mirror. The signal  of  the detector can then be classified into different size channels
after amplification subject to its intensity.

Figure 3: Measuring Principle

5. RESULT AND DISCUSSION

The  table  shows  the  standard  values  of  PM  10  and  PM  2.5  for  residential  and  industrial  area  of
Ahmedabad and Gandhinagar by NAAQS.

Standard values Other areas
(Residential, open ground)

Industrial area

PM2.5(µg/m³) 40µg/m³ 60µg/m³

PM10(µg/m³) 80µg/m³ 100µg/ m³

Table 1: Standard Values of PM
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Next graphs are for PM 10 for the different seasons:

Figure4a: Concentration of PM10 for Ahmedabad and Gandhinagar

As shown in figure 4a, the concentration of PM 10 went as high as 564.55 µg/m
3 

in Ahmedabad for
the year 2017 (winter) at industrial area mainly due to high emission rate of factories.

Figure4b: Concentration of PM10 for Ahmedabad and Gandhinagar

In figure 4b, the concentration of PM10 is hardly crossing the value 250 µg/m
3 

for summer, possibly
due to high temperature, high wind speed and low humidity concentration in the air.
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Figure4c: Concentration of PM10 for Ahmedabad and Gandhinagar

Figure 4c shows that the maximum concentration of PM 10 measured in Ahmedabad for the year 2018

(Post Monsoon) is 517.79µg/m
3 

at industrial area due to high emission rate of factories.

The same figure shows the Minimum concentration of PM10 of 30.83 µg/m
3 

in Ahmedabad for the
year of 2016(Monsoon) at other areas due to washout of PM10 particles in the rain.

Below graphs show the data for PM2.5: From the data analysis, we can see that the concentration of
PM2.5 was highest in industrial area in Ahmedabad 2018 in the season of post monsoon (Fig. 5c) which is

224.05 µg/m
3 

for the same reason as for the PM10. Lowest concentration of PM2.5 was measured in
other area in monsoon (Fig. 5c) at Ahmedabad during the year 2016 because of the washout effect.

Figure 5a: Concentration of PM2.5 for Ahmedabad and Gandhinagar
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Figure 5b: Concentration of PM2.5 for Ahmedabad and Gandhinagar

Figure 5c: Concentration of PM2.5 for Ahmedabad and Gandhinagar

6. RATIO ANALYSIS WITH CONCLUSIONS:

Figure 6a: Ratio of PM2.5/10

Student Journal of Physics, Vol. 8, No. 1, 2019 30



Figure 6b: Ratio of PM2.5/10

For Gandhinagar, Fig. 6a and 6b show that the PM 2.5/10 is highest during the winter season compared
to the summer and post monsoon, possibly owing to the fact that the combustion of heating appliances
such as boilers, stoves, and open fire places which emit more PM2.5 compared to PM10. 

Figure 7a: Ratio of PM2.5/10

While for Ahmedabad, Fig. 7a show that, PM 2.5/10 ratio is highest in 2016 during the monsoon as larger
super  micron  particles  (PM10)  get  removed faster  than  the  submicron  particles  (PM2.5)  due  to  the
washout effect. 

Figure 7b: Ratio of PM2.5/10
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Figure 7c: Ratio of PM2.5/10

In 2017 and 2018 charts (Fig. 6a,  6b and Fig. 7b, 7c) , the average values of PM 2.5/10 are low for
Ahmedabad as compared to Gandhinagar. We had not carried campaign during monsoon 2017 & 2018 as
the particles get settled down due to washout effect & thus we can’t get a clear picture of the pollution
level over both the cities. 

This indicates that  Ahmedabad has  higher deposition of coarser particles compared to Gandhinagar.
This may be due to the resuspension of sand. Also Gandhinagar has higher green cover than Ahmedabad
which reduces the resuspension of coarser particles. 
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Abstract: Wide applications of hydrogen storage alloys have resulted in synthesis of multi-element alloys. Modifying the

parent  alloy  by  substitution  gives  alloys  whose  properties  can  differ  from the  parent  alloy.  Important  thermodynamic

properties of hydrogen storage alloys are heat of formation of hydride and plateau pressure. These properties are measured

through experiment. In the present study, structural properties of a class of hydrogen storage alloys have been correlated with

these thermodynamic properties.  Based on this  correlation one can predict  of heat  of formation of hydride and plateau

pressure for alloys without actually synthesizing them.

Keywords: AB5-Type Hydrogen Storage Alloy, Heat of Formation, Plateu Pressure

1. INTRODUCTION

Hydrogen storage alloys are materials, which absorb hydrogen at certain pressure and desorb it at a

lower pressure.  Hydrogen atom is stored in the solid material at interstitial position.  State of the art

hydrogen storage alloys are AB5, AB2, A2B and AB type. Among so many hydrides, AB5 is popular for

its  easy  activation  and  operation  at  room  temperature  and  at  little  atmospheric  pressure  [1-3].

Nowadays, most of the AB5-type alloys are synthesized through substitution of other elements in the

parent alloy either at ‘A’ or at ‘B’sites. The specific requirements of hydrogenation properties are met

through synthesizing actual alloy with trial and error method.  In earlier studies, theoretical approach

for explaining thermodynamic properties have been presented [4-7]. Such studies were mostly based

on ternary hydrides.   At present no such model is available, which can predict the multi-element alloy

properties  without  actually  synthesizing  it.   In  the  present  investigation,  structural  properties  like

lattice parameter ‘a’,  ‘c’,  unit cell  volume and a new parameter rB* have been correlated with the

observed thermodynamic properties like heat of formation of hydride and hydrogen plateau pressure.

Whereas ‘a’, ‘c’ and unit cell volume are properties of the synthesized alloy, r B* is an equivalent radius

of B in AB5 alloy after substitution at the ‘B’ site. A relation has been established between structural

and thermodynamic properties, which can be used to predict thermodynamic parameters of alloys.
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2. METHODOLOGY

In present investigation, three series of alloys have been studied. These alloy series are termed as

alloy1,  alloy2 and alloy3.  The nomenclature  of  alloys  is  given in  Table  1.  For  each alloy series,

experimentally observed values of lattice parameters ‘a’ and ‘c’ along with heat  of formation and

hydrogen plateau pressure reported in literature have been noted.  rB* has been calculated by taking

stoichiometric composition of various elements at ‘B’ and atomic radius of each element. The values

of atomic radii for elements under present study are given in Table 2. Graphs have been plotted among

structural and thermodynamic parameters for each alloy and a relation has been established. 

Table 1- Nomenclature of alloys

S.N. Name of alloy Composition of alloy

1 Alloy 1 LaNi4R (R= Al, Mn, Fe, Cu, Co, Cr)

2 Alloy 2 LaNi5-x-y-zAlxSnyFez

3 Alloy 3 La0.78Ce0.22Ni3.73Co0.30Al0.17Fe0.5-xSix 

(x = 0, 0.05, 0.075, 0.1)

 

Table 2- Atomic radius of elements using VWR Sargent Welch Periodic Table

S.N. Element Atomic Radius (Å)

1 La 2.74

2 Ce 2.70

3 Ni 1.62

4 Co 1.67

5 Mn 1.79

6 Fe 1.72

7 Si 1.46

8 Al 1.82

9 Cu 1.57

10 Cr 1.85

The equation for calculating rB* used in the present investigation is given as Eq. 1. The calculation for

one of the members of alloy 1 is also shown as an example.  

rB* = (4 rNi + rAl)/5 (1)
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For  example  we  consider  the  alloy  LaNi4Al,  obtained  by  starting  LaNi5 and   five  Ni  atoms  in

substituting one of the 5 Ni atoms by an Al atom. For this alloy rB*= {(4 1.62) + 1.82}/5 = 1.66.

3. RESULTS AND DISCUSSIONS

Table 3 shows all the known and calculated parameters of alloy 1-LaNi4R hydride. 

Table 3- Known and calculated parameters of alloy 1 LaNi4R hydride [7-10]

S.N. Alloy a (Å) c (Å)

Unit cell

Volume

(Å3) rB ⃰ (Å)

Heat  of

formation

(kcal/mol H)

Plateau

pressure 

(atm)

1 LaNi5 5.017 3.986 86.28 1.62 -6.33 3.0

2 LaNi4Co 5.018 3.981 86.2 1.63 -7.43 1.2

3 LaNi4Cu 5.033 4.007 87.29 1.61 -8.068 1.6

4 LaNi4Fe 5.049 4.015 88.02 1.64 -8.87 1.05

5 LaNi4Cr 5.07 4.048 90.23 1.666 -10.0 0.91

6 LaNi4Mn 5.089 4.082 90.91 1.654 -11.6 0.05

7 LaNi4Al 5.061 4.07 89.65 1.66 -13.1 0.01

Table  3  shows  that,  in  most  of  the  cases  heat  of  formation  and  plateau  pressure  decrease  with

increasing value of the lattice parameters, unit cell volume and rB⃰.  More negative is the value of the

heat of formation, more stable is the corresponding hydride. Plateau pressure is related to the heat of

formation.  More  negative  is  the  value  of  heat  of  formation,  smaller  is  the  plateau  pressure.  The

variation of heat of formation and plateau pressure with unit cell volume and rB ⃰  are shown in Figures

1, 2, 3 and 4 respectively.
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Figure 1- Variation of heat of formation with unit cell volume.

Figure 2- Variation of heat of formation with rB ⃰.

Figure 3- Variation of hydrogen plateau pressure with unit cell volume.
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Figure 4- Variation of hydrogen plateau pressure with rB ⃰ .

The trend in heat of formation and plateau pressure are similar with unit cell volume and rB⃰. It may be

mentioned here that unit cell volume is an experimental value obtained after the synthesis of the alloy

and doing diffraction measurement,  whereas  rB ⃰   is  a  theoretically  calculated value found without

actually synthesizing the alloy. In this way, rB ⃰ can play a role similar to the unit cell volume. Hence by

estimating the value of rB⃰, one can predict the trend of heat of formation and plateau pressure without

synthesizing the actual alloy. 

Similar known and calculated parameters of Alloy 2:LaNi5-x-y-zAlxSnyFez hydride are given in Table 4.

This table also shows similar variation in heat of formation and hydrogen plateau pressure with unit

cell volume and rB⃰. Both thermodynamic parameters decrease with structural parameters.

Table 4- known and calculated parameters of Alloy 2:LaNi5-x-y-zAlxSnyFez hydride [11]

S.N. Alloy a (Å) c (Å)

Unit cell 

Volume

(Å3)

rB ⃰

(Å)

heat of 

formation

kcal/mole H

Plateau 

Pressure

(atm)

1 LaNi5 5.1037 3.8936 84.1717 1.62 -6.33 0.500

2 LaNi4.8Sn0.1Al0.1 5.0295 3.9987 86.9895 1.623 -8.56 0.071

3 LaNi4.6Fe0.2Al0.2 5.0307 3.9997 87.0527 1.632 -8.8 0.049

4 LaNi4.8Sn0.2 5.0332 4.0107 87.3789 1.621 -8.18 0.063

5 LaNi4.6Sn0.2Fe0.2 5.0403 4.0052 87.5055 1.628 -8.82 0.055
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Table 5 shows same data for alloy3: La0.78Ce0.22Ni3.73Co0.30Mn0.30Al0.17Fe0.5-xSix multi-element hydride. In

this case again, heat of formation and plateau pressure decrease with increasing value of unit  cell

volume. However,  rB ⃰  does not show clear tendency of increase or decrease of heat of formation and

plateau pressure. It may be due to substitution also at ‘A’ site. 

Table 5- known and calculated parameters of Alloy 3: La0.78Ce0.22Ni3.73Co0.30Mn0.30Al0.17Fe0.5-xSix multi-element

hydride [12]

S.N. Alloy

with  x

a (Å) c (Å)

unit cell

volume

(Å3)

rB⃰

(Å)

Heat of

Formation

(kcal/mole H)

Plateau

pressure

(atm)

1 0 5.03 4.045 88.0142 1.65 -6.584 0.5

2 0.05 5.03 4.046 88.0359 1.647 -7.514 0.45

3 0.075 5.031 4.05 88.158 1.646 -8.808 0.2

4 0.1 5.035 4.048 88.2547 1.639 -8.65 0.1

As pointed out earlier in this paper, heat of formation of hydride is a measure of the stability of the

hydride.  More  negative  is  the  value  of  the  heat  of  formation,  more  stabile  is  the  corresponding

hydride.  Due  to  stability  of  the  hydride,  hydrogen absorption  may take  place  at  lower  hydrogen

pressures. Further, it may be mentioned here that increased value of the unit cell volume facilitates the

hydrogen absorption at a lower driving force, resulting in lower plateau pressure. These two factors are

plausible explanation of the correlations observed between heat of formation of hydrides, stability of

hydride, hydrogen plateau pressure and unit cell volume.

4. CONCLUSIONS

From above discussion, we conclude that the heat of formation and plateau pressure decreases with

increasing value of unit cell volume in all the three class of alloys under study.  Similar trends of heat

of formation and plateau pressure are observed with rB ⃰ also. Since unit cell volume is an experimental

value, structural parameter rB⃰ can be used instead for predicting heat of formation and plateau pressure

for an alloy without actually synthesizing it. 
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Erratum

The effect of right-handed currents and dark side of the solar neutrino param-
eter space to Neutrinoless Double Beta Decay
[Student Journal of Physics,Vol. 7, No. 4, Oct-Dec. 2018]
P.K. Bishee, P. Sahu, and S. Patra

In the original paper, an important reference was missed out. Numbering that as ref.47, the new
reference is

(47) K. N. Vishnudath, S. Choubey, and S. Goswami, ”New sensitivity goal for neutrinoless
double beta decay experiments,” Phys. Rev. D99 (2019) no. 9, 095038, arXiv:1901.04313.

Including this reference, the paragraph at the end of the Introduction should be replaced by the
following:

”In this paper, we study the effect of DLMA solution to the solar neutrino problem on neutri-
noless double beta (0νββ) decay for both of these standard (reproduced the results presented in ref
[47]) and extend our new analysis to right-handed current mechanisms and compare them with the
standard LMA solution to the solar neutrino problem on 0νββ for both mechanisms. This knowl-
edge helps the future experiment to probe in the different energy range of effective mass and find
out the sensitivity on 0νββ.”

Similarly, the last line of the first paragraph in Section II should be replaced by the following
line:

”So for standard mechanism, the inverse half- life (T1/2) for 0νββ is given as (for earlier
references, see [47,17,15,32,38]).”
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